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miRNA profiling 
as a complementary diagnostic tool 
for amyotrophic lateral sclerosis
Jack Cheng 1,2,5, Wen‑Kuang Ho 1,5, Bor‑Tsang Wu 3, Hsin‑Ping Liu 4* & Wei‑Yong Lin 1,2*

Amyotrophic lateral sclerosis (ALS), the most prevalent motor neuron disease characterized by its 
complex genetic structure, lacks a single diagnostic test capable of providing a conclusive diagnosis. 
In order to demonstrate the potential for genetic diagnosis and shed light on the pathogenic role of 
miRNAs in ALS, we developed an ALS diagnostic rule by training the model using 80% of a miRNA 
profiling dataset consisting of 253 ALS samples and 103 control samples. Subsequently, we validated 
the diagnostic rule using the remaining 20% of unseen samples. The diagnostic rule we developed 
includes miR‑205‑5p, miR‑206, miR‑376a‑5p, miR‑412‑5p, miR‑3927‑3p, miR‑4701‑3p, miR‑6763‑5p, 
and miR‑6801‑3p. Remarkably, the rule achieved an 82% true positive rate and a 73% true negative 
rate when predicting the unseen samples. Furthermore, the identified miRNAs target 21 genes in the 
PI3K‑Akt pathway and 27 genes in the ALS pathway, including notable genes such as BCL2, NEFH, and 
OPTN. We propose that miRNA profiling may serve as a complementary diagnostic tool to supplement 
the clinical presentation and aid in the early recognition of ALS.

ALS is a neurodegenerative disease that affects the central nervous system, characterized by motor neuron deficit 
and short life expectancy, but ALS can be challenging to diagnose, particularly in its early stages. Due to its rarity, 
physicians often consider more common illnesses before considering ALS, which can delay its  diagnosis1. To 
improve early recognition, ALS diagnosis criteria have been  proposed2 and continuously  revised3. However, even 
the recently proposed Gold Coast  criteria4 is still primarily based on clinical presentation, despite the fact that 
the genetic structure and biomarkers are gradually revealed by recent  studies5. Additionally, newly developed 
predictive models, scales, and scoring systems can help patients and their physicians better understand the disease 
course. Although mechanism-based and potentially disease-modifying therapies are currently under clinical 
 trials5, developing new diagnostic criteria and identifying genetic risk factors could also speed up the diagnos-
tic process, and understanding the multisystem nature of ALS, including cognitive dysfunction and behavioral 
changes, is crucial for providing proper caregiving support and making end-of-life decisions.

ALS is currently divided into familial and sporadic categories. Familial ALS makes up 10–15% of cases and 
is inherited from family members with ALS or related syndromes like frontotemporal  dementia6. About 70% of 
familial cases have mutations in known ALS genes. On the other hand, sporadic ALS makes up approximately 
85% of cases and develops in patients without any family history of ALS. However, around 15% of sporadic 
ALS cases have private pathogenic mutations in known ALS genes, meaning they do not have a family history 
of  ALS6. The cause of the remaining 85% of sporadic cases is unknown. Over 40 genes linked to ALS have been 
discovered, each varying in penetrance, frequency, and mode of inheritance. Among these genes, C9orf72, TAR-
DBP, SOD1, and FUS are the most prevalent and have the highest  penetrance7. Either toxic gain-of-function or 
loss-of-function mutations in these known genes are associated with ALS pathological processes. These muta-
tions lead to protein aggregates forming, a key pathological feature in both sporadic and familial ALS  cases8. 
The underlying pathophysiological processes can be broadly categorized into four main types: impaired RNA 
metabolism, altered proteostasis or autophagy, cytoskeletal or trafficking defects, and mitochondrial  dysfunction9. 
For example, RNA metabolism is often affected by ALS-associated genes such as C9orf72, TARDBP, and FUS. 
Inclusions of TDP-43 and FUS can impair the normal function of DNA and RNA binding proteins, leading to 
significant changes in transcription and RNA processing. ALS-associated genes such as TDP-43 can also cause 
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dysregulation of proteostasis and autophagy by preventing damaged protein clearance. Additionally, cytoskeletal 
and tubulin defects induced by mutant ALS genes like TUBA4A and PFN1 can interfere with axonal trafficking. 
Finally, SOD1 is a key gene linked to ALS and has been shown to cause mitochondrial dysfunction and increase 
oxidative stress, which is central to the development of the disease. Despite significant advances, our understand-
ing of the complete molecular basis for the pathophysiology remains  incomplete5.

MiRNAs are small non-coding molecules that post-transcriptionally regulate various biological processes, 
including neuronal function, development, and progression of  diseases10. The expression level of miRNAs, includ-
ing miR-1, miR-9, miR-133a, miR-133a/b, miR-142-3p, miR-149, miR-206, miR-223-3p, miR-326, miR-338-3p, 
miR-374b-5p, miR-424, and miR-451, in the serum, muscle, tissue, and cerebrospinal fluid of individuals with 
ALS differs from that of healthy  controls11–17. These changes in miRNA expression may target the peripheral 
nerves, CNS, or skeletal muscles, potentially contributing to the etiology of ALS and playing a crucial role in 
its  progression18. Therefore, Emde, et al., have proposed that different subtypes of ALS may share a common 
feature: the global dysregulation of  miRNAs19. Thus, detecting changes in miRNA expression profile may serve as 
a valuable diagnostic biomarker to identify disease onset and progression. Additionally, identifying dysregulated 
miRNAs could offer a promising avenue for developing therapeutic approaches to treat ALS. However, due to 
ALS’s polygenic nature and complexity, no single miRNA has been found universally dysregulated among previ-
ous studies. This fact makes it challenging to use miRNA as a diagnostic tool for ALS.

Here, we demonstrate the idea that ALS diagnosis could be assisted with the combination of the expression 
level of several circulating miRNAs. We established the judgement rule by machine learning using publically 
available dataset contributed by Magen and  colleagues20, and showed that this rule model predicts 82% true 
positive (ALS) and 73% true negative (healthy control) in the blind dataset, and identified several novel miRNAs 
that target ALS genes.

Methods
Data source and batch correction. The raw counts of miRNA were downloaded from the National 
Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO)  database21 of the accession 
number GSE168714, contributed by Magen and  colleagues20. The dataset was accessed at https:// www. ncbi. nlm. 
nih. gov/ geo/ query/ acc. cgi? acc= GSE16 8714 from March 1st to 3rd, 2023. The dataset comprises the annotated 
counts by small RNA-seq of the RNA extracted from the plasma of 253 ALS and 103  control20. The batch number 
of data collection and ALS/control state were also available with the raw count. To account for the differences 
in our study design compared to the original work of Magen and colleagues, we performed our own batch cor-
rection using the following method. Firstly, we temporarily excluded highly present miRNAs whose raw count 
represented more than 2% of the total counts (13 miRNAs excluded, as detailed in Supplementary File 1) during 
the calculation of batch correction coefficient. Secondly, we calculated the sum of miRNA counts for each sam-
ple. Thirdly, we determined the average sum of miRNA counts for each batch. We then defined a batch coefficient 
as the quotient of the maximum average sum of all batches divided by the average sum of the batch. Finally, we 
calculated the corrected count, including the temporarily excluded highly present miRNAs, by multiplying the 
raw counts by the batch coefficient.

Machine learning. The strategy to identify the key miRNAs was adopted from our previous  studies22,23. 
Briefly, the transposition of the corrected miRNA counts served as the input file to the machine learning pro-
gram  RapidMiner24. For clarity, bold italicized text is used to denote the terminology in RapidMiner. In the 
RapidMiner process setting, patient ID was used as ID; patient ALS state was used as Label, and the corrected 
miRNA counts were used as Attributes to perform training. Rule Induction was adopted as the algorithm, and 
the overall training and validation program was shown in Supplementary File 2, with the following parameters. 
The Split Data operator separated the sample library into 80/20 sets by shuffled sampling for model building and 
independent validation, respectively. Rule Induction was performed with the criterion of information gain, sam-
ple ratio of 0.9, pureness of 0.9, and minimal prune benefit of 0.25, while ten times of Cross Validation was used 
to improve the model. Finally, the Apply model operator utilized the 20% blind set to validate the generated Rule 
Model, and the Performance operator demonstrated the performance of the model.

mRNA targets of miRNAs. DIANA-TarBase v7 was used to find the experimentally validated mRNA tar-
gets of  miRNAs25. Data were accessed at http:// diana. imis. athena- innov ation. gr/ Diana Tools/ index. php?r= tarba 
se/ index from April 13th to 20th, 2023.

Interaction network and enrichment. String-db version 11.5 was used to generate the interaction net-
work and pathway  enrichment26. Data were accessed at https:// string- db. org/ from April 20th to 23rd, 2023. 
Interaction network was generated with highest confidence (0.9) and disconnected nodes in the network were 
hidden.

Intersection analysis. Venny 2.0 was used to generate the Venn  diagram27. Data was accessed at https:// 
bioin fogp. cnb. csic. es/ tools/ venny/ index2. 0.2. html from April 20th to 23rd, 2023.

Statistics. Student’s T-test was used to estimate the significance of the difference between two groups.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168714
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168714
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index
https://string-db.org/
https://bioinfogp.cnb.csic.es/tools/venny/index2.0.2.html
https://bioinfogp.cnb.csic.es/tools/venny/index2.0.2.html
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Results
Machine learning has been proven to be a powerful tool to identify genetic biomarkers in neurodegenerative dis-
orders with complex and heterogeneous genetic factors, such as Alzheimer’s  disease22 and Huntington’s  disease23. 
Since ALS is also known for its complexity and heterogeneity genetic architecture, we applied machine learning 
on an ALS-control miRNA-seq  dataset20 to establish a judgment rule compromising miRNA profiles to identify 
ALS biomarkers following the strategy illustrated in Fig. 1. After batch correction and transposition, batch-
corrected counts of miRNAs of 253 ALS and 103 control was generated (Supplementary File 3), and served as 
the input file for machine learning, where 80% samples served as the training set, and 20% as the unseen testing 
set. The generated model is shown in Fig. 2A, compromising miR-205-5p, miR-206, miR-376a-5p, miR-412-5p, 
miR-3927-3p, miR-4701-3p, miR-6763-5p, and miR-6801-3p, and its ROC curve in the training stage is shown 
in Fig. 2B. This rule model predicts 82% true positive and 73% true negative in the unseen dataset. The expres-
sion fold change of the identified miRNAs is shown in Fig. 3, with miR-412-5p, miR-3927-3p, miR-4701-3p, 
and miR-6801-3p significantly down-regulated in ALS, but not the other four miRNAs. This reflects the idea 
that a major advance of machine learning over traditional comparative methods in identifying biomarkers from 
expression  profiles22.

To understand the role of miRNA-mediated biological processes in ALS pathology, we inquired the mRNA 
targets of miR-205-5p, miR-206, miR-376a-5p, miR-412-5p, miR-3927-3p, miR-4701-3p, miR-6763-5p, and miR-
6801-3p in  TarBase25, a curated database of miRNA-target interactions experimental evidence. Four miRNAs, 
i.e., miR-3927-3p, miR-4701-3p, miR-6763-5p, and miR-6801-3p, have no experiment-validated targets, while 
miR-205-5p, miR-206, miR-376a-5p, miR-412 have 296, 100, 43, and 200 targets, respectively (Supplementary 
File 4–7). Next, we showed that miRNA target genes enrich ALS and PI3K-Akt signaling pathways (Fig. 4, Sup-
plementary File 8, 9), forming an interaction network with miR-205-5p targets occupying central hubs. Interest-
ingly, The Venn diagram shows that the miRNA-target sets are nearly mutually exclusive in both ALS (Fig. 5A) 
and PI3K-Akt signaling pathway (Fig. 5B).

Discussion
In this study, we proposed a diagnostic rule of ALS by the expression of miRNAs, including miR-205-5p, miR-
206, miR-376a-5p, miR-412-5p, miR-3927-3p, miR-4701-3p, miR-6763-5p, and miR-6801-3p, where miR-206 
has been reported in several previous ALS studies, while other miRNAs are novel in the ALS research field. 
Furthermore, these miRNAs mutually exclusively target genes in the ALS or PI3K-Akt pathways, which sup-
ports the idea that the combination of miRNAs, but not any single miRNA, may serve as a tool to facilitate ALS 
diagnosis. In the context of ALS’s heterogeneous genetics, we discuss the identified miRNAs’ and their target 
genes’ relevance to ALS below.

Heterogeneity of ALS genetics. Recent advancements have greatly enhanced our comprehension of the 
genetic origins of familial ALS. Approximately 40–55% of familial ALS cases can be accounted for by varia-
tions in well-known ALS-linked  genes7. While more than 50 potential causative or disease-modifying genes 
have been identified, pathogenic variants in SOD1, C9ORF72, FUS, and TARDBP are most frequent, whereas 

GSE168714 miRNA-seq

Batch correc�on

Data transposi�on

Machine Learning with 
Rule Induc�on algorithm

Iden�fy key miRNAs

Iden�fy target mRNA

Interac�on Network

Figure 1.  The workflow of this study.
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variants in other genes are relatively  uncommon28. However, in cases of sporadic ALS, diagnostic progress has 
only elucidated a fraction of the cases, with the etiology remaining unexplained in over 90% of  patients29. It is 
widely accepted that genetic risk factors play a significant role in sporadic ALS, with heritability estimated at 
approximately 60% based on twin  studies30. However, despite extensive genetic association studies, identifying 
heritable genetic risk factors in sporadic ALS remains elusive.

Despite decades of research, ALS’s underlying causative pathogenic mechanisms remain uncertain, particu-
larly in sporadic cases. The development and progression of the disease are likely influenced by multiple factors 
rather than a single initiating  event31. Moreover, genetic and phenotypic variations among patients pose chal-
lenges in comprehending and drawing conclusions about the general pathogenic mechanisms of ALS. Given the 
extensive number of genes and cellular processes implicated in ALS, numerous disease mechanisms have been 
proposed, including disruptions in RNA  metabolism32, compromised protein  homeostasis33, defects in nucleo-
cytoplasmic  transport34, impaired DNA  repair35, mitochondrial  dysfunction36, oxidative  stress37, disturbances in 
axonal  transport38, and oligodendrocyte  dysfunction39. Further clarification is required to determine the timing 
and extent to which each of these mechanisms contributes to the pathogenesis of ALS.

As an attempt to see whether ALS clinical phenotypes could be differentiated by miRNAs, we constructed 
new cohorts of ALS patients from the same GSE168714 dataset by their clinical phenotypes: bulbar-onset or 
non-bulbar-onset, with 83 or 170 patients, respectively (Supplementary File 10), and these new cohorts of patients 
were subjected to de novo analysis in machine learning. However, the performance of the newly-established 
model was poor, with a recall rate of 75.9% and 24.6% for the cohorts, respectively. Thus, machine learning 
could not differentiate the cohorts of ALS, at least under the present condition. We further analyzed whether the 
identified miRNAs express differentially in the cohorts of ALS (Supplementary File 11). We found that miR-206 
and miR-205 express differentially in the cohorts of ALS, but not significantly. We suspect that the sample size is 

Rule Model

if hsa-miR-3927-3p ≤ 1.271 then 1  (2 / 120)
if hsa-miR-206 > 244.153 and hsa-miR-205-5p ≤ 107.280 and hsa-miR-4701-3p ≤ 37.774 then 1  (1 / 39)
if hsa-miR-376a-5p ≤ 26.846 and hsa-miR-412-5p > 20.492 then 0  (32 / 1)
if hsa-miR-6763-5p > 17.441 and hsa-miR-6801-3p ≤ 65.689 then 1  (2 / 23)
else 0  (36 / 22)

correct: 250 out of 278 training examples.

A

B

False posi�ve rate

etar evitisop eurT

Figure 2.  The predictive model generated by machine learning and its performance. (A) The rule model 
judging where a sample is ALS or control, where “1” denotes ALS and “0” denotes control. The value in the 
conditional expression is the batch-corrected count of the miRNA. (B) The ROC curve of the rule model, with 
AUC of 0.831.
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Figure 3.  The miRNA expression fold change of the miRNAs identified by the rule model. Error bars stand for 
the standard error of the mean (SEM); while *, **, and *** stand for p-value < 0.05, 0.01, and 0.001 of Student’s 
T-test, respectively. The upper right panel shows the number of experimentally validated mRNA targets of 
miRNA, with the full list provided in the corresponding supplementary files.
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PI3K-Akt pathway

miR-205-5p target

Figure 4.  The protein interaction network of the mRNA targets of the identified miRNAs. Red balls indicate 
proteins in the Amyotrophic lateral sclerosis of KEGG, while blue balls indicate proteins in the PI3K-Akt 
signaling pathway of KEGG.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13805  | https://doi.org/10.1038/s41598-023-40879-y

www.nature.com/scientificreports/

the bottleneck to uncover the nature of the ALS cohorts. We also summarized other publicly-available miRNA 
datasets (Supplementary File 12). However, their sample size is insufficient for an independent machine learning 
study, and none of the datasets meets the requirement for validation of the current model that all eight miRNAs 
used in the machine learning model must be available.

miR‑206. miR-206 participates in various stages of muscle differentiation, encompassing alternative splicing, 
DNA synthesis, and cell  apoptosis40. During development, miR-206 hinders the activity of Pax7 and Pax3, effec-
tively restricting the proliferative potential of satellite cells while promoting their differentiation into myogenic 
progenitor cells. Conversely, reducing miR-206 leads to the overexpression of Pax7 and Pax3, which conse-
quently inhibits the differentiation of myoblasts. As Pax7 and Pax3 are known pro-survival factors, the down-
regulation of miR-206 can induce  apoptosis41. Thus, miR-206 plays a protective role and facilitates the regenera-
tion of neuromuscular junctions following acute nerve injury, particularly in the context of  ALS42. Knock-out 
of miR-206 delays and mutilates muscle reinnervation in ALS mouse models of SOD  mutant43. Recent findings 
indicate elevated levels of miR-206 in the plasma of ALS patients and could indicate of disease  progression44,45.

miR‑205. miR-205 exhibits significant expression levels in various human epithelial tissues, including the 
breast, prostate, skin, eye, and thymus. Its primary role in these tissues is crucial to tissue morphogenesis and 
homeostasis. Specifically, it upholds the epithelial phenotype by directly targeting two transcription factors: 
zinc finger E-box-binding homeobox 1 (ZEB1) and ZEB2, which repress E-cadherin and other genes associ-
ated with  polarity46. During the early stages of embryonic development, miR-205 is expressed in trophoblasts, 
where it regulates placental development by suppressing the Mediator of RNA polymerase II transcription subu-
nit 1 (MED1)47. Moreover, in embryonic development, miR-205 governs the differentiation of extraembryonic 
endoderm and spermatogenesis by influencing cell migration and adhesion  genes48. In the mammary gland, 
miR-205 displays high expression levels in the basal stem cells. Overexpression of miR-205 has been shown to 
induce the expansion of the progenitor cell population while reducing cell size and promoting cellular prolif-
eration. These effects are achieved by repressing  PTEN49. In this context, miR-205 regulates the production of 
the basement membrane protein complex laminin-332 and its receptor integrin-β4, thereby ensuring proper 
tissue polarity and  morphogenesis50. In the skin epidermis and stratified epithelia of the esophagus and tongue, 
miR-205 has been found to play a significant role in expanding the stem cell population through its regulation 
of PI3K  signaling51. Additionally, by influencing the same signaling pathways, miR-205 enhances the migration 
of human epidermal and corneal epithelial keratinocytes, thereby contributing to wound healing and corneal 
 development52.

miR‑376a and miR‑412. The physiological roles of miR-376a and miR-412 are not fully understood yet, 
despite some studies reported its participation in cancer and neurological disorders. For example, increased 
levels of miR-376a have been observed in the T cells of patients with multiple sclerosis (MS)53, and miR-412 may 
inhibit clear cell renal cell carcinoma  progression54. Conversely, in the late-onset form of Alzheimer’s disease 
(LOAD), miR-376a has been identified as down-regulated in the  brain55. Meanwhile, the expression change of 
miR-412 has been mentioned in the brain of alcohol use  disorder56, and also in Alzheimer’s  disease57.

BCL2. BCL2 is targeted by miR-20558 and controls caspase activation and the initiation of programmed cell 
 death59 and thus regulates neuronal development and  neurodegeneration60. Several lines of evidence show that 
BCL2 probably involves in ALS pathological progression. Epidemiologic studies found altered expression of 

Figure 5.  The Venn diagram showing that the miRNA-target sets are nearly mutually exclusive. (A) The ALS 
genes. (B) The PI3K-Akt genes.
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BCL2 in ALS spinal cord motor  neurons61 and post‐central  gyrus62. In vivo studies showed that overexpression of 
BCL2 prolongs the survival of the ALS mouse  model63 and improves neuromuscular  function64. In vitro studies 
revealed that ALS-associated mutant SOD1 aggregates  BCL265 and advocates BCL2 conformational  changes66.

NEFH. Neurofilament heavy polypeptide (NEFH) is one of the three intermediate filament proteins forming 
 neurofilaments67. NEFH is targeted by miR-20568 and could be phosphorylated by GSK3β69 and regulate the 
Akt-β-catenin  pathway70. Moreover, epidemiological study showed that NEFH  mutation71,72 and  expression73 
is associated with ALS. Besides, NEFH mutation or expression is associated with other disorders of central or 
peripheral neural system, including  schizophrenia74,  alcoholics75, and Charcot-Marie-Tooth  neuropathy76.

OPTN. OPTN, also known as optineurin, is a highly conserved protein in various  species77. OPTN is tar-
get by miR-20568 as well. It plays diverse roles in vesicular trafficking, NFKB/NF-κB signaling, and autophagy. 
Specifically, OPTN has been identified as an autophagy receptor that facilitates the connection between ubiqui-
tinated autophagy substrates and MAP1LC3/LC3-positive phagophore  membranes78. Furthermore, mounting 
evidence suggests that OPTN acts as an inducer of autophagy, initiating the autophagic  process79,80. Moreover, 
studies indicate that OPTN’s involvement in autophagic initiation can commence as early as the formation of 
autophagosomal  membranes81,82. These groundbreaking findings underscore the multifunctional role of OPTN 
as a potential autophagy receptor throughout the autophagic process, expanding beyond its traditional percep-
tion as a receptor operating solely at a single stage of autophagy. OPTN is gathering attention in ALS research, 
since variants of this gene are associated with  ALS83–85. Moreover, OPTN mutant induces neuronal cell death by 
mediating  mitophagy86, autophagy and ER  stress87. Interestingly, OPTN mutation might be the common cause 
of ALS and corticobasal syndrome (CBS)88.

PI3K in ALS. The PI3K-askt signaling pathway governs metabolism, cell survival, motility, transcription, and 
cell-cycle progression. In recent years, studies have revealed the involvement of the PI3K-Akt signaling pathway 
in neurodegenerative diseases. For instance, butylphthalide has been shown to activate the PI3K-Akt/GSK-3β 
signaling pathway in an ischemic cerebral infarction model, reducing nerve function damage and protecting 
local nerve  cells89. Therefore, therapeutic strategies for ALS targeting the PI3K-Akt pathway has been shown to 
increase anti-apoptotic protein expression levels, reduce pro-apoptotic protein expression levels, and improve 
cell survival rate and mitochondrial function in  ALS90. Moreover, studies by Xiang and colleagues have found 
that AEG-1 can regulate the PI3K-Akt  pathway91, and the absence of AEG-1 in ALS motor neurons inhibits the 
PI3K-Akt pathway and increases cell  apoptosis91. Thus, dysregulated miRNAs may promote ALS pathology by 
mediating PI3K-Akt signaling pathway.

Conclusion
In sum, we showed that a set of miRNA expressions could serve as a diagnostic tool for ALS, and these miRNAs 
target ALS and PI3K-Akt pathways in a mutually exclusive way. The key miRNAs include miR-205-5p, miR-
206, and miR-376a-5p, while key targets are BCL2, NEFH, and OPTN. We propose that miRNA profiling may 
facilitate clinical presentation in the early recognition of ALS.

Data availability
All data in this study are included in the supplementary data. The raw data used for machine learning is shown 
in Supplementary File 3, and the first two rows (file descriptions) must be removed before use. The raw counts 
of miRNA are also available from the National Center for Biotechnology Information (NCBI) Gene Expression 
Omnibus (GEO) database of the accession number GSE168714.

Code availability
The machine learning platform RapidMiner Studio is available at https:// rapid miner. com/. The process is shown 
in Supplementary File 2, and the parameters are in the “Methods” section.
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