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Identification of growth years 
for Puerariae Thomsonii Radix 
based on hyperspectral imaging 
technology and deep learning 
algorithm
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Puerariae Thomsonii Radix (PTR) is not only widely used in disease prevention and treatment but 
is also an important raw material as a source of starch and other food. The growth years of PTR are 
closely related to its quality. The rapid and nondestructive identification of growth year is essential 
for the quality control of PTR and other traditional Chinese medicines. In this study, we proposed a 
convolutional neural network (CNN)-based classification framework in conjunction with hyperspectral 
imaging (HSI) technology for the rapid identification of the growth years of PTRs. Traditional 
treatment methods (i.e., multiplicative scatter correction, standard normal variate, and Savitzky-
Golay smoothing) combined with machine learning algorithms (i.e., random forest, logistic regression, 
naive Bayes, and eXtreme gradient boost) were used as baseline models. Among them, the F1-score of 
CNN-based models based on PTRs’ outer surfaces was over 90%, outperforming all the other baseline 
models. These results showed that it was feasible to use a deep learning algorithm in conjunction with 
HSI technology to identify the growth years of PTR. This method provides a fast, nondestructive, and 
simple method of identifying the growth years of PTR. It can be easily applied to other scenarios, such 
as for the identification of the locality or years of growth for other traditional Chinese herbs.
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Pueraria Thomsonii Benth (PTB) is a type of perennial vine, its root is included in the Chinese Pharmacopoeia 
which is named Puerariae Thomsonii Radix (PTR). PTRs are enriched with a variety of chemical components 
such as isoflavones, terpenoids, coumarins. PTRs have long been used as a type of traditional Chinese medi-
cine. They have an apparent therapeutic effect and have been shown to improve cardiovascular diseases, anti-
inflammation and analgesia, have an anti-diabetic effect, reduce the effects of alcohol, protect the liver, lighten 
skin, enlarge breasts1–6. They are also a type of healthy and famous food in China and Southeast Asia. PTRs have 
high economic value and market demand.

According to the Chinese Pharmacopoeia, the puerarin content (C21H20O9) affects PTR’s quality and medicinal 
value. The higher the puerarin content in a PTR, the higher the quality of the PTR. PTRs with different growing 
ages vary in puerarin content. The puerarin content in PTR is directly related to the number of growth years. 
Xiong et al.7 found that 1-year-old PTB has a low puerarin level that is far below the pharmacopeia standards, 
meaning it can only be used as food or as a raw material. In contrast, PTB aged two years or more usually reaches 
the standard puerarin content level and can be used in traditional Chinese medicine. These findings indicate the 
importance of identifying the growth years of PTRs because growth years are directly related to PTRs’ quality 
and economical and medicinal value.

The growth year of PTR is usually identified according to objective experience or using physical and chemical 
testing. However, PTRs with different growing ages have similar appearances; thus, it is difficult to distinguish 
their characteristics and colors based on objective judgment. In the past, the chemical identification of PTR has 
mainly been performed using High-Performance Liquid Chromatography (HPLC)8,9, which is time-consuming, 
laborious, costly, and destructive. Therefore, it seems that the two abovementioned methods cannot be used to 
identify the growing years of PTRs with high accuracy and efficiency and cannot satisfy the needs of industrial 
production.

Compared with traditional spectral technology, hyperspectral imaging (HSI) technology can be used to 
simultaneously collect surface image information and spectral information from a tested sample. Many research-
ers have used HSI to identify growing years and control the quality of traditional Chinese medicines. In the past 
few years, the accuracy of the identification of growth years for Glycyrrhizae Radix et Rhizoma10, Ophiopogonis 
Radix11, Ziziphi Spinosae Semen12, and Atractylodis Rhizoma13 reached 97.53%, 99.1%, 99.14%, and 97.3%, 
respectively. Zheng et al.14 explored the authentication of Armeniacae Semen Amarum and Persicae Semen 
based on HSI technology. Based on the comparative analysis of several different pre-processing methods and 
identification models, the researchers found that the second derivative pre-processing model and partial least 
squares discriminant analysis were the best model combination. The accuracy of classification reached 100%. 
Cheng et al.15 screened 20 characteristic wavelengths using the successive projections algorithm and established 
several models to identify the origin of Frankincense. The results showed that the accuracies of the extreme learn-
ing machine and linear discriminant analysis were 100%. To the best of our knowledge, no reports have focused 
on the application of HSI technology in the identification of growth years of PTR. Deep learning methods such 
as conventional neural networks (CNNs) have been widely used in many fields, such as image classification16, 
content prediction17, etc., showing high performance and good generalization. In this study, we proposed a 
CNN-based classification framework to identify growth years of PTRs based on hyperspectral images. Here, 
traditional treatment methods (i.e., multiplicative scatter correction (MSC), standard normal variate (SNV), and 
Savitzky–Golay smoothing (SG)) in conjunction with several state-of-the-art machine learning models were used 
as baseline methods to demonstrate the effectiveness and superiority of the proposed method.

Materials and methods
Hyperspectral imaging system.  The HSI system used in this study was the HySpex series produced by 
Norsk Elektro Optikk AS (Norway). The system consists of two lenses, two halogen tungsten lamps, a CCD 
detector, a mobile platform, and its supporting computer system and software (Fig. 1). The two lenses in the 
instrument are a visible and near-infrared lens (VNIR) SN0605 VNIR (spectral range 410–990 nm) and a short-
wave infrared lens (SWIR) N3124 SWIR (spectral range 950–2500 nm). The VNIR lens has a total of 108 bands, 
and the SWIR lens has 288 bands. The two lenses are vertically fixed on a bracket 30 cm away from the moving 
platform. The moving speed of the platform is 1.5 mm/s. The angle between the light source and the platform 
is 45°. The camera can be connected to a computer via a cable to obtain hyperspectral images. The integration 
time and frame period of the VNIR lens and SWIR lens are 9000 μs and 3500 μs; and 41,501 μs and 108,199 μs, 
respectively.

The quality of scanning images might be affected by a dark current in the lens and noise caused by an uneven 
light source distribution. Therefore, a clean, standard-reflectivity whiteboard was added behind the sample as 
a reference. Then, a blackboard reference image was obtained in all-black mode. The original hyperspectral 
image was corrected with the black-and-white reference image obtained18,19. The calibration formula is defined 
as follows:

where R is the calibrated reflectance image, R0 is the raw reflectance image, Rw is the white reference image, and 
Rb is the dark reference image. Before imaging, we repeatedly tested and adjusted the parameters of the HSI 
system to ensure the exposure degree and reduce noise, wherein the lens height and illumination position were 
fixed at 30 cm and 45°, respectively.

Sample.  Inflated root tubers of the cultivated PTRs were collected in April 2021. A total of 75 healthy PTRs 
with different growth years were collected at the Puerariae Cultivation Demonstration Base (117° 39′ 19″ E, 28° 

(1)R =
R0 − Rb

Rw − Rb
,
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59′ 46″ N) in Sizhou Town (Jiangxi, China). The base has a long-standing relationship with our research team; 
therefore, all plants were collected with permission. We firstly collected the hyperspectral images based on 75 
PTRs’ outer surfaces (Fig. 2a). Note that one PTR sometimes grew more than one root simultaneously, and these 
roots had to be divided because of their large sizes. Therefore, some excessively large plants were divided into 
several parts, resulting in 120 independent samples in this study. Then, these samples were cut into transverse 
slices with thicknesses of 4 mm to collect cross-section images (Fig. 2b). In total, 120 outer surface samples and 
1350 cross-section samples were obtained (Table 1). The chemical components could have oxidized if the cross-
section of the sample was exposed to air for a long time. Thus, cross-section images of each sample were collected 
immediately after slicing each sample.

Figure 1.   Hyperspectral imaging system. VNIR visible and near-infrared lens, SWIR short-wave infrared lens. 
HSI system consists mainly of lenses, light sources, mobile platform, and computer system.

Figure 2.   Preparation of Puerariae Thomsonii Radix samples. (a) Outer surface of Puerariae Thomsonii Radix 
samples; (b) cross-sections of Puerariae Thomsonii Radix samples.
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Identification of growth years.  Traditional methods.  The traditional method for identifying the growth 
years of PTRs included four steps: (i) selecting several regions of interest (ROIs); (ii) calculating the mean wave-
length for each ROI; (iii) pre-processing wavelength information; (iv) identifying growth years based on the 
calculated wavelength information (Fig. 3).

The first two steps were performed using the ENVI software (Exelis Visual Information Solutions, Inc., 
USA). A total of 10 ROIs were randomly selected from each image of the outer surface sample. Therefore, 1200 
(= 120 × 10) outer-surface-based ROIs were obtained. Based on the cross-sectional samples, each slice shown in 
Fig. 2b was taken as a single ROI. Thus, 1350 cross-section ROIs were extracted (Fig. 3a). Then, we calculated 
the mean wavelength of the extracted ROI using the ENVI software and displayed the mean value in the line 
charts, as shown in Fig. 3b. We gathered the reflectance of all three growth years and then calculated the mean 
value of each, as shown in Fig. 4.

The methods used to pre-process the wavelength information included MSC, SNV, and SG smoothing10,13,20. 
MSC can be used to eliminate specular reflection and scatter errors in hyperspectral images and effectively reduce 
the noise variance in data21. It is widely used in multi-wavelength calibration modeling22. SNV can remove addi-
tive and multiplicative effects in spectra23. After SNV processing, the interference of light scattering and baseline 
shift will be eliminated24. SG is a weighted average method that can minimize the loss of valuable information25. 
It can reduce the influence of noise and effectively improve the signal-to-noise ratio of a spectrum12. In this study, 
we used these three most common methods as pretreatment methods. The last step was to classify the growth 
years of PTRs based on the calculated wavelength information of ROIs using machine learning methods. In this 
study, random forest (RF), logistic regression (LR), naive Bayesian (NB), and eXtreme gradient boost (XGBoost) 
were used to predict the growth years of PTR. In this study, we set the number of decision trees to 500 for RF. 
Additionally, we used two strategies to feed selected ROIs’ information of an image into machine learning models: 
the mean value of the selected ROIs’ wavelength or all the ROIs’ wavelength were input to each model (i.e., RF, 
LR, NB, and XGBoost). The baseline model with the higher performance for the two abovementioned strategies 
was reported and compared with our deep-learning-based models.

The proposed method.  The abovementioned traditional method, which requires hand-crafted features, is highly 
time-consuming and difficult to use when selecting ROIs and calculating wavelengths. Moreover, this process is 
objective and loses information. Therefore, we proposed a new method based on deep learning without a manual 
pre-processing step (Fig. 5). The CNN architecture included four layers of convolution, wherein the batch size, 
the number of epochs, and the learning rate was set to 4, 100, and 0.003, respectively. The CNN was trained with 
an adaptive moment estimation optimizer with a rectified linear unit (ReLU) activation function. We defined 
the loss functions as cross-entropy.

Table 1.   Puerariae Thomsonii Radix (PTR) samples collected in this study.

Growth years The number of PTRs The number of outer surface samples The number of cross-section samples

One year old 24 42 460

Two years old 26 39 437

Three years old 25 39 453

Total 75 120 1350

Figure 3.   The process of traditional growth year identification methods. MSC multiplicative scatter correction, 
SNV standard normal variate, SG Savitzky–Golay smoothing, RF random forest, LR logistic regression, NB nave 
bayesian, XGBoost eXtreme gradient boost. The process consists of four steps: selecting ROIs, calculating means, 
data pre-processing, and building models.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14286  | https://doi.org/10.1038/s41598-023-40863-6

www.nature.com/scientificreports/

In addition to the CNN-based network, we also used VGG1626 herein to identify the growth years of PTRs. 
VGG16 is a special convolutional neural network model, which has a total of 16 layers, including 13 convolu-
tion layers and 3 fully connected layers. Compared with other network models, VGG16 adopts a unified 3 × 3 
convolution kernel in the whole process. Such a relatively small kernel size is conducive to increasing the depth 
of network structure, and a large enough number of parameters can be used to learn more complex patterns and 
achieve better classification effects.

After the sample information is collected by the hyperspectral device, hyperspectral image information is 
generated. Output of the hyperspectral images from 108 and 288 channels as individual RGB images. The "multi-
bandread" function is a built-in function for reading hyperspectral data in MATLAB software. In this study, we 
use this function to read hyperspectral data and obtain a single-band image, which is saved as a PNG image with 

Figure 4.   The mean of reflectance for outer surface samples (a,b) and cross-section samples (c,d) based on 
VNIR lens (a,c) and SWIR lens (b,d).

Figure 5.   The CNN-based classification framework (VGG1626).
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a bit depth of 24. Then, all these images were fed into CNN and VGG16 according to [B, C, H, W] (B: batch size, 
C: RGB three-channel, H: height, W: width).

The hyperspectral images were firstly divided into a list of two-dimensional images according to the bands. 
Each VNIR and SWIR lens file contained 108 and 288 bands. Thus, a hyperspectral image was split into 108 and 
288 two-dimensional images. We performed five-fold cross-validation and divided the training set and testing 
set by 7:3 for each band (not merely 459.2 nm). The wavelength of 459.2 nm is an example presented herein. For 
example, from the 120 outer-surface images achieved in 459.2 nm based on VNIR (the corresponding wavelength 
was 459.2 nm), 83 (70%) images were used for training, and 37 (30%) images were used for testing purposes. 
The data for the three different growth years contained 29, 27, and 27 images in the training set and 13, 12, and 
12 images in the testing set, respectively (Table 2). The basis for the wavelength selection was the classification 
results (i.e., F1-score). The wavelengths based on which predictive models showed high performance were 
selected in this study.

We trained and tested these methods on a computer (Intel (R) Core (TM) i9-12900K CPU@3.19 GHz, 
GeForce RTX 3090, 64 GB RAM, Windows 11–64-bit, Python 3.8, PyTorch). During the five-fold cross-val-
idation, the trained model was applied to the test data to quantify model performance. The precision, recall, 
and F1-score were used as the main metrics to compare models’ performance in this study. The identification 
of PTRs’ growth year was a ternary classification task, wherein we used the macro-average when calculating the 
precision, recall, and F1-score.

Generally, the prediction results included positive and negative results, and according to the relationship 
between the prediction results and the actuality, we obtained combinations of true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN). Precision refers to how many true positives there are in all the 
positive prediction results, and recall refers to how many true positives there are in the correct prediction results. 
The precision and recall are defined as follows:

F1-score is calculated with precision (P) and recall (R); the closer its value is to 1, the better the prediction 
result is. The F1-score is defined as follows:

Experimental materials.  All the plant materials in the manuscript were collected from the Puerariae Cul-
tivation Demonstration Base. This base has a long-term relationship with us, and we have permission to collect 
Puerariae Thomsonii Radix. In addition, we promise that all procedures were conducted in accordance with the 
relevant guidelines.

Results and discussion
Predictive performance.  The training loss of CNN and VGG16 decreased gradually in the early stage and 
stayed stable with the increase in the number of training epochs (Fig. 6), indicating that the models had been 
fully trained. At the end of the 100-epoch training, we achieved 0.2801 and 0.4505 cross-entropy loss for CNN 
and VGG16, respectively. The fully trained CNN and VGG16 were then estimated using a testing set. Table 3 
shows the highest predictive performance of a model trained on images of 108 bands (VNIR lens) and 288 bands 
(SWIR lens).

In Table 2, we took a band as an example to show the sample size. Each band in this study had the same size 
of sample. The result of the model (out of the 108/288 created models based on 108/288 bands) with the highest 
performance is presented in Table 3. Under the VNIR lens, the CNN with the F1-score of 90.15% performed 
best based on the outer surface dataset. Under the SWIR lens, VGG16 with the F1-score of 84.80% performed 
best based on the outer surface dataset. Among traditional methods, the NB + MSC combination attained the 
highest F1-score of 65.17% trained on the outer surface dataset under the VNIR lens. In comparison, the highest 
F1-scores of the deep learning methods for the outer surface and cross-section were 90.15% for the CNN and 
69.93% for VGG16, both from the VNIR lens. Notably, the value of 90.15% achieved using the CNN + Outer 

(2)Precision =
TP

TP + FP
× 100%,

(3)Recall =
TP

TP + FN
× 100%.

(4)F1 =
2× P × R

P + R
× 100%.

Table 2.   Training set and testing set for wavelength 459.2 nm (outer surface from VNIR). Take 459.2 nm as an 
example to illustrate the data distribution in each dataset.

One year old Two years old Three years old Total

Training set 29 27 27 83

Testing set 13 12 12 37

Total 42 39 39 120
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surface + VNIR combination was also the best F1-score of all, and the improvement in the discrimination accu-
racy was 38.33% compared with that achieved using the traditional methods.

Features are key to the learning of traditional machine learning models, and there can be a low number of 
features and a high level of information loss during ROI selection, all these factors will have an impact on the 
identification results. In contrast, deep learning has the ability of end-to-end learning, which can effectively 
reduce bias and thus improve accuracy. The results show that it is feasible to establish a deep-learning-based 
model to identify different growth years of PTRs, especially based on outer surfaces under a VNIR lens.

We then used the CNN and VGG16 that performed best in the ternary classification task to identify whether 
a PTR could be used in traditional Chinese medicine (i.e., whether a PTR was 1 year old or not). As shown in 
Table 4, based on the cross-section dataset under the VNIR lens, the F1-scores of the CNN and VGG16 both 
reached above 88%. Based on the outer surface dataset, the F1-scores of the CNN and VGG16 reached 93.51% 
and 92.90%. This result demonstrates the feasibility of quality control for PTRs using deep learning algorithms. 
It is noted that merely the highest predictive performance of a model trained on images of 108 bands (VNIR 
lens) or 288 bands (SWIR lens) is presented in Table 4.

Additionally, we also found that the performances of models based on the outer surfaces were higher and 
more robust than that based on cross-section images. The highest F1-score reached 93.51% when growth years 
were identified based on the outer surface, while the best F1-score was 88.60% based on cross-section images. 
This result indicated that the growth years of PTRs can be identified using the HSI system on outer surfaces 
without destroying samples.

In the previous research regarding the identification of age or years, Duan et al.27 used six models to identify 
the ages of cotton seeds, wherein CNN and SVM models achieved satisfactory results, with the identification 
accuracy being higher than 98%. Wang et al.28 proposed an identification method for the identification of the 

Figure 6.   The loss functions of (a) CNN and (b) VGG16.

Table 3.   Predictive performance of identifying growth years of PTRs (%). The testing set result of model (out 
of the 108/288 created models based on 108/288 bands) with the highest performance was presented herein. 
a Result of five-fold cross-validation.

Model

Outer surface + SWIR Outer surface + VNIR Cross-section + SWIR Cross-section + VNIR

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

RF + MSC 61.83 61.97 61.84 64.65 65.17 64.43 70.99 61.90 59.72 66.51 66.67 65.89

RF + SNV 56.84 56.84 56.78 56.34 55.98 54.66 59.85 59.52 58.78 62.75 61.90 61.41

RF + SG 56.84 56.84 56.78 55.56 56.20 55.63 60.41 61.90 59.63 62.75 61.90 61.41

LR + MSC 73.58 55.77 49.37 65.48 53.42 54.08 69.72 54.76 51.18 66.39 61.90 60.43

LR + SNV 54.20 53.63 53.50 62.96 59.83 60.44 67.30 66.67 63.38 68.82 66.67 65.76

LR + SG 65.44 61.75 58.48 61.22 57.05 57.77 64.10 64.29 59.56 66.67 64.29 62.54

NB + MSC 55.57 54.06 54.34 65.17 65.17 65.17 67.30 66.67 63.38 63.59 61.90 60.97

NB + SNV 46.96 45.30 44.38 46.39 45.94 46.11 67.24 66.67 63.69 63.49 61.90 55.57

NB + SG 46.96 45.30 44.38 46.39 45.94 46.11 69.84 69.05 66.34 63.49 61.90 55.57

XGB + MSC 64.68 59.83 59.44 66.35 64.96 64.32 77.28 64.29 62.53 67.97 66.67 66.84

XGB + SNV 50.40 45.94 47.16 50.95 50.64 48.91 66.59 64.29 61.75 64.01 64.29 62.91

XGB + SG 50.40 45.94 47.16 47.17 47.86 46.23 68.25 66.67 64.44 64.01 64.29 62.91

CNNa 58.82 60.01 59.33 90.24 90.11 90.15 52.30 51.65 51.83 59.56 59.65 59.60

VGG16a 86.90 85.47 84.80 81.15 81.38 81.02 63.62 63.62 63.58 69.94 70.16 69.93



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14286  | https://doi.org/10.1038/s41598-023-40863-6

www.nature.com/scientificreports/

geographical origin and growth years of maize seeds based on the PLSDA model. The accuracy of the testing 
set reached 98.39%. Bao et al.29 established a nonlinear ELM model based on effective wavelengths to classify 
the different producing years of Dried Tangerine Peel, reaching 93.33% accuracy. It can be seen that HSI tech-
nology is effective in the identification of growth years, and the results of this study are consistent with other 
research. In the domain of the quality control of traditional Chinese medicine, models based on HSI combined 
with deep learning algorithms were applied to classification and component research, which achieved excellent 
outcomes30,31. The outstanding performances of deep learning algorithms in conjunction with HSI meant they 
successfully realized the identification of PTRs’ growth years. In the future HSI research, we could attempt to 
apply deep learning to other aspects of PTR quality control.

Wavelength selection.  There is a large amount of redundant information in full-wavelength data. One of 
the aims of this research was to find the wavelength based on which the deep-learning-based models identified 
PTRs with high performance. Then, this selected wavelength could be used in future HSI technology to develop 
rapid identification equipment for PTR.

The bands based on images in the CNN and VGG16 that showed an F1-score higher than 90% were all 
screened out. In the binary classification task that identified whether a PTR was one year old or not, the CNN 
and VGG16 models simultaneously showed F1-scores higher than 90% based on 48 bands under the VNIR lens 
and 174 bands under the SWIR lens. The selected bands are shown in Fig. 7. These selected bands can guide the 
future identification of growth years of PTRs based on the HSI system.

Characteristic absorption bands.  In the effective wavelengths, 540, 605, 1450 and 2371 nm correspond to 
the characteristic absorption bands of the functional groups of starch. Among them, the wavelengths at 540 nm 
and 605 nm corresponded to the fourth and fifth overtone regions of -O–H from starch30. The wavelength at 
1450 nm corresponded to the first octave band spectrum of the fundamental frequency of stretching vibration of 
–O–H from starch32. The wavelength at 2371 nm corresponded to the –C–H second overtone combination and 
the –CH2 overtone combination with deformation vibration from amylose30. It was found that during the growth 
of PTR, the chemical composition accumulated from year to year with a large variation in content, especially in 
the first few years. In conjunction with the chemical composition corresponding to the effective wavelengths, it 
is likely that starch is the key chemical component in identifying the growth years of PTRs.

Accumulation of chemical components.  Compared with the prediction results of the cross-section, the 
accuracy of the outer surface is obviously higher and relatively stable. This may be related to the accumulation 
of chemical components during the growth of PTR. With the increase of growth time, it will form the fusiform 

Table 4.   Five-fold cross-validation results of testing set of models for predicting 1-year-old PTRs (%).

Dataset Model

SWIR VNIR

Precision Recall F1 Precision Recall F1

Outer surface CNN 94.74 92.31 93.51 92.31 92.31 92.31

Outer surface VGG16 97.14 87.18 91.89 93.50 92.31 92.90

Cross-section CNN 77.24 84.82 80.85 86.32 90.99 88.60

Cross-section VGG16 79.53 90.18 84.51 85.59 90.99 88.21

Figure 7.   The bands with F1-scores higher than 90% based on the outer surface. (a) The selected bands of the 
binary classification task under VNIR lens; (b) the selected bands of the binary classification task using under 
SWIR lens. In total, 48 and 174 bands were selected under VNIR and SWIR lenses, respectively.
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root which is thick in the middle and thin at both ends. This is the storage organ of Pueraria root, which is 
the part of edible and medicinal value. Similar to other plants of the same genus, the cross section anatomical 
structure of PTR is mainly periderm, multilayer vascular tissue and secondary xylem from the outside to the 
inside, each layer of vascular tissue contains phloem and xylem, and the thicker the site, the more layers there 
are. The researchers33,34 confirmed that the periderm the outermost phloem were the main accumulation sites 
of chemicals, particularly flavonoids, and the content gradually decreases from the outer layer to the inner layer. 
When the spectrum irradiates the sample, it can not only collect the information on the sample surface, but 
also penetrate a certain depth to collect the information inside the sample. This is why hyperspectral imaging 
can be used for nondestructive testing. In the experiments on the penetration depth of nIR spectra of various 
agricultural products, the researchers found that the maximum penetration depth of nIR spectra of agricultural 
products was about 2 cm24,35, which was consistent with the main accumulation sites of chemical components 
of PTR. Therefore, HSI technology can be used to identify the growth years of PTR only by collecting surface 
information of samples, without destroying samples at all.

Conclusions
In this study, we used a deep-learning-based method in conjunction with HSI technology to identify growth years 
of PTR. The VNIR and SWIR lenses of HSI equipment were used to collect the information of the outer surface 
and cross-section of PTR. The CNN model achieved the highest recognition accuracy of 90.15% and 93.51% for 
both the ternary classification task with different growth years and the binary classification task of “whether a 
PTR could be used in traditional Chinese medicine”, respectively. Furthermore, the accuracy of the outer surface 
was generally higher than that of the cross-section, which may be related to the site of Chemical compositions 
accumulation during the growth of PTR. The results demonstrated that the proposed method is nondestruc-
tive, rapid, and effective for the quality control of PTR. Moreover, this method can be easily implemented in the 
identification of growth years and quality control for other traditional Chinese medicines.

Data availability
All data generated or analysed during this study are included in this published article.
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