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A task‑unified network 
with transformer 
and spatial–temporal convolution 
for left ventricular quantification
Dapeng Li 1, Yanjun Peng 1,2*, Jindong Sun 1 & Yanfei Guo 1

Quantification of the cardiac function is vital for diagnosing and curing the cardiovascular diseases. 
Left ventricular function measurement is the most commonly used measure to evaluate the function 
of cardiac in clinical practice, how to improve the accuracy of left ventricular quantitative assessment 
results has always been the subject of research by medical researchers. Although considerable efforts 
have been put forward to measure the left ventricle (LV) automatically using deep learning methods, 
the accurate quantification is yet a challenge work as a result of the changeable anatomy structure 
of heart in the systolic diastolic cycle. Besides, most methods used direct regression method which 
lacks of visual based analysis. In this work, a deep learning segmentation and regression task-unified 
network with transformer and spatial–temporal convolution is proposed to segment and quantify 
the LV simultaneously. The segmentation module leverages a U-Net like 3D Transformer model to 
predict the contour of three anatomy structures, while the regression module learns spatial–temporal 
representations from the original images and the reconstruct feature map from segmentation path to 
estimate the finally desired quantification metrics. Furthermore, we employ a joint task loss function 
to train the two module networks. Our framework is evaluated on the MICCAI 2017 Left Ventricle Full 
Quantification Challenge dataset. The results of experiments demonstrate the effectiveness of our 
framework, which achieves competitive cardiac quantification metric results and at the same time 
produces visualized segmentation results that are conducive to later analysis.

Cardiovascular diseases (CVDs) are the leading cause of death globally according to World Health Organization 
(WHO), about 17.9 million people died from CVDs in 2016, from CVDs, mainly from heart disease and stroke1. 
CVDs is a general term for a series of diseases caused by heart and blood vessels, such as coronary heart disease, 
stroke, heart failure, rheumatic heart disease, congenital heart defect, and arteriovascular disease. In recent years, 
with the rapid development of society and economy, people’s lifestyles have undergone profound changes. Due 
to unheathy living habits, aged tendency population, and the continuous prevalence of the metabolic syndrome, 
the incidence of cardiovascular diseases is in a continuous upward stage. Cardiovascular diseases are currently 
showing a sudden and youthful trend, requiring timely detection and treatment of the disease. The heart is the 
most important organ of the human body, whose main function is to provide power for blood flow, transport 
blood to various parts of the body, and maintain normal metabolism and function of cells. The abnormality of 
the shape, volume and functional parameters of the heart is a sign of various CVDs. For example, an abnormal 
shape of the heart is a symptom of hypertrophic heart disease, abnormal volume is a characteristic of dilated 
cardiomyopathy, enlargement of left atrium and Right ventricle is a sign of rheumatic heart disease, the gradual 
decrease of left ventricular ejection fraction is an important feature of coronary heart disease. Therefore, monitor-
ing the shape, volume and function of the heart through medical instruments has become the most important 
way to diagnose and treat cardiovascular diseases. In specific clinical applications, imaging equipment is used 
to obtain a patient’s heart image. Imaging doctors annotate the anatomical structure of the heart, quantify the 
cardiac metrics, and provide assistance for the next step of diagnosis and treatment.

In order to provide support for the diagnosis and curing of the CVDs, considerable medical imaging tech-
nologies, including computed tomography (CT) and magnetic resonance imaging (MRI) are exploited. Cardiac 
MRI has a good contrast resolution of soft tissues, a large scanning field of view, and can obtain oblique cross-
sectional images in various directions and different angles. It has become the gold-standard for non-invasive and 
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non-radiative evaluation of cardiac structures and functions2. Left ventricle (LV) quantification indices such as 
end-diastolic internal meridian, end-systolic internal meridian and ejection fraction (EF) are the most important 
indicators for evaluating the cardiac function in clinical practise. Therefore, the accurate quantification of clinical 
cardiac functions is of great importance for helping early diagnosis and identification of CVDs.

In the clinical approach, LV function information relies on the manually laborious delineation of the LV 
epicardium and endocardium laborious by radiologists. Meanwhile, human assessment of LV function has 
changeable anatomy structure in systolic diastolic cycle and the laborious nature of a calculation that hard to 
trace3. So with regard to LV quantification, although many efforts have been devoted to find automatic or semi-
automatic methods to solve above problems, the following challenge issues should be addressed for robust and 
accurate LV quantification: (1) the variability of cardiac ventricle in shape and appearance in whole cardiac 
cycle frame sequences due to different pathologies. (2) the low contrast anatomy structures, in-homogeneity 
brightness and texture in MRI4,5.

Doctors are used to draw the structural contour of cardiac LV cavity and LV myocardium manually in early 
clinical practice, they use the segmented contour to obtain the reliable quantification. However, due to the large 
number of cardiac images, this process is still time-consuming and tedious. Therefore, exploring automated 
methods to reduce the laborious work of radiologists and increase the precision of quantification is of great 
importance. Two categories methods have existed in left ventricular quantification domain, those are the indirect-
segmentation based method and the direct-regression method (as depicted in Fig. 1). Although these models 
have showed great performance in cardiac LV quantification, both of the above two methods have advantages and 
disadvantages. By integrating segmentation module and regression module into a uniform platform will help the 
framework to exploit more robust feature representations and achieve precise quantification results. Considerable 
of methods have been introduced in cardiac quantification field, Xue et al.2 proposed a Bayesian neural network 
incorporate the Monte-Carlo dropout for deep feature extraction, then they designed an uncertainty weighted 
loss function train the network. Du et al.6 utilized a two step network which consists a segmentation network to 
achieve the contour of target and a regression network to quantify LV indices based on the previous segmenta-
tion results. Vesal et al.7 first segmented cardiac LV contour using an encoder-decoder architecture network, and 
then introduced a multi-task framework that consists of regression task and classification task to achieve the final 
results. Ge et al.8 raised a K-shaped Unified Network to direct segment and quantify LV simultaneously. Chen 
et al.9 utilized dynamic analysis module, segmentation module, and quantification encoder module to make up 
a multi-task conditional learning model.

Although these elaborately designed approaches improve the generalization performance, some aspects of 
disadvantage should not be neglected. As to the muti-module network, the feature information from the seg-
mentation path is not enough exploited, complex multi-module network is susceptible to degrade quantification 
performance as a result of the degrade segmentation performance. In this paper, a new end-to-end fully automatic 
deep learning segmentation and regression task-unified framework for LV segmentation and quantification is 
proposed. The task-unified model, which consists of a segmentation path and a regression path, help to represent 
origin image, learn multi-scale features and seize cardiac anatomy structural spatial–temporal information. 
Through this method, LV function can be acquired through the final regression learning network and provide 
clinicians with quantitative diagnosis.

Figure 1.   Two categories methods have existed in left ventricular quantification domain. (a) Segmentation-
based methods compute indices from the segmented result which requires strong prior information and user 
interaction. (b) Existing direct regression methods of cardiac indices quantification. When the labeled image 
is not available, direct methods-regression without segmentation step have grown in popularity in cardiac LV 
indices estimation.
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As such, the contributions of this work are summarized as follows: (1) A robust and effective task-unified 
framework to improve the performance of complete LV indices quantification, which includes two areas, three 
cavity sizes, six regional wall thicknesses, (2) Leverage the segmentation network to obtain visual segmentation 
results and provide reconstruct low noisy feature maps for regression network. (3) A combination multi-task 
loss is used to supervise the unified framework.

We conduct fivefold cross-validation experiment on the public MICCAI-2018 Left Ventricle Full Quantifi-
cation Challenge (LV-Quan) dataset . Results of the cross-validation experiments demonstrate the competitive 
performance. The remainder of this paper is organized as follows. In “Related works” section, related works in 
cardiac ventricle quantification field is given. “Methods and materials” section presents our proposed multi-task 
deep learning segmentation and regression unified framework architecture. The segmentation and quantification 
experimental results are detailed in “Experiments and results” section. Finally, the conclusion is presented in 
“Conclusions” section, and acknowledgement is presented in “Acknowledgements” section.

Related works
LV quantification methods.  Indirect-segmentation methods segment the LV myocardium first and then 
quantify the cardiac indices. Direct-regression methods exploit the mapping relations between the cardiac MR 
images and cardiac indices directly. Owing to the powerful representation ability of neural networks, both of 
those methods have improved the performance for quantification of cardiac LV indices.

The indirect-segmentation based method is a two-step approach which the desired cardiac LV indices of the 
second step are measured based on the segmentation results of the first step. Most of the early LV quantifica-
tion works10,11 fall into this category. Classic image processing methods such as active contour12,13, level-set14, 
deformable model and prior knowledge have gained great development in the past decades15,16. Recently, con-
volution neural networks (CNNs) have showed impressive performance for segmenting cardiac LV by level set 
and deformable model17–20. Other deep neural network architectures introduced in cardiac segmentation field 
including parallel coarse-to-fine network21, grid-like CNN22, encoder-decoder architecture23, dilated CNN24, 
deep supervision 3D-CNN25, generative adversarial learning26, and shape prior knowledge27. Zhen et al.28 used 
multi-scale deep neural network to learn hierarchical information initially and then put them into random for-
est to regression the cardiac LV indices.Furthermore, they proposed supervised descriptor learning to calculate 
four chamber volumes29. Wang et al.30 leveraged an adaptive Bayesian method combining with shape features to 
estimate ventricular cavity volumes. The indirect-segmentation methods can offer not only the cardiac indices 
quantification results, but also the visualization results of the cardiac LV myocardium. However, in this category 
methods, it is a cascade approach which have only forward connection but no feedback from the second step. As 
a result, the unrepresentative extracted features will results unaccurate quantification results.

The direct-regression method for cardiac LV quantification has go through considerable development and 
recognition31–35. When the annotated groundtruth of image is not provided, direct methods-regression is a 
preferable method. This method can enable many effective analyze tools on cardiac MRI28. As direct architecture 
facilitates to seize more expressive LV information, the combination of feature representation and regression 
models are introduced. Luo et al.36 estimated the cardiac volume by leveraging a multi-views fusion strategy 
in cardiac systole and end diastole cycle. Kabani et al.37 used CNN to crop ROI, estimate volume from cardiac 
systole and end diastole cycle. Xue et al.38 introduced the first end-to-end cardiac indices quantification frame-
work. Additionally in39, they used a multitask neural network, which mapped the relations among cardiac LV 
indices and between tasks by Bayesian-based relationship learning. Although these methods demonstrated their 
effectiveness, there are still difficulties for the direct-regression methods to learn representative features due to 
highly variable cardiac anatomy structures.

Cardiac quantification indices.  The quantitative indices of the cardiac LV mainly include the six regional 
wall thickness of LV myocardium and LV cavity that describe anatomical structural information, and LV cavity 
and myocardium areas that used to calculate cardiac function parameters such as ejection fraction (EF). As dem-
onstrated in Fig. 2. The cardiac metrics are strongly correlated with regional and cardiac function assessments. 
In10, the clinical roles of more cardiac indices are fully explained. Many existing methods focus on estimate 
the LV volume, which is simplified to the integral of the cavity area or is hard to quantify as a result of the high 
contrast. When multi-type cardiac quantification indices are estimated, more challenges would be arise. On the 
one hand, the cardiac quantification indices are different from each other in relation to the 2D spatial image 

Figure 2.   Schematic illustration of LV indices for short-axis cardiac MRI. (a) The LV and Myocardium 
cavity areas are shown with blue and pink color. (b) LV cavity directional dimensions with black arrows. (c) 
Six myocardial regional-wall thicknesses (RWT), namely anterolateral (AL), inferolateral (IL), inferior (I), 
inferoseptal (IS), anterior (A), inferoseptal (IS) and anteroseptal (AS). (d) The cardiac phase (systole or diastole).
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structure, so a more robust and relevant representation is needed for estimation. On the other hand, in terms 
of LV indices, regional wall thickness and myocardial area are suffer from the complex dynamic deformation of 
the myocardium, as well as the invisible cardiac ventricular epicardial edge. The regional wall thickness is also 
affected by the orientation of the myocardial. Thus the segmentation and regression paths should be able to 
sustain dynamic deformation, imperceptible boundary and direction changes38. The LV-Quan dataset was held 
in conjunction with the Statistical Atlases and Computational Modeling of the Heart (STACOM) workshop at 
MICCAI11, which created a foundation dataset for researches on cardiac LV quantification.

Methods and materials
Overview architecture of the our task-unified framework is presented in Fig. 3. The cardiac LV indices quan-
tification adopts the idea from direct regression methods. However, the mapping relation between the input 
cardiac MRI and the ground-truth label indices is fuzzy, we introduce a task-unified framework that propagates 
structural feature information from the previous segmentation path to the regression path in multi-scale. This 
framework takes sequences of 5 slices as a 3 dimension input, the segmentation path outputs prediction of 5 
slices while the regression path predict the groundtruth indices for the middle slice. The framework is benefi-
cial in three aspects: (1) We incorporate temporal dynamics feature information from the neighbor slices, thus 
alleviating the segmentation predict task. (2) Multi-scale structural image information from segmentation path 
enhance the ability of regression path for better cardiac LV quantification. In the following, details of the main 
components of the our framework are describe. (3) The unified framework reduces over-fitting and provides not 
only segmentation results but also quantification results.

Segmentation path.  To segment the LV cavity and LV myocardium from cardiac MRI, we employ a 3D 
Transformer U-Net architecture inspired by TransUNet40, which which merits both Transformer and U-Net. 
CNN-based framework have limitations of modling long range interactive feature, while Transformer have pow-
erful long range modeling ability. So we use transfomer model in our framework. The Vision Transformer con-
duct as an encoders in segmentation path, and combine with U-Net to extract more finer spatial information. 
Vision Transformer41 is the foundation work and showed better performance especially for target structures that 
show large inter-patient variation in terms of texture, shape and size. The variability of cardiac LV in shape and 
appearance in whole cardiac cycle frame sequences due to different pathologies, so Transformer is strong rec-
ommended for cardiac image segmentation. And taking into account the temporal dynamic in cardiac systolic 
and diastolic cycle, we leverage the TransUNet network the replace the 2D convolution to 3D convolution. Our 
proposed 3D TransUNet is a u-shaped architecture, which hybrid CNN-Transformer is used as encoder to learn 
global context information as well as a cascaded CNN upsampler is employed to extract detail different scale 
spatial information for precise localization.

The input tensor size is Batchsize × Channel × Number of slices × Height × Width (20 × 1 × 5 × 80 × 80 ), we 
first use a resnet as feature extractor to generate a feature map for the input. The resnet has three downsample 
stages, and each stage has 3D convolution layers with kernel size of 3. Group-normalization, Random leaky Recti-
fied Linear Unit, and a 3D max-pooling with kernel size of 1 × 2 × 2 are also used in each stage to decrease the 
feature dimensions. Finally the resnet output an image tensor with size of 2 × 256 × 5 × 5 × 5. Then transformer 
performed to encode the patch spatial information and output a tensor with size of 2 × 125 × 256. A cascaded 
upsampler is introduced as decoder, which consists of trans-convolution stages to decode the hidden layer feature 

Figure 3.   Overview of the proposed unified framework which contains segmentation path and regression path.
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information. we instantiate the cascade upsampler by reshaping the sequence of hidden feature and cascading 
trans-convolution blocks for ascent to full resolution that coincidence with the original image.

Regression path.  To regress the LV indices, we introduce a task-unified spatial–temporal convolution 
architecture, which is trained in indirect and direct approach simultaneously. This regression path consists of 3D 
spatio-temporal convolution blocks, Recurrent Residual Attention Convolutional (RRAconv) blocks and fully 
connection (FC) layer. Many previous works have used 3D spatio-temporal convolution block to incorporate 
spatial information and temporal dynamic information42–44. We employ 3D RRAconv to 2D + time image frames 
to learn temporal dynamic information. Each RRAconv block contains two Recurrent Residual convolution 
and a SE channel attention module. According to our understanding, noise in the original Cardiac MRI affect 
accuracy of regression. Hence, we add skip connection between multi-scale structural image information in 
segmentation path and LV indices information in regression path to release the original noise and improve the 
accuracy of quantification. SE is used to adaptively concatenate information from the current regression path 
and corresponding information from the segmentation path.

The input tensor of the regression path is a size of k × h × w, where k is the number of slices that indicate 
temporal dimension, and h × w denotes the spatial dimension. Each 3D RRAconv block has Recurrent Residual 
convolution with kernels size of 3. ReLU activation and 3D batch normalization are used in this block. The 
spatial–temporal block is composed of two cascade 3D convolution layers, and follow by a 3D Max-Pooling 
layer. In the two two cascade 3D convolution layers, previous layer use 3 × 1 × 1 kernel convolution to capture 
temporal information and the latter layer leverage 1 × 3 × 3 kernel convolution with strides of 1 to learn spatial 
information. The following Max-Pooling layer use 1 × 2 × 2 kernel to decrease the feature maps along the spatial 
dimension and temporal dimension to regression LV indices only for central slice. ReLU activation and 3D batch 
normalization are also used in this block. We initialize the convolution layer kernels with the He initializer and 
apply weight regularization to reduce the over-fitting problem45.

Since the previous segmentation path, RRAconv block and spatio-temporal block have extracted excessive 
representation information form cardiac MRI, there is no need to design a more complex or deeper neural net-
work for the final multi-task of regression and classification. Finally, two parallel branches are derived to complete 
the final multi-task. One shallow CNN branch used as a regressor to quantify wall thickness, dimensions, and 
areas, another branch is a fully connected layer which composed of 360 neurons multi-layer perceptron, and an 
output neurons with 2 neurons to classify the cardiac systole or diastole phase.

Loss function.  Based on the two path of task, in this work, multi-task needs to be addressed and loss func-
tion should be elaborately designed to supervise the unified network. Therefore, we leverage joint-task loss func-
tion for both LV segmentation, indices regression and phase classification.

For the segmentation path, to segment a cardiac MRI with having LV myocardium, LV cavity and background 
as labels. An objective function optimizer was introduced for precise segmentation and prompt the network 
to tackle highly class imbalance problem. We employ a loss function that combine the Dice loss and Cross-
Entropy (CE) loss. The Dice loss function can improve the segmentation metrics, and the CE loss can increase 
the accuracy. Many works have combined these two loss functions to supervise the neural network, and achieved 
impressive performance46. Motivated by this, we also combine these two loss function to construct a new loss. 
Since Dice loss puts more emphasis on the overall similarity coefficient,we empirically set weight �1 = 1 and 
�2 = 1.5 to each of the two loss functions. The overall loss function can be seen in Eq. (1).

In the regression path, we minimize a combination of Mean Squared Error (MSE) and binary cross-entropy 
(BCE) loss over sets of k slices where groundtruth annotations are only offer for the middle slice. Given a set of 
k slices xi = ( x0 , ...,xk−1 ), the label for the middle slice yi = ( ydim , yarea,yrwt,yphase ) predictions of our model ŷ = 
ŷdim , ŷarea,ŷrwt,ŷphase the combination loss function is defined as Eq. (2). Equation (3) can be used to train the 
entire unified framework which consists of the segmentation path loss LSegpath and regression path loss LRegpath in 
an end-to-end approach. We have empirically set �3 = 4 and �4 = 1 as weights in Eq. (3) to weight importance 
and gradients of different task path. Since the regression path rely on the segmentation results, we give more 
weights to segmentation path task than to regression path task. This approach prompt the unified framework 
to output precise LV prediction.
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1

|�|

�
∑

i
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Experiments and results
We implement our framework with PyTorch and he experiments were carried out on one NVIDIA RTX 2080TI 
GPU. The experiment results are presented in the following sections.

Data and preprocess.  The data used in this study includes 2900 cardiac MRI of 145 patients38. Every sub-
ject, have mid-cavity 20 frames in one cardiac systolic diastolic cycle. These images are from three affiliated hos-
pitals of two medical centers (London Medical Center and St. Joseph’s Medical Center). The age of the subjects 
ranged from 16 to 97, with an average age of 58.9 years. The pixel spacing of MR images range from 0.6836 mm/
pixel to 2.0833 mm/pixel, with the mode of 1.5625 mm/pixel. The pathological types of the subjects are diverse, 
including regional wall motion abnormalities, myocardial hypertrophy, mildly enlarged LV, atrial septal defect, 
LV dysfunction, etc. In each frame of image, the LV has three equal parts, that is the basal, mid-cavity, and 
apical47. Before the experiments, several pre-processing approaches are employed by the challenge organizer, 
which including (1) Landmark labelling. (2) Rotation. (3) ROI cropping. (4) Resizing. After this procedure, the 
images from different subjects are approximately aligned in size, orientation, and scale. Thus making the assess-
ment independent of various pre-processing and allowing researchers to focus on the LV quantification.

In the ground-truth, LV myocardium epicardium and LV myocardium endocardium borders were manually 
labeled by radiologists. According to this border, we re-divide ground-truth into three category labels, those are 
being the LV cavity, LV myocardium and background. LV indices and cardiac phase is a great correlation with 
cardiac function metrics such as ejection fraction. The LV indices values are normalized by the dimension of 
the image or the pixel number.

We conduct five-fold cross-validation experiment on the LV-Quan dataset. We first use z-score normaliza-
tion which based on the mean and standard deviation value and then employed data augmentations techniques 
including elastic random rotations transformation between − 90 and 90°, random horizontal and vertical flips 
transformation with chance of 50 percen, elastic deformations transformation, and gamma shifts transformation 
with the scope of 0.5 to 1.5. Contrast Limited Adaptive Histogram Equalization (CLAHE) is applied to each train-
ing image slices to weaken the intensity inhomogeneity problem (as is shown in Fig. 4). In the training strategy, 
the segmentation model was trained with RAdam optimizer for 500 epochs with β1 = 0.9 and β2 = 0.999, along 
with weight decay value of 1E−4, and initial learning rate of 5E−4 exponentially decayed with parameter 0.99. The 
transformer module are pre-trained with ImageNet48. The regression model and classification model both using 
SGD optimizer with a learning rate of 5E−4, and with weight decay rate of 5E−3 and momentum parameter 0.06.

(5)LMSE = −
1

|N |

11
∑

s=1

N
∑

i=1

||ys,i − ŷs,i||
2
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Figure 4.   After pre-processing, we the stack the input image and its corresponding groundtruth to highlight 
the LV cavity and LV myocardium. From the figure, we can see the variation of shape, contrast and density in 
cardiac MRI. It is a great challenge for segmentation and quantification.
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Results. 

The performance of out task-unified model is evaluated in terms of prediction accuracy of LV segmentation and 
LV indices quantification. Dice and Hausdorff Distance metrics are used to evaluate the performance of the LV 
segmentation. The Dice Coefficient metric is defined Eq. (4). Evidently, Dice(A,B) is maximized at 1 when A = 
B and minimized at 0 when A  = B. where A and B are two sets. The Hausdorff Distance metric is defined in Eq. 
(5): where h(A,B) represents the distance from point A to point B. In addition, we leverage the mean absolute 
error (MAE) , Pearson correlation coefficient (PCC) and Error Rate to evaluate the regression path performance . 
They defined as Eqs. (6), (7) and (8), where yindice is the the ground-truth label indices and ŷindice is the predicted 
value of indices by our proposed unified framework. Here, yindice and ŷindice is the mean value. ŷphase and yphase 
are the label annotation and predict class for the cardiac systolic diastolic phase.

We report the performance of our model below including performance of LV segmentation path and per-
formance of LV quantification path.

Performance of LV segmentation path.  Segmentation is one of our tasks and segmentation path is also used as 
a structural feature extractor for regression path.To verify that segmentation path can aggregate representative 
structural information and output predictions that most closely resemble the correct results. We use Dice and 
HD metrics to evaluate performance of our proposed segmentation model by comparing it with classic segmen-
tation methods including UNet49, Densenet50, IndicesNet38, MC-Seg51, DRUNet7, Parallel52 and SAUNet53. Dice 
Coefficient metric and HD metric are reported in the Tables 1 and 2. we can conclude that each method show 

(9)Hausdorff (A,B) = max[h(A,B), h(B,A)]

(10)MAEindices =
1

|N |

N
∑

i=1

|ŷindices − yindices|
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∑N
i=1(ŷindices − yindices)(yindices − yindices)

√

∑N
i=1(ŷindices − yindices)

2(yindices − yindices)
2

(12)MAEindices =
1

|N |

N
∑

i=1

|ŷphase �= yphase|

Table 1.   Dice scores for LV-Quan segmentation performance. Significant values are in bold.

Model LV cavity LV myocardium Background

UNet 0.950 0.873 0.988

MC-Seg 0.951 0.870 0.986

Densenet 0.957 0.886 0.989

IndicesNet 0.978 0.878 0.988

DRUNet 0.959 0.886 0.989

Parallel 0.966 0.917 0.990

SAUNet 0.969 0.921 0.990

Ours  0.971 0.921 0.990

Table 2.   Hausdorff distance for LV-Quan segmentation performance. Significant values are in bold.

Model LV cavity LV myocardium Background

UNet 5.22 6.69 6.10

MC-Seg 5.22 6.73 6.18

Densenet 3.56 5.43 4.88

IndicesNet 4.12 5.96 5.23

DRUNet 3.55 5.43 4.88

Parallel 2.85 3.40 3.29

SAUNet 2.86 3.31 3.29

Ours 2.86 3.35 3.26
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competitive performance, our proposed method outperform other method in LV myocardium segmentation 
performance and the segmentation performance of LV cavity is better than that of LV myocardium. LV cavity 
and LV myocardium is the region of interest, which suffer shape variation during a cardiac systolic diastolic cycle 
and across different data subjects. It is difficult to recognize these two class labels, especially LV myocardium. 
The qualitative segmentation predictions of our framework are showed in Fig. 5. The first row are input images 
and its corresponding groundtruth, the second row are the predictions from the network. The third row are the 
error between groundtruth and segmentation prediction, where blue region denotes over segmented and red 
region indicates under segmented.

We also reproduce classic network to conduct study on segmentation results. Figures 6 and 7 show the 
analysis on the LV-Quan validation dataset and MICCAI 2009 Sunnybrook Cardiac left ventricle segmentation 
(LV-09) dataset of our method compared with other classic semantic segmentation networks, such as UNet49, 
Densenet50and IndicesNet38. Each model is trained for 500 epoches with a batch size of 20, supervised by same 
loss function and shares the same initial weight of CNN. The hyper-parameter configuration is shared by the 
selected models. The LV-09 dataset contains 45 cardiac cine-MR short axis (SAX) images from four different 
pathological groups. Each patient had manually drawn LV endocardium contours for ED and ES slices54. In this 
study, we segment the endocardium as binary boundary, to distinguish anatomical structure between LV and 
background. The comparative models share the same training strategy. In Fig. 6, for the rows from second to 
fifth, the Dice coefficient of LV cavity segmentation is 0.940, 0.954, 0.960 and 0,971. The Dice coefficient of LV 
myocardium segmentation is 0.869, 0.871, 0.880 and 0.921. Figure 7 illustrates the segmentation results on LV-09 
dataset. The rows from top to bottom indicate the image slices from four pathological group: Heart Failure with 
Ischemia (HF-I), Heart Failure without Ischemia (HF-NI), Hypertrophic endocardium (HYP), Normal (NOR). 
The columns from left to right indicate prediction of comparative methods, ground truth and raw image data. For 
the columns from left to right, the Dice coeffificient of segmentation is 0.923, 0.932, 0.938 and 0.941. The predic-
tions on HYP patients can best reflect the differences between different models. All above comparative models 
achieve competitive segmentation performance on HF-NI, HF-I and NOR patients. From the view of Figs. 6 and 
7, UNet gets the worst segmentation prediction. The segmentation predictions of our model are the most closely 
resemble the ground truth. From the results shown in Table 3, UNet is the most time-saving method, and our 

Figure 5.   Example of predictions by our model for a random 20 frames: The rows of (a) and (d) are input 
images and corresponding myocardial, (b) and (e) are the myocardial predictions from our unified network. 
The rows of (c) and (f) are the difference of target myocardial area between ground truth and predicted 
segmentation, where red represents the under segmented regions and blue indicates the over segmented regions.
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Figure 6.   Example of comparative segmentation results on LV-Quan validation data. The first row are the raw 
input images and its corresponding ground truth. From the second to the fifth row indicate the predictions by 
comparative ablation models.

Figure 7.   Example of comparative segmentation results on LV-09 testing dataset. The rows from top to bottom 
indicate the image slices from four pathological group: Heart Failure with Ischemia (HF-I), Heart Failure 
without Ischemia (HF-NI), Hypertrophic endocardium (HYP), Normal (NOR). The columns from left to right 
indicate predictions of comparative methods, GroundTruth and raw image data respectively.

Table 3.   Comparison with different methods, the total time of training and testing on the LV-09 and LV-Quan 
dataset. We also compared the model-complexity of different models. h: hour, s: second.

Models

LV-Quan LV-09 Model-complexity

Training time (h) Testing time (s) Training time (h) Testing time (s) Params (M) GPU memory (G)

UNet49 0.4 19 1.5 24 1.43 0.59

Densenet50 0.5 23 1.5 20 4.12 1

IndicesNet38 0.4 20 1.6 23 39.09 1.2

Ours 0.4 19 1.5 19 33.10 1.11
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unified framework is also a time-efficient approach with competitive segmentation performance. Moreover, the 
number of parameters and computation cost GPU memory usage are the highest for IndiceNet, and the lowest 
for UNet. When compared to IndicesNet, Densenet uses relatively low parameters and GPU memory to achieve 
better time-efficient. Since our unified framework contains more convolutions and channels, our model have 
more parameters than UNet and Densenet, but our GPU memory usage is still relatively small when compared 
with the IndicesNet.

Performance of LV quantification path.  Quantification of LV indices is the ultimate purpose of our work. We 
compare our method with the existing advanced methods (Max Flow55, MultiFeatures29, SDL56, Indices-Net38, 
FullLVNet57, DMTRL39, Indices-JSQ6 and DRUNet7) to evaluate the performance. We also add a comparative 
model to explore the performance difference between segmentation-based model and our task-unified model. 
The comparative model is the direct morphological calculation method (Calculation), which directly calculate 
these indices from the segmentation results, not using some simplified regression network. The Calculation 
model calculate the two Area-myocardium and Area-cavity indices by counting the number of pixels enclosed 
by endo and epicardium respectively, calculate the three Dim indices by casting a line from the centroid of LV 
cavity in IS-AL, I-A and IL-AS directions and measuring the distance between the intersections of the casted 
lines and the LV endocardium contour, and calculate the IS, I, IL, AL, A and AS by casting a line in six directions 
and measuring the distance between the intersections of the casted line and myocardium. The performance is 
illustrated in Table 4. Max Flow is is a multi-step model based on indirect-segmentation method, which LV 
quantification indices are calculated by the LV myocardial contour segmented first. The Max Flow method has 
high MAE of LV regional wall thicknesses metrics, but the PCC metrics are better than that of some direct meth-
ods. The reason is that, this method calculate LV indices by extracted contour, which results in a better mapping 
to label. The calculation method is also a indirect-segmentation method, which gets poor MAE and PCC perfor-
mance compared with direct regression methods. Multi-features and SDL are two-step direct regression meth-
ods, they learn the cardiac image features first, and then use the representative features to quantify LV indices. 
In Table 4, we can conclude that the two-step direct regression methods get poor performance not only in high 
MAE but also in correlation with the ground-truth. The poor representation ability of two-step methods result 

Table 4.   Comparison with state-of-the-art methods of the quantification performance. MAE and PCC are 
shown in table.

Indices Metrics MaxFlow Multi-features SDL FullVNet DMTRL Indice-Net Indice-JSQ DRUNet Calculation Ours

A-cav
MAE 156 ± 193 231 ± 193 198 ± 169 181 ± 155 172 ± 148 185 ± 162 157 ± 145 106 ± 87 163 ± 130 105 ± 90

PCC 0.958 0.924 0.942 0.940 0.943 0.953 0.985 0.952 0.985

A-myo
MAE 339 ± 272 291 ± 246 286 ± 242 199 ± 174 189 ± 159 223 ± 193 157 ± 161 165 ± 132 197 ± 175 158 ± 130

PCC 0.851 0.729 0.742 0.935 0.947 0.853 0.935 0.913 0.938

Average
MAE 247 ± 201 261 ± 165 242 ± 158 190 ± 128 180 ± 118 204 ± 133 157 ± 120 135 ± 29 180 ± 159 132 ± 110

PCC 0.904 0.827 0.842 0.937 0.945 0.903 0.960 0.933 0.962

Dim1
MAE 2.81 ± 2.76 3.53 ± 2.77 2.99 ± 2.43 2.62 ± 2.09 2.47 ± 1.95 2.43 ± 1.91 1.76 ± 1.43 2.61 ± 2.24 1.80 ± 1.52

PCC 0.937 0.885 0.914 0.952 0.957 0.975 0.937 0.973

Dim2
MAE 2.64 ± 2.12 3.49 ± 2.87 2.55 ± 2.30 2.62 ± 2.09 2.59 ± 2.07 2.32 ± 1.77 1.80 ± 1.49 2.67 ± 2.58 1.79 ± 1.49

PCC 0.946 0.897 0.938 0.881 0.894 0.977 0.938 0.977

Dim3
MAE 2.49 ± 2.88 3.91 ± 3.23 3.10 ± 2.54 2.77 ± 2.22 2.48 ± 2.34 2.54 ± 1.97 1.72 ± 1.41 2.57 ± 2.31 1.75 ± 1.38

PCC 0.945 0.865 0.903 0.935 0.0.943 0.978 0.933 0.973

Average
MAE 2.65 ± 2.33 3.64 ± 2.61 2.88 ± 2.03 2.68 ± 1.64 2.51 ± 1.58 2.43 ± 1.62 1.76 ± 1.44 2.61 ± 2.38 1.78 ± 1.46

PCC 0.943 0.882 0.910 0.917 0.925 0.977 0.936 0.978

IS
MAE 1.53 ± 1.73 1.70 ± 1.47 1.98 ± 1.58 1.32 ± 1.09 1.26 ± 1.04 1.39 ± 1.132 1.16 ± 1.03 1.15 ± 0.93 1.55 ± 1.49 1.12 ± 0.88

PCC 0.796 0.729 0.611 0.840 0.856 0.824 0.0.908 0.872 0.913

I
MAE 3.23 ± 2.83 1.71 ± 1.34 1.67 ± 1.40 1.38 ± 1.10 1.40 ± 1.10 1.51 ± 1.21 1.33 ± 1.07 1.24 ± 1.01 1.89 ± 1.93 1.28 ± 1.02

PCC 0.720 0.603 0.462 0.751 0.747 0.701 0.856 0.700 0.851

IL
MAE 4.15 ± 3.17 1.97 ± 1.54 1.88 ± 1.63 1.57 ± 1.35 1.59 ± 1.29 1.65 ± 1.36 1.42 ± 1.20 1.42 ± 1.13 1.92 ± 1.53 1.35 ± 1.13

PCC 0.743 0.483 0.435 0.691 0.693 0.671 0.836 0.703 0.811

AL
MAE 5.08 ± 3.95 1.82 ± 1.41 1.87 ± 1.55 1.60 ± 1.36 1.57 ± 1.34 1.53 ± 1.25 1.37 ± 1.18 1.37 ± 1.08 1.96 ± 1.67 1.34 ± 1.11

PCC 0.706 0.533 0.547 0.651 0.659 0.698 0.829 0.660 0.820

A
MAE 3.47 ± 3.25 1.55 ± 1.33 1.65 ± 1.45 1.34 ± 1.11 1.32 ± 1.10 1.30 ± 1.12 1.21 ± 1.07 1.13 ± 0.97 1.62 ± 1.55 1.08 ± 0.91

PCC 0.724 0.685 0.661 0.768 0.777 0.781 0.875 0.777 0.880

AS
MAE 1.76 ± 1.80 1.68 ± 1.43 2.04 ± 1.59 1.26 ± 1.10 1.25 ± 1.01 1.28 ± 1.00 1.24 ± 1.08 1.05 ± 0.84 1.58 ± 1.33 1.11 ± 0.94

PCC 0.785 0.777 0.726 0.864 0.877 0.871 0.928 0.854 0924

Average
MAE 3.21 ± 1.98 1.73 ± 0.97 1.85 ± 1.03 1.41 ± 0.72 1.39 ± 0.68 1.44 ± 0.71 1.29 ± 0.70 1.23 ± 1.01 1.75 ± 1.58 1.16 ± .0.99

PCC 0.785 0.777 0.726 0.864 0.877 0.871 0.928 0.761 0.924

Phase ER 10.4 8.2 10.8 9
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in high MAE and low PCC values. Indice-Net is an end-to-end manner foundation method to predict LV indi-
ces. Compared to Max Flow, Indices-Net gets a better area MAE metric but a poor regional wall thickness MAE 
metric. FullLVNet and DMTRL utilized RNN module to capture dynamic information which further improve 
the quantification results. The Indices-JSQ leveraged segmentation predictions to calculate the LV indices. DRU-
Net introduced a multi-task learning approach to regress the cardiac LV indices. It can be seen in experimental 
results, direct methods outperform most indirect methods. Our method yields average MAE values of 132 mm2, 
1.78 mm, 1.16 mm for area, cavity dimension, and regional wall thickness. The average PCC values of area, cav-
ity dimension, and regional wall thickness are 0.962, 0.978, 0.872 , respectively. Our task-unified network is an 
end-to-end manner, which incorporate the advantages of indirect and direct methods to improve segmentation 
predictions supervised by indices of label and generate more accurate quantification LV indices.

We evaluate our unified framework on the testing data. Figures 8 and 9 show the normalized results of the 
quantification indices. The values of RWT, dimension and areas are normalized. Figure 10 illustrates the clini-
cal metrics results of a randomly patient data subject compared with quantification metrics predicted by our 
task-unified model. In every image, the dotted line in the figure is the quantification prediction result of our 
task-unified model, and the solid line shows the metrics of groundtruth. Seen from the prediction results of 
clinical metrics, they are very close to the annotated label. The three figures of experimental result illustrate that 
our unified network achieves competitive performance in LV indices quantification.

To better understand the ability of feature extraction of transformer, we conduct ablation study by using two 
models, and visualize the prediction and output probability map in Fig. 11. One ablation model is our proposed 
unified network, another ablation model is a simplified version of our model which removed the transformer 
block. It can be seen that the prediction and output probability map of simplified model are more blurred, the 
segmentation path with transformer module predicts more concise results. Thus to prove the extraction ability 
of transformer.

Conclusions
In this study, we introduce a accurate and efficient deep learning segmentation and regression unified network to 
segment and quantify the LV simultaneously. The segmentation module leverage an U-Net like 3D Transformer 
model to predict the contour of three anatomy structures, while the regression module learned spatial–temporal 
representations from the original images and the reconstruct feature maps from segmentation path to estimate 
the finally desired quantification metrics. The three anatomy structures contains LV cavity, LV myocardium and 
background. The quantification metrics including the LV myocardial RTWs, dimensions, cavity and myocardium 
areas, and the cardiac diastolic or systolic phase. We used a joint-task loss function to supervise the two module 
networks training approach. Although the LV anatomical shape and appearance are highly variable across dif-
ferent subjects, our model achieves competitive performance in both segmentation and quantification approach. 
The unified network was evaluated on MICCAI 2017 LV-Quan dataset, and the experimental results prove the 
accuracy and efficiency of our model . In the future, we will verify our framework on more datasets to test the 
contribution in clinical approach.

Figure 8.   The LV quantification indices results predicted by our method on the testing data.
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Figure 9.   The LV quantification indices results predicted by our method on the testing data.

Figure 10.   Examples of LV metrics predicted by our unified network for a random patient during a cardiac 
cycle (20 frames). In the following line charts, the predicted results are shown with the dotted line and the 
corresponding ground truth values are displayed with the solid line in the same marker.
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Data availability
The LV-Quan data is available at https://​lvqua​n18.​github.​io/, the Sunnybrook data is available at https://​www.​
cardi​acatl​as.​org/​sunny​brook-​cardi​ac-​data/.
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