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Nonlinear strict distance 
and similarity measures 
for intuitionistic fuzzy sets 
with applications to pattern 
classification and medical diagnosis
Xinxing Wu 1*, Huan Tang 2, Zhiyi Zhu 2, Lantian Liu 2, Guanrong Chen 3 & Miin‑Shen Yang 4*

In this paper, we propose a new type of nonlinear strict distance and similarity measures for 
intuitionistic fuzzy sets (IFSs). Our proposed methods not only have good properties, but also improve 
the drawbacks proposed by Mahanta and Panda (Int J Intell Syst 36(2):615–627, 2021) in which, for 
example, their distance value of d

MP
(〈µ, ν〉, 〈0, 0〉) is always equal to the maximum value 1 for any 

intuitionistic fuzzy number �µ, ν� �= �0, 0� . To resolve these problems in Mahanta and Panda (Int J 
Intell Syst 36(2):615–627, 2021), we establish a nonlinear parametric distance measure for IFSs and 
prove that it satisfies the axiomatic definition of strict intuitionistic fuzzy distances and preserves 
all advantages of distance measures. In particular, our proposed distance measure can effectively 
distinguish different IFSs with high hesitancy. Meanwhile, we obtain that the dual similarity measure 
and the induced entropy of our proposed distance measure satisfy the axiomatic definitions of strict 
intuitionistic fuzzy similarity measure and intuitionistic fuzzy entropy. Finally, we apply our proposed 
distance and similarity measures to pattern classification, decision making on the choice of a proper 
antivirus face mask for COVID‑19, and medical diagnosis problems, to illustrate the effectiveness of 
the new methods.

Zadeh1 introduced the concept of fuzzy sets (FSs) by using a function from the universe of discourse to [0, 1], 
which was called the membership function, to describe the importance of an element in the universe of discourse. 
Zadeh’s fuzzy set theory had been applied in different  areas2–4. However, FSs can only deal with the situation 
containing two opposite responses. It fails to deal with the situation with the hesitant/neutral state of “this and 
also that”. As a remedy,  Atanassov5 generalized Zadeh’s fuzzy set by proposing the concept of intuitionistic fuzzy 
sets (IFSs), characterized by a membership function and a non-membership function meeting the condition 
that their sum at every point is less than or equal to 1. Since then, IFSs have been widely applied to various 
fields, such as multiple attribute decision making (MADM)6–11, medical  diagnosis12–15, similarity with pattern 
 recognition16–19, and cluster  analysis16,20–22.

Being a pair of dual concepts, the intuitionistic fuzzy (IF) distance measure (IFDisM) and the IF similarity 
measure (IFSimM) are useful for measuring the differences of IFSs under IF situations. The axiomatic definitions 
of IFDisMs and IFSimMs were first given by Wang and  Xin23.  Szmidt24 considered IFDisMs and IFSimMs and 
divided them into two types of IFSs according to 2-dimensional (2D) and 3-dimensional (3D) representations. 
However, Wu et al.25 used some examples to show that many existing 3D IFDisMs and IFSimMs, including 
Euclidean DisM and  SimM24, Minkowski DisM and  SimM26,27, do not satisfy the axiomatic definitions of IFDisMs 
and IFSimMs. Burillo and  Bustince28 introduced the 2D Hamming IFDisM.  Grzegorzewski29 and Hung and 
 Yang30 presented some new IFSimMs and IFDisMs based on Hausdorff metric. Wang and  Xin23 obtained a new 
IFDisM by combining the 2D Hamming  IFDisM28 and the 2D Hausdorff  IFDisM29. Hwang and  Yang31 introduced 
a new IFSimM via lower, upper and middle fuzzy sets.  Xiao32 obtained a 3D IFDisM based on Jensen-Shannon 
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divergence and illustrated that it is better than the IFDisMs  in33–36. However, Wu et al.37 showed some examples 
to illustrate that Xiao’s DisM does not satisfy the axiomatic definition of IFDisMs. Meanwhile, Wu et al.37 first 
introduced the concepts of strict IFDisM, and then obtained a new strict IFDisM via Jensen-Shannon divergence 
to more effectively compare and distinguish IFNs and IFSs.

To accurately distinguish different IFSs with high indeterminacy degrees, Mahanta and  Panda38 devel-
oped a new nonlinear 2D IFDisM. However, their DisM dMP has the following two drawbacks: (1) the value of 
dMP(〈µ, ν〉, 〈0, 0〉) is always equal to the maximum value 1 for any IFN �µ, ν� �= �0, 0� ; (2) dMP(�µ, 0�, �0, ν�) = 1 
holds for all µ, ν ∈ (0, 1] . These are unreasonable results. To overcome the above two drawbacks, we construct 
a nonlinear parametric IFDisM and show that it is a strict IFDisM, which preserves all advantages of Mahanta 
and Panda’s  DisM38. Moreover, we prove that the dual SimM and the induced entropy of our proposed IFDisM 
satisfy the axiomatic definitions of IFSimM and IF entropy. Additionally, we apply the proposed IFDisM and 
IFSimM to pattern classification, decision making for the choice of a proper antivirus face mask for COVID-19, 
and medical diagnosis, to illustrate the effectiveness of the new methods.

Preliminaries
Intuitionistic fuzzy set (IFS). 
Definition 2.1 (39Definition 1.1) An intuitionistic fuzzy set (IFS) I in � is defined as an object in the following 
form

where the functions µI : � → [0, 1] and νI : � → [0, 1] are the degree of membership and the degree of non-
membership of an element ϑ ∈ � to the set I, respectively; and for any ϑ ∈ �,

Let IFS(�) denote the set of all IFSs in � . For I ∈ IFS(�) , the indeterminacy degree πI (ϑ) of an element ϑ 
belonging to I is defined by πI (ϑ) = 1− µI (ϑ)− νI (ϑ) . The pair 〈µI (ϑ), νI (ϑ)〉 is called an  intuitionistic fuzzy 
value (IFV) or an intuitionistic fuzzy number (IFN) by  Xu10. For convenience, we use α = �µα , να� to repre-
sent an IFN α , which satisfies µα ∈ [0, 1] , να ∈ [0, 1] , and 0 ≤ µα + να ≤ 1 . Let � be the set of all IFNs, i.e., 
� = {�µ, ν� ∈ [0, 1]2 | µ+ ν ≤ 1} . For α = �µα , να� ∈ � , the complement α∁ of α is α∁ = �να ,µα�.

Atanassov’s order ‘ ⊂’39, defined by the condition that α ⊂ β if and only if α ∩ β = α , is a partial order on � . 
Clearly, α ⊂ β if and only if µα ≤ µβ and να ≥ νβ . The order ‘ � ’ on � is defined by the condition that α � β if 
and only if α ⊂ β and α  = β.

Similarity/distance measures for IFSs. 

Definition 2.2 10,26A mapping S : �×� −→ [0, 1] is called an intuitionistic fuzzy similarity measure 
(IFSimM) on � if it satisfies the following conditions: for any α1 , α2 , α3 ∈ � , 

 (S1) 0 ≤ S(α1,α2) ≤ 1.
 (S2) S(α1,α2) = 1 if and only if α1 = α2.
 (S3) S(α1,α2) = S(α2,α1).
 (S4) If α1 ⊂ α2 ⊂ α3 , then S(α1,α3) ≤ S(α1,α2) and S(α1,α3) ≤ S(α2,α3).

Definition 2.3 10,26A mapping S : IFS(�)× IFS(�) −→ [0, 1] is called an IFSimM on IFS(�) if it satisfies the 
following conditions: for any I1 , I2 , I3 ∈ IFS(�) , 

 (S1) 0 ≤ S(I1, I2) ≤ 1.
 (S2) S(I1, I2) = 1 if and only if I1 = I2.
 (S3) S(I1, I2) = S(I2, I1).
 (S4) If I1 ⊂ I2 ⊂ I3 , then S(I1, I3) ≤ S(I1, I2) and S(I1, I3) ≤ S(I2, I3).

To more effectively compare and distinguish IFNs and IFSs, the concept of strict intuitionistic fuzzy similarity/
distance measures was introduced by Wu et al.37 as follows.

Definition 2.4 37A mapping S : �×� −→ [0, 1] is called a strict IFSimM on � if, for any α1 , α2 , α3 ∈ � , it 
satisfies (Sl)–(S3) in Definition 2.2 and (S4 ′  ) and (S5) described by 

 (S4) (S4 ′  ) (Strict distinctiveness) If α1 � α2 � α3 , then S(α1,α3) < S(α1,α2) and S(α1,α3) < S(α2,α3).
 (S5) (Extreme dissimilarity on endpoints) S(α1,α2) = 0 if and only if ( α1 = �0, 1� and α2 = �1, 0� ) or 

( α1 = �1, 0� and α2 = �0, 1�).

(1)I =
{
�ϑ ,µI (ϑ), νI (ϑ)� | ϑ ∈ �

}
,

(2)µI (ϑ)+ νI (ϑ) ≤ 1.
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As pointed out by Wu et al.37, (1) Property (S4 ′  ) indicates that the similarity measure S can strictly distin-
guish every pair of different IFVs under the Atanassov-order ‘ ⊂ ’; (2) Property (S5) indicates that it is extremely 
unsimilar (similarity measure is zero) for a pair of IFVs depending only on two endpoints.

Definition 2.5 37A mapping S : IFS(�)× IFS(�) −→ [0, 1] is called a strict IFSimM on IFS(�) if, for any I1 , I2 , 
I3 ∈ IFS(�) , it satisfies (Sl)–(S3) in Definition 2.3 and (S4 ′  ) and (S5) described by 

(S4 ′)  If I1 � I2 � I3 , then S(I1, I3) < S(I1, I2) and S(I1, I3) < S(I2, I3).
(S5)  S(I1, I2) = 0 if and only if, for any ϑ ∈ � , ( I1(ϑ) = �0, 1� and I2(ϑ) = �1, 0� ) or ( I1(ϑ) = �1, 0� and 

I2(ϑ) = �0, 1�).

Remark 1 Property (S5) can be equivalently expressed as that S(I1, I2) = 0 if and only if I1 is a crisp set and 
I1 = I∁2 .

Dually, a mapping d : IFS(�)× IFS(�) −→ [0, 1] is called a strict IFDisM on IFS(�) if the mapping 
S(I1, I2) = 1− d(I1, I2) is a strict IFSimM on IFS(�).

Entropy measure for IFSs. Entropy is an important information measure. Szmidt and  Kacprzyk15 gave the 
axiomatic definitions of entropy measures for IFSs as follows:

Definition 2.6 15A mapping E : � −→ [0, 1] is called an intuitionistic fuzzy entropy measure (IFEM) on � if it 
satisfies the following conditions: for any α , β ∈ � , 

 (E1) E(α) = 0 if and only if α = �1, 0� or α = �0, 1�.
 (E2) E(α) = 1 if and only if µα = να.
 (E3) E(α) = E(α∁).
 (E4) E(α) ≤ E(β) whenever it holds either µα ≤ µβ ≤ νβ ≤ να or µα ≥ µβ ≥ νβ ≥ να.

Definition 2.7 15A mapping E : IFS(�) −→ [0, 1] is called an IFEM on IFS(�) if it satisfies the following condi-
tions: for any I1 , I2 ∈ IFS(�) , 

 (E1) E(I1) = 0 if and only if I1 is a crisp sets.
 (E2) E(I1) = 1 if and only if, for any ϑ ∈ � , µI1(ϑ) = νI1(ϑ).
 (E3) E(I1) = E(I∁1 ).
 (E4) E(I1) ≤ E(I2) i f ,  for  any ϑ ∈ � ,  i t  holds  either  µI1(ϑ) ≤ µI2(ϑ) ≤ νI2(ϑ) ≤ νI1(ϑ) or 

µI1(ϑ) ≥ µI2(ϑ) ≥ νI2(ϑ) ≥ νI1(ϑ).

The proposed nonlinear strict distance, similarity and entropy measures for IFSs
After we investigate the distance measure for IFSs proposed by Mahanta and  Panda38, we find that Mahanta and 
Panda’s38 distance gave serious drawbacks. We present these drawbacks in next subsection.

The drawbacks of distance measure of Mahanta and  Panda38. Let � = {ϑ1,ϑ2, . . . ,ϑℓ} be a finite 
UOD and I1 =

{
�µI1 (ϑj),νI1 (ϑj)�

ϑj
| 1 ≤ j ≤ ℓ

}
 and I2 =

{
�µI2 (ϑj),νI2 (ϑj)�

ϑj
| 1 ≤ j ≤ ℓ

}
 be two IFSs on � . To effec-

tively distinguish IFSs with high degrees of hesitancy, Mahanta and  Panda38 recently introduced a 2D IFDisM 
dMP as follows:

This subsection uses two examples to show that their IFDisM dMP
38 has the following two drawbacks: (1) the 

distance from all IFVs except 〈0, 0〉 to 〈0, 0〉 obtained by the distance formula dMP is equal to the maximum value 
1, i.e., dMP(�0, 0�,α) = 1 holds for all α ∈ �\{�0, 0�} ; (2) dMP(�µ, 0�, �0, ν�) = 1 holds for all µ, ν ∈ (0, 1] . These 
are unreasonable results.

Example 3.1 Let � = {ϑ} and I1 =
{

�0,0�
ϑ

}
∈ IFS(�) . For any I2 =

{
�µ,ν�
ϑ

}
∈ IFS(�) with I2  = I1 , by direct 

calculation and Eq. (3), we have dMP(I1, I2) =
|µ−0|+|ν−0|
µ+0+ν+0 = 1 . This is obviously an unreasonable result, since all 

points except 
{

〈0,0〉
ϑ

}
 to 

{
〈0,0〉
ϑ

}
 is equal to the maximum value 1.

(3)dMP(I1, I2) =
1

ℓ

ℓ∑

j=1

|µI1(ϑj)− µI2(ϑj)| + |νI1(ϑj)− νI2(ϑj)|

µI1(ϑj)+ µI2(ϑj)+ νI1(ϑj)+ νI2(ϑj)
.
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Example 3.2 Let � = {ϑ} , I ′1 =
{

�µ,0�
ϑ

}
∈ IFS(�) , and I ′2 =

{
�0,ν�
ϑ

}
∈ IFS(�) . By direct calculation and Eq. (3), 

we have that, for 0 < µ, ν ≤ 1 , dMP(I
′
1, I

′
2) =

|µ−0|+|0−ν|
µ+0+0+ν

= 1 , which is also an unreasonable result.

To overcome the drawbacks of Mahanta and Panda’s distance measure mentioned above, we propose a new 
nonlinear strict distance measure for IFNs and IFSs in next subsection, which is proved to satisfy the axiomatic 
definition of IFDisM.

A new parametric distance on �. We define a new parametric distance on � by defining the function 
d
(�)
pd : �×� −→ R+ as follows: for α = �µα , να� and β = �µβ , νβ� ∈ �,

Lemma 3.1 Let � > 0 . For 0 ≤ x ≤ y ≤ 2 , the following statements hold: 

(1) x
y+�

≤ 2
2+�

;
(2) x

y+�
= 2

2+�
 if and only if x = y = 2.

Proof 

(1) From 0 ≤ x ≤ y , it follows that x
y+�

≤
y

y+�
 . This, together with 0 ≤ y ≤ 2 , implies that y

y+�
≤ 2

2+�
.

(2) It follows directly from the proof of (1).  �

Proposition 3.1 0 ≤ d(�)
pd

(α,β) ≤ 1.

Proof Note that 0 ≤ |µα − µβ | + |να − νβ | ≤ µα + να + µβ + νβ ≤ 2 . By   Lemma  3.1, it follows that 
d(�)
pd

(α,β) =
|µα−µβ |+|να−νβ |

µα+να+µβ+νβ+�
· 2+�

2 ≤ 2
2+�

· 2+�

2 = 1 .   �

Proposition 3.2 d(�)
pd

(α,β) = d(�)
pd

(β ,α).

Proof It follows directly from Eq. (4).   �

Proposition 3.3 d(�)
pd

(α,β) = 0 if and only if α = β.

Proof Note that � > 0 , and by Eq. (4), it follows that d(�)
pd

(α,β) = 0 if and only if |µα − µβ | + |να − νβ | = 0 if 
and only if µα = µβ and να = νβ .   �

Proposition 3.4 d(�)
pd

(α,β) = 1 if and only if { α = �0, 1� and β = �1, 0� }, or { α = �1, 0� and β = �0, 1�}.

Proof Sufficiency. By direct calculation and Eq. (4), it follows that d(�)
pd

(�0, 1�, �1, 0�) = d(�)
pd

(�1, 0�, �0, 1�) = 1.
Necessity. By Lemma 3.1 (2), it follows that d(�)

pd
(α,β) = 1 if and only if |µα − µβ | + |να − νβ | = 2 implying 

that |µα − µβ | = 1 and |να − νβ | = 1 . And thus ( α = �0, 1� and β = �1, 0� ) or ( α = �1, 0� and β = �0, 1� ).  �

Proposition 3.5 Let α , β , γ ∈ � . 

(1) If α ⊂ β ⊂ γ , then d(�)
pd

(α, γ ) ≥ d(�)
pd

(α,β) and d(�)
pd

(α, γ ) ≥ d(�)
pd

(β , γ ).
(2) If α � β � γ , then d(�)

pd
(α, γ ) > d(�)

pd
(α,β) and d(�)

pd
(α, γ ) > d(�)

pd
(β , γ ).

Proof 

(1) Fix an IFV α = �µα , να� ∈ � . For any α̃ = �µ, ν� ∈ � with α̃ ⊃ α , define a function 

 By direct calculation, we have 

(4)d
(�)
pd (α,β) =

|µα − µβ | + |να − νβ |

µα + να + µβ + νβ + �
·
2+ �

2
.

ζ(µ, ν) = d(�)
pd

(α, α̃) =
µ− µα + να − ν

µα + να + µ+ ν + �
·
2+ �

2
.
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 and 

  This,  together with α ⊂ β ⊂ γ  ,  i .e. ,  µα ≤ µβ ≤ µγ  and να ≥ νβ ≥ νγ  ,  implies that 
d(�)
pd

(α,β) = ζ(µβ , νβ) ≤ ζ(µγ , νβ) ≤ ζ(µγ , νγ ) = d(�)
pd

(α, γ ) . Similarly, it can be verified that 
d(�)
pd

(α, γ ) ≥ d(�)
pd

(β , γ ).
(2) Suppose that, on the contrary, d(�)

pd
(α, γ ) ≯ d(�)

pd
(α,β) or d(�)

pd
(α, γ ) ≯ d(�)

pd
(β , γ ) . Without loss of generality, 

assume that d(�)
pd

(α, γ ) ≯ d(�)
pd

(α,β) . This, together with (1), implies that d(�)
pd

(α, γ ) = d(�)
pd

(α,β) . From 
β � γ , it follows that ( µβ < µγ and νβ ≥ νγ ) or ( µβ ≤ µγ and νβ > νγ ). Next, we consider the following 
two cases :  2-1)  If  µβ < µγ  and νβ ≥ νγ  ,  then,  by  Eqs .   (5)  and (6) ,  we have 
d(�)
pd

(α,β) = ζ(µβ , νβ) < ζ(µγ , νβ) ≤ ζ(µγ , νγ ) = d(�)
pd

(α, γ )  ,  w h i c h  c o n t r a d i c t s  w i t h 
d(�)
pd

(α, γ ) = d(�)
pd

(α,β) . 2-2) If µβ ≤ µγ  and νβ > νγ  , then, by Eqs.  (5) and (6), we have 
d(�)
pd

(α,β) = ζ(µβ , νβ) < ζ(µβ , νγ ) ≤ ζ(µγ , νγ ) = d(�)
pd

(α, γ )  ,  w h i c h  c o n t r a d i c t s  w i t h 
d(�)
pd

(α, γ ) = d(�)
pd

(α,β) . Therefore, d(�)
pd

(α, γ ) > d(�)
pd

(α,β) and d(�)
pd

(α, γ ) > d(�)
pd

(β , γ ).

  �

Based on the defined parametric distance d(�)pd  , we can define a similarity measure Sps(α,β) on � as follows: 
for α = �µα , να� and β = �µβ , νβ� ∈ �,

According to Propositions 3.1 and  3.5, we have the following results.

Theorem 3.1 

(1) The function d(�)
pd

 defined by Eq. (4) is a strict distance measure on �.
(2) The function Sps(α,β) defined by Eq. (7) is a strict similarity measure on �.

Similarly, we can define a new measure E on � based on the parametric distance d(�)
pd

 as follows:

Theorem 3.2 Let � > 0 . The measure E defined by Eq. (8) is an entropy on �.

Proof (E1), (E2), and (E3) follow directly from Propositions 3.3, 3.4 and Eq. (4), respectively.
(E4) For α , β ∈ � , consider the following two cases:
(E4-1) If µα ≤ µβ ≤ νβ ≤ να , then α ⊂ β ⊂ β∁ ⊂ α∁ . This, together with Proposition 3.5, implies that 

E(α) = 1− d(�)
pd

(α,α∁) ≤ 1− d(�)
pd

(α,β∁) ≤ 1− d(�)
pd

(β ,β∁) = E(β);

(E4-2) If µα ≥ µβ ≥ νβ ≥ να , then α∁ ⊂ β∁ ⊂ β ⊂ α . This, together with Proposition 3.5, implies that 
E(α) = 1− d(�)

pd
(α,α∁) ≤ 1− d(�)

pd
(α,β∁) ≤ 1− d(�)

pd
(β ,β∁) = E(β) .   �

Figure 1 shows the graphs of the entropy measure E of Eq. (8) for � = 0.02, 0.04, 0.06, 0.08, 0.1.
Mahanta and  Panda38 claimed that the IFDisM dMP can deal adequately with the IF information having high 

uncertainty, i.e., having low values of membership and nonmembership grades. To close this section, it is shown 
that our proposed parametric distance d(�)

pd
 can effectively distinguish different IFVs with high hesitancy.

Fix � > 0 and give two different IFVs α = �µα , να� and β = �µβ , νβ� with µα + να ≤ �

2 and µβ + νβ ≤ �

2 . 
By differential mean value theorem, it can be verified that 

(5)
∂ζ

∂µ
=

2µα + 2ν + �

(µα + να + µ+ ν + �)2
·
2+ �

2
> 0,

(6)
∂ζ

∂ν
=

−2να − 2µ− �

(µα + να + µ+ ν + �)2
·
2+ �

2
< 0.

(7)Sps(α,β) = 1− d(�)
pd

(α,β)

(8)
E : � −→ [0, 1],

α �−→ 1− d(�)
pd

(α,α∁),
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 (i) If  µβ ≥ µα and νβ ≥ να ,  then there exist  ξ1 ∈ [µα ,µβ ] and η1 ∈ [να , νβ ] such that 
d
(�)
pd

(α,β) = 2µα+2να+�

(µα+ξ1+να+η1+�)2
· 2+�

2 · (µβ − µα)+
2µα+2να+�

(µα+ξ1+να+η1+�)2
· 2+�

2 · (νβ − να) ≥
�

(2�)2

· 2+�

2
· ((µβ − µα)+ (νβ − να)) ≥

1

4�
· (|µβ − µα| + |νβ − να|);

 (ii) If µα ≥ µβ and να ≥ νβ , similarly to (i), it follows that there exist ξ2 ∈ [µβ ,µα] and η2 ∈ [νβ , να] such 
that d(�)

pd
(α,β) ≥ 1

4� · (|µβ − µα| + |νβ − να |).
 (iii) If  µβ ≥ µα and νβ ≤ να ,  then there exist  ξ3 ∈ [µα ,µβ ] and η3 ∈ [νβ , να] such that 

d
(�)
pd

(α,β) = 2µα+2η3+�

(µα+ξ3+να+η3+�)2
· 2+�

2 · (µβ − µα)+
−2ξ3−2να−�

(µα+ξ3+να+η3+�)2
· 2+�

2 · (νβ − να) =

2µα+2η3+�

(µα+ξ3+να+η3+�)2
· 2+�

2
· (µβ − µα)+

2ξ3+2να+�

(µα+ξ3+να+η3+�)2
· 2+�

2
· (να − νβ) ≥

�

(2�)2
· 2+�

2
· ((µβ − µα)

+να − νβ)) ≥
1

4�
· (|µβ − µα| + |νβ − να|);

 (iv) If µβ ≤ µα and νβ ≥ να , similarly to (iii), it follows that there exist ξ4 ∈ [µβ ,µα] and η4 ∈ [να , νβ ] such 
that d(�)

pd
(α,β) ≥ 1

4� · (|µβ − µα| + |νβ − να |).

According to the above theoretical analysis and also the presentation in Fig. 1, we can find that, when the param-
eter � is sufficiently small, the distance d(�)

pd
 can reach very large numbers and is sensitive to small perturbations, 

even if the degrees of membership and nonmembership are very small. Thus, the smaller the parameter � is, the 
stronger the sensitivity is. Therefore, the proposed parametric distance d(�)

pd
 can better distinguish IFVs with small 

degrees of membership and nonmembership. And so, throughout this paper, the values of the parameter � are 
chosen smaller. Meanwhile, according to Eq. (4), it is clear that the value of d(�)

pd
 will be sufficiently close to 

1
2 (|µα − µβ | + |να − νβ |) , when the parameter � is sufficiently higher. In this case, the distance measure d(�)

pd
 

cannot distinguish different IFSs with high hesitancy, when the parameter � is sufficiently higher. In this sense, 
the values of the parameter � will not be chosen too high, but better with smaller values.

The proposed IFDisM, IFSisM and IFEM for IFSs. Following the newly defined function d(�)
pd

 on � in “A 
new parametric distance on �”, we now propose the new IFDisM (distance), IFSisM (similarity) and IFEM 
(entropy) for IFSs as follows. Let � = {ϑ1,ϑ2, . . . ,ϑℓ} and � > 0 . Define the function 
d
(�)
New

: IFS(�)× IFS(�) −→ R+ for I1 = {�µI1(ϑi), νI1(ϑi)� | ϑi ∈ �} and 
I2 = {�µI2(ϑi), νI2(ϑi)� | ϑi ∈ �} ∈ IFS(�),

where ω = (ω1,ω2, . . . ,ωn)
⊤ is the weight vector of ϑi ( i = 1, 2, . . . , ℓ ) with ωi ∈ (0, 1] and 

∑ℓ
i=1 ωi = 1.

(9)d
(�)
New

(I1, I2) =

ℓ∑

i=1

ωi · d
(�)
New

(�µI1(ϑi), νI1(ϑi)�, �µI2(ϑi), νI2(ϑi)�),

Figure 1.  Entropy measure E for different values of �.
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Based on the defined IFDisM d(�)
New

(I1, I2) for IFSs, we can define a new similarity measure S(�)
New

(I1, I2) for IFSs 
as follows: for I1 = {�µI1(ϑi), νI1(ϑi)� | ϑi ∈ �} and I2 = {�µI2(ϑi), νI2(ϑi)� | ϑi ∈ �} ∈ IFS(�),

Similarly, a new entropy measure for IFSs can be defined according to the defined IFDisM d(�)
New

(I1, I2) as 
follows:

According to Theorems 3.1 and 3.2, we can directly obtain the following theorems.

Theorem 3.3 

(1) The function d(�)
New

 defined by Eq. (9) is a strict IFDisM on IFS(�).
(2) The function S(�)

New
(I1, I2) defined by Eq. (10) is a strict IFSimM on IFS(�).

Theorem 3.4 Let � > 0 . The measure E defined by Eq. (11) is an entropy measure on IFS(�).

Comparative analysis with Mahanta and Panda’s distance measure. This subsection illustrates 
that our proposed distance measure can completely overcome Mahanta and Panda’s drawbacks mentioned in 
“The drawbacks of distance measure of Mahanta and  Panda38”.

Example 3.3 (Continuation of Example 3.1) Take the IFSs I1 on � = {ϑ} as given in Example 3.1. For any 
I2 =

{
�µ,ν�
ϑ

}
∈ IFS(�) with I2  = I1 , by direct calculation and Eq. (9), we have

By varying IFS I2 within IFS(�) , Fig. 2 shows the changing trend of distances between I1 and I2 by using our 
proposed formula (9) for � = 0.02, 0.04, 0.06, 0.08, 0.1 . Observing from Example 3.1, Proposition 3.4, and Fig. 2, 
it is revealed that the distance d(�)

New
(I1, I2) between I1 and I2 is always less than 1, and changed with the change 

of I2 , which are reasonable, and significantly better than the result obtained by Mahanta and Panda’s distance 
measure in Example 3.1.

(10)S
(�)
New

(I1, I2) = 1− d
(�)
New

(I1, I2)

(11)
E : IFS(�) −→ [0, 1],

I �−→ 1− d
(�)
New

(I , I∁),

d
(�)
New

(I1, I2) =
|µ− 0| + |ν − 0|

µ+ 0+ ν + 0+ �
·
2+ �

2
=

µ+ ν

µ+ ν + �
·
2+ �

2
.

Figure 2.  Distance measure d(�)
New

(I1, I2) in Example 3.3 for different values of �.
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Example 3.4 (Continuation of Example 3.2) Take the IFSs I ′1 and I ′2 on � = {ϑ} as given in Example 3.2. By 
direct calculation and Eq. (9), we have that, for 0 < µ, ν ≤ 1 , d(�)

New
(I ′1, I

′
2) =

|µ−0|+|0−ν|
µ+0+0+ν+�

· 2+�

2 =
µ+ν

µ+ν+�
· 2+�

2 . 
By varying µ and ν from 0 to 1, Fig. 3 shows the changing trend of distances between I ′1 and I ′2 by using our pro-
posed formula (9) for � = 0.02, 0.04, 0.06, 0.08, 0.1 . Observing from Example 3.2, Proposition 3.4, and Fig. 3, it 
is revealed that the distance d(�)

New
(I ′1, I

′
2) between I ′1 and I ′2 is always less than 1 except for µ = ν = 1 , and changes 

with the changed of I ′1 and I ′2 , which are reasonable, and significantly better than the result obtained by Mahanta 
and Panda’s distance measure in Example 3.2.

Applications
A pattern classification problem. 
Example 4.1 (32Application 2, 14Example 4.3) Consider a pattern classification problem with three classes 
and three attributes A = {x1, x2, x3} , described by three patterns P = {P1, P2, P3} and a test sample S1 expressed 
by the IFSs listed in Table 1.

By taking the weight vector ω of three attributes as ω = ( 13 ,
1
3 ,

1
3 )

⊤ , based on the principle of the maximum 
degree of SimMs, the pattern classification results obtained by using different distance measures are listed in 
Table 2 and Fig. 4. Observing from Table 2 and Fig. 4, we know that the test sample S1 is classified to the pattern 
P3 by our proposed DisM with � = 0.14, 0.16, 0.18 , which is consistent with the results obtained by the DisMs 
dE
SK

 , dG , dW1 , dW2 , dP , dY , dSW , dSM , dL , dYC , and dχ̃ ; However, the methods using DisMs dW2 , dTH , dR
H

 , dL
H
 , dKD

H
 , dM

H
 , dLA

H
 , 

dG
H

 , dSW , and dMP cannot determine to which pattern the test sample S1 belongs. We mention that the calculations 

Figure 3.  Distance measure d(�)
New

(I ′1, I
′
2) in Example 3.4 for different values of �.

Table 1.  Pattern classification in Example 4.1.

Attribute

x1 x2 x3

µP(x1) νP(x1) µP(x2) νP(x2) µP(x3) νP(x3)

Pattern

 P1 0.15 0.25 0.25 0.35 0.35 0.45

 P2 0.05 0.15 0.15 0.25 0.25 0.35

 P3 0.16 0.26 0.26 0.36 0.36 0.46

Sample

 S1 0.30 0.20 0.40 0.30 0.50 0.40
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Table 2.  Pattern recognition results by different similarity measures in Example 4.1. ✕ denotes that it cannot 
be determined. The details for distance measures in Table 2 can be found  in32, Section III.

Method

Similarity measure

Classification1− dis(P1, S1) 1− dis(P2, S1) 1− dis(P3, S1)

d
H
SK

  in33 0.85 0.70 0.86 P3

d
E
SK

  in33 0.87 0.72 0.88 P3

dG  in29 0.85 0.75 0.86 P3

dW1  in23 0.90 0.80 0.91 P3

dW2  in23 0.90 0.85 0.90 ✕

dP  in40 0.85 0.70 0.86 P3

dY  in34 0.85 0.70 0.86 P3

d
T
H

  in41 0.95 0.88 0.95 ✕

d
R
H

  in41 0.96 0.93 0.96 ✕

d
L
H
  in41 1− 3.70× 10−17 1− 3.70× 10−17 1− 3.70× 10−17 ✕

d
KD
H

  in41 0.90 0.85 0.90 ✕

d
M
H

  in41 0.90 0.85 0.90 ✕

d
LA
H

  in41 0.93 0.92 0.93 ✕

d
G
H

  in41 0.95 0.92 0.95 ✕

dSW  in36 0.99 0.95 0.99 ✕

dSM  in35 0.86 0.81 0.90 P3

dL  in14 0.80 0.60 0.81 P3

dYC  in42 0.89 0.77 0.90 P3

dχ̃  in32 0.85 0.69 0.86 P3

dMP  in38 0.84 0.70 0.84 ✕

d
(0.14)
New

0.84 0.72 0.85 P3

d
(0.16)
New

0.84 0.72 0.85 P3

d
(0.18)
New

0.84 0.73 0.85 P3

Figure 4.  Comparison results of different similarity measures in Example 4.1.
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for dMP by Mahanta and  Panda38 have 1− dMP(P1, S1) = 0.8354 and 1− dMP(P3, S1) = 0.8383 . This means that 
1− dMP(P3, S1) > 1− dMP(P1, S1) , and so it is able to distinguish between the patterns, but only a little. However, 
if we retain 2 digits after the decimal point, we have 1− dMP(P3, S1) = 0.84 = 1− dMP(P1, S1) , and so dMP by 
Mahanta and  Panda38 can not distinguish between the patterns.

A TOPSIS method based on our proposed strict IFDisM and IFSimM. Suppose that there are n 
alternatives Ai ( i = 1, 2, . . . , n ) evaluated with respect to m attributes Aj ( j = 1, 2, . . . ,m ). The sets of the alter-
natives and attributes are denoted by A = {A1,A2, . . . ,An} and A = {A1,A2, . . . ,Am} , respectively. The rating 
(or evaluation) of each alternative Ai ∈ A ( i = 1, 2, . . . , n ) on each attribute oj ( j = 1, 2, . . . ,m ) is expressed with 
an IFS rij =

{
�µij ,νij�

(Ai ,Aj)

}
 , denoted by rij = �µij , νij� for short, where µij ∈ [0, 1] and νij ∈ [0, 1] are respectively the 

satisfaction (or membership) degree and dissatisfaction (or non-membership) degree of the alternative Ai ∈ A 
on the attribute oj satisfying the condition 0 ≤ µij + νij ≤ 1 . A multi-attribute decision-making (MADM) prob-
lem with IFSs is expressed in matrix form shown in Table 3.

For the MADM problem with IFSs, by using our proposed IFDisM d(�)
New

 of Eq. (9), we construct a new IF 
TOPSIS method as follows:

Step 1: (Construct the decision matrix) Supposing that the decision-maker gave the rating (or evaluation) of 
each alternative Ai ∈ A ( i = 1, 2, . . . , n ) on each attribute Aj ( j = 1, 2, . . . ,m ) in the form of IFNs rij = �µij , ηij� , 
construct an IF decision matrix R = (rij)m×n as shown in Table 3.

Step 2: (Normalize the decision matrix) Transform the IF decision matrix R = (rij)m×n to the normalized IF 
decision matrix R = (r̄ij)m×n = (�µ̄ij , ν̄ij�)m×n as follows:

where r∁ij is the complement of γij.
Step  3: (Determine the positive and negative ideal-points) Determine the IF positive ideal-point 

I+ = (�µ+
1 , ν

+
1 �, �µ

+
2 , ν

+
2 �, . . . , �µ+

m, ν
+
m �)

⊤ and IF negative ideal-point I− = (�µ−
1 , ν

−
1 �, �µ

−
2 , ν

−
2 �, . . . , �µ

−
m, ν

−
m �)

⊤ 
as follows:

Step 4: (Compute the weighted similarity measures) Compute the weighted similarity measures between the 
alternatives Ai ( i = 1, 2, . . . , n ) and the IF positive ideal-point I+ , and between the alternatives Ai ( i = 1, 2, . . . , n ) 
and the IF negative ideal-point I− , by using the following formulas:

and

Step 5: (Compute the relative similarity degrees) Calculate the relative similarity degrees Ci of the alternatives 
Ai ( i = 1, 2, . . . , n ) to the IF positive ideal-point I+ by using the following formula:

Step 6: (Rank the alternative) Rank the alternatives Ai ( i = 1, 2, . . . , n ) according to the nonincreasing order 
of the relative closeness degrees Ci and select the most desirable alternative.

r̄ij =

{
rij , for benefit attribute Aj ,

r∁ij , for cost attribute Aj ,

µ+
j = max

1≤i≤n
{µ̄ij}, ν+j = min

1≤i≤n
{ν̄ij},

µ−
j = min

1≤i≤n
{µ̄ij}, ν−j = max

1≤i≤n
{ν̄ij}.

(12)S(Ai , I
+) = 1−

m∑

j=1

ωj · d
(�)
New

(�µ̄ij , ν̄ij�, �µ
+
j , ν

+
j �),

(13)S(Ai , I
−) = 1−

m∑

j=1

ωj · d
(�)
New

(�µ̄ij , ν̄ij�, �µ
−
j , ν

−
j �).

(14)Ci =
S(Ai , I

+)

S(Ai , I+)+ S(Ai , I−)
.

Table 3.  IF decision matrix R = (rij)n×m.

A1 A2
. . . Am

A1 〈µ11, ν11〉 〈µ12, ν12〉 〈µ1m , ν1m〉

A2 〈µ21, ν21〉 〈µ22, ν22〉 〈µ2m , ν2m〉

.

.

.
.
.
.

.

.

.
. . .

.

.

.
An 〈µn1, νn1〉 〈µn2, νn2〉 〈µnm , νnm〉
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Comparative and sensitivity analysis. We next make a comparative and sensitivity analysis of our pro-
posed method with the method proposed by Mahanta and  Panda38.

Example 4.2 (38Example 4.3) After the outbreak of COVID-19 disease, the demand for masks has increased 
rapidly. There are six common types of masks on the market as follows: M1—disposable medical masks, M2

—medical-surgical masks, M3—particulate respirators (N95), M4—ordinary nonmedical masks, M5—medical 
protective masks, and M6—gas masks. A citizen wants to buy a suitable mask from the above six types of masks 
by considering the following four attributes: A1—leakage rate, A2—recyclability, A3—quality of raw material, 
A4—filtration capability.

Step 1: (Construct the decision matrix) Through the market survey, the evaluations of each type of mask Mi 
( i = 1, 2, 3, 4, 5, 6 ) on each attribute Aj ( j = 1, 2, 3, 4 ) in the form of IFNs are summarized in Table 4.

Step 2: (Normalize the decision matrix) Because A1 is a cost attribute and A2–A4 are the benefit attributes, 
the normalized IF decision matrix is formed as shown in Table 5.

Step 3: (Determine the positive and negative ideal-points) The IF positive ideal-point is

and the IF negative ideal-point is

Steps 4 and 5: (Compute the relative similarity degrees) Take the weight vector ω = (0.25, 0.25, 0.25, 0.25)⊤ . For 
� = 0.02 , 0.04, 0.06, 0.08, 0.1, calculate the relative similarity degrees Ci of the alternatives Mi ( i = 1, 2, 3, 4, 5, 6 ) 
to the IF positive ideal-point I+ by Eqs. (12), (13), and (14). The results are presented in Table 6.

Step  6: (Rank the alternative) For any � ∈ {0.02, 0.04, 0.06, 0.08, 0.1} , because it always holds 
C3 > C6 > C4 > C5 > C1 > C2 , the ranking of these types of masks Mi ( i = 1, 2, 3, 4, 5, 6 ) is:

I+ = {�0.4096, 0.0100�, �0.6400, 0.0144�, �0.5329, 0.0961�, �0.5329, 0.1764�},

I− = {�0.0625, 0.5329�, �0.1024, 0.4356�, �0.0729, 0.4624�, �0.0529, 0.4624�}.

M3 ≻ M6 ≻ M4 ≻ M5 ≻ M1 ≻ M2.

Table 4.  IFN evaluation of different types of masks.

Mask type A1 A2 A3 A4

M1 〈0.5329, 0.0841〉 〈0.6400, 0.0144〉 〈0.0784, 0.1936〉 〈0.0784, 0.4624〉

M2 〈0.0841, 0.3721〉 〈0.2916, 0.3969〉 〈0.0729, 0.4624〉 〈0.0900, 0.3960〉

M3 〈0.2916, 0.2401〉 〈0.1936, 0.3136〉 〈0.3721, 0.2916〉 〈0.5329, 0.1764〉

M4 〈0.1521, 0.4096〉 〈0.1156, 0.1849〉 〈0.2025, 0.0961〉 〈0.0529, 0.3721〉

M5 〈0.2809, 0.0841〉 〈0.2025, 0.4356〉 〈0.5329, 0.1936〉 〈0.3600, 0.3969〉

M6 〈0.0100, 0.0625〉 〈0.1024, 0.0729〉 〈0.1849, 0.1369〉 〈0.3600, 0.3600〉

Table 5.  Normalized IFN evaluation of different types of masks.

Mask type A1 A2 A3 A4

M1 〈0.0841, 0.5329〉 〈0.6400, 0.0144〉 〈0.0784, 0.1936〉 〈0.0784, 0.4624〉

M2 〈0.3721, 0.0841〉 〈0.2916, 0.3969〉 〈0.0729, 0.4624〉 〈0.0900, 0.3960〉

M3 〈0.2401, 0.2916〉 〈0.1936, 0.3136〉 〈0.3721, 0.2916〉 〈0.5329, 0.1764〉

M4 〈0.4096, 0.1521〉 〈0.1156, 0.1849〉 〈0.2025, 0.0961〉 〈0.0529, 0.3721〉

M5 〈0.0841, 0.2809〉 〈0.2025, 0.4356〉 〈0.5329, 0.1936〉 〈0.3600, 0.3969〉

M6 〈0.0625, 0.0100〉 〈0.1024, 0.0729〉 〈0.1849, 0.1369〉 〈0.3600, 0.3600〉

Table 6.  Relative similarity degrees Ci with ω = (0.25, 0.25, 0.25, 0.25)⊤.

Relative similarity C1 C2 C3 C4 C5 C6 Ranking

� = 0.02 0.4139 0.4093 0.5200 0.4792 0.4486 0.5071 M3 ≻ M6 ≻ M4 ≻ M5 ≻ M1 ≻ M2

� = 0.04 0.4152 0.4101 0.5199 0.4794 0.4495 0.5073 M3 ≻ M6 ≻ M4 ≻ M5 ≻ M1 ≻ M2

� = 0.06 0.4164 0.4108 0.5198 0.4795 0.4504 0.5075 M3 ≻ M6 ≻ M4 ≻ M5 ≻ M1 ≻ M2

� = 0.08 0.4175 0.4115 0.5197 0.4797 0.4513 0.5076 M3 ≻ M6 ≻ M4 ≻ M5 ≻ M1 ≻ M2

� = 0.1 0.4186 0.4122 0.5197 0.4798 0.4521 0.5077 M3 ≻ M6 ≻ M4 ≻ M5 ≻ M1 ≻ M2
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Therefore, the most desirable mask type is M3—particulate respirators (N95).
Mahanta and  Panda38, Example 4.3 showed that the most desirable mask type is M1—disposable medical 

masks, which is different from our result. The main reason for this is lack of normalization step (Step 2) in 
Mahanta and Panda’s TOPSIS  method38. This may yield counter-intuitive results, because the smaller the score 
for cost attribute is, the better the attribute on this attribute is. To illustrate the effectiveness of the proposed 
TOPSIS method, we give a comparison of the preference orders of the alternatives in Example 4.2 for different 
TOPSIS methods as follows.

From Table 7, which shows a comparison of the preference orders of the alternatives in Example 4.2 for 
different TOPSIS methods, we observe that although our ranking result is different from these obtained by the 
TOPSIS method  in25,35,43, the most desirable mask type is always M3–particulate respirators (N95). Note that 
the scores of M3 on the attributes A2 , A3 , and A4 (by Table 5) are much greater than that of M1 . This gives a 
reason to support the conclusion that M3 is better than M1 . Therefore, our method is more reasonable than that 
of Mahanta and  Panda38.

To study the changing tendency of the relative similarity degrees and the rankings for M1 , M2 , . . . , M6 with 
the variation of the parameter � from 0 to 1, Fig. 5 is used for illustration. Observing from Fig. 5, it is revealed 
that the rankings for M1 , M2 , . . . , M6 remain unchange with the variation of the parameter � from 0 to 1. As a 
result, N95 is always the most desirable type of marks.

In the above analysis, we assume that four attributes A1–A4 have the same weight. To study the impact of the 
weights of attributes on the decision process, Fig. 6 is used for illustration. Observing from Fig. 6, it is revealed 
that although the most desirable mask type is always M3–particulate respirators (N95), the rankings of M1 and 
M2 may change, when changing the weights of attributes and the parameter �.

A medical diagnosis problem. 
Example 4.3 (38Example  4.4,14) Consider a medical diagnosis problem for 4 patients 
P = {P1,P2,P3,P4} with the symptoms S = {Temperature, Headache, Stomach pain, Cough, Chest pain} 
represented by using IFNs, as listed in Table  8. The symptom characteristics for diagnosis 
D = {Viral fever, Malaria, Typhoid, Stomach problem, Chest problem} are represented by using IFNs, as 
shown in Table 9.

Table 7.  A comparison of the ranking for the alternatives in Example 4.2 for different TOPSIS methods.

Relative similarity C1 C2 C3 C4 C5 C6 Ranking

� = 0.02 0.4139 0.4093 0.5200 0.4792 0.4486 0.5071 M3 ≻ M6 ≻ M4 ≻ M5 ≻ M1 ≻ M2

� = 0.04 0.4152 0.4101 0.5199 0.4794 0.4495 0.5073 M3 ≻ M6 ≻ M4 ≻ M5 ≻ M1 ≻ M2

� = 0.06 0.4164 0.4108 0.5198 0.4795 0.4504 0.5075 M3 ≻ M6 ≻ M4 ≻ M5 ≻ M1 ≻ M2

� = 0.08 0.4175 0.4115 0.5197 0.4797 0.4513 0.5076 M3 ≻ M6 ≻ M4 ≻ M5 ≻ M1 ≻ M2

� = 0.1 0.4186 0.4122 0.5197 0.4798 0.4521 0.5077 M3 ≻ M6 ≻ M4 ≻ M5 ≻ M1 ≻ M2

TOPSIS method  in38 0.5133 0.4636 0.5070 0.4797 0.5074 0.4981 M1 ≻ M5 ≻ M3 ≻ M6 ≻ M4 ≻ M2

TOPSIS method  in35 − 0.1602 − 0.2023 0.0507 − 0.0514 − 0.0800 0.0420 M3 ≻ M6 ≻ M4 ≻ M5 ≻ M1 ≻ M2

TOPSIS method  in43 0.4665 0.4505 0.5135 0.4907 0.4834 0.5009 M3 ≻ M6 ≻ M4 ≻ M5 ≻ M1 ≻ M2

TOPSIS method  in25 0.5051 0.4175 0.5484 0.4895 0.4813 0.5018 M3 ≻ M1 ≻ M6 ≻ M4 ≻ M5 ≻ M2
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Figure 5.  Relative similarity degrees for different values of � for ω = (0.25, 0.25, 0.25, 0.25)⊤.
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Figure 6.  Relative similarity degrees for different values of � and weight vectors ω.
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By taking the weight vector ω of the 5 symptoms attributes as ω = (0.2, 0.2, 0.2, 0.2, 0.2)⊤ , based on the 
principle of the maximum degree of SimMs, the diagnosis results obtained by using different SimMs are listed 
in Table 10 with � = 0.02.

To study the changing tendency of the diagnostic results for different patients P1 , P2 , P3 , P4 with the variation 
of the parameter � from 0 to 1, Fig. 7 is used for illustration. Observing from Fig. 7, it is revealed that when the 
parameter � changes from 0 to 1, the diagnostic results for P1 , P2 , P3 , and P4 are perfectly consistent with the 
result for � = 0.02 , i.e., P1 suffers from ‘Malaria’, P2 suffers from ‘Stomach problem’, P3 suffers from ‘Typhoid’, 
and P4 suffers from ‘Viral fever’.

Conclusion
To overcome the two drawbacks of Mahanta and Panda’s  DisM38 mentioned in “The drawbacks of distance 
measure of Mahanta and  Panda38”, we propose a new nonlinear parametric DisM for IFSs, which is proved to 
satisfy the axiomatic definition of a strict IFDisM and effectively distinguish different IFSs with high hesitancy 
when the parameter is sufficiently small. Moreover, we prove that the dual SimM and the induced entropy of the 
proposed DisM are a strict IFSimM and an IF entropy, respectively. Finally, to illustrate the effectiveness of our 
method, we apply our proposed DisM/SimM to the following three problems: 

(1) Considering an IF pattern classification problem  from14, our proposed DisM can accurately determine 
to which pattern the test sample belongs. The test result shows that our proposed DisM is better than the 
DisMs  in23,36,38,41;

(2) To deal with an IF MADM problem on the decision making about the choice of a proper antivirus face 
mask for COVID-19, we propose a TOPSIS method based on our proposed strict IFSimM. The comparative 
analysis shows that the most desirable choice obtained by our proposed TOPSIS method with the variation 
of the parameter � from 0 to 1 is consistent with the results obtained by the TOPSIS methods  in25,35,43. The 
comparative analysis also shows that the TOPSIS method  in38 is unreasonable, because it does not consider 
the cost attributes for normalization;

(3) We use our proposed SimM to solve an IF medical diagnosis problem. Our diagnostic results are consistent 
with the results  in15,38,44,46,47.

In the paper, we had demonstrated these relative similarity degrees for different values of the parameter � and 
weights ω with the conclusion that, the ranking results in the MCDM application may change, when changing 
the values of the parameter � and weights ω of attributes. This parameter dependency becomes the drawback of 
the proposed method. To find a better combination of the parameter � and weight ω in the MCDM application 

Table 8.  IFN representation of symptoms for the patients.

Patient Temperature Headache Stomach pain Cough Chest pain

P1 〈0.8, 0.1〉 〈0.6, 0.1〉 〈0.2, 0.8〉 〈0.6, 0.1〉 〈0.1, 0.6〉

P2 〈0.0, 0.8〉 〈0.4, 0.4〉 〈0.6, 0.1〉 〈0.1, 0.7〉 〈0.1, 0.8〉

P3 〈0.8, 0.1〉 〈0.8, 0.1〉 〈0.0, 0.6〉 〈0.2, 0.7〉 〈0.1, 0.5〉

P4 〈0.6, 0.1〉 〈0.5, 0.4〉 〈0.3, 0.4〉 〈0.7, 0.2〉 〈0.3, 0.4〉

Table 9.  IFN representation of symptom characteristics for diagnosis.

Disease Temperature Headache Stomach pain Cough Chest pain

Viral fever (Vf ) 〈0.4, 0.0〉 〈0.3, 0.5〉 〈0.1, 0.7〉 〈0.4, 0.3〉 〈0.1, 0.7〉

Malaria (Ma) 〈0.7, 0.0〉 〈0.2, 0.6〉 〈0.0, 0.9〉 〈0.7, 0.0〉 〈0.1, 0.8〉

Typhoid (Ty) 〈0.3, 0.3〉 〈0.6, 0.1〉 〈0.2, 0.7〉 〈0.2, 0.6〉 〈0.1, 0.9〉

Stomach problem (Sp) 〈0.1, 0.7〉 〈0.2, 0.4〉 〈0.8, 0.0〉 〈0.2, 0.7〉 〈0.2, 0.7〉

Chest problem (Cp) 〈0.1, 0.8〉 〈0.0, 0.8〉 〈0.2, 0.8〉 〈0.2, 0.8〉 〈0.8, 0.1〉

Table 10.  Diagnostic results by using different SimMs. Significant values are in [bold].

Patient Vf Ma Ty Sp Cp Our diagnosis ( � = 0.02) Others

P1 0.738 0.771 0.742 0.435 0.393 Malaria Malaria12,14,15,38,44–47 and Viral  fever48

P2 0.525 0.404 0.660 0.873 0.582 Stomach problem Stomach  problem12,14,15,38,44–48

P3 0.669 0.600 0.764 0.472 0.437 Typhoid Typhoid14,15,38,44–48 and  Malaria12

P4 0.728 0.713 0.636 0.534 0.471 Viral fever Viral  fever15,38,44,46,47 and  Malaria12,14,45,48
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becomes important, and will be a further research topic. In the future, we shall further extend our constructive 
methods of strict IFDisM, IFSimM and IFEM to Pythagorean fuzzy sets, q-rung orthopair fuzzy sets, T-spherical 
fuzzy sets, and some other interval-valued fuzzy sets.

Data availability
All data generated or analysed during this study are included in this published article.
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