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Extracting and visualizing hidden 
activations and computational 
graphs of PyTorch models 
with TorchLens
JohnMark Taylor * & Nikolaus Kriegeskorte 

Deep neural network models (DNNs) are essential to modern AI and provide powerful models 
of information processing in biological neural networks. Researchers in both neuroscience and 
engineering are pursuing a better understanding of the internal representations and operations 
that undergird the successes and failures of DNNs. Neuroscientists additionally evaluate DNNs as 
models of brain computation by comparing their internal representations to those found in brains. 
It is therefore essential to have a method to easily and exhaustively extract and characterize the 
results of the internal operations of any DNN. Many models are implemented in PyTorch, the leading 
framework for building DNN models. Here we introduce TorchLens, a new open-source Python 
package for extracting and characterizing hidden-layer activations in PyTorch models. Uniquely 
among existing approaches to this problem, TorchLens has the following features: (1) it exhaustively 
extracts the results of all intermediate operations, not just those associated with PyTorch module 
objects, yielding a full record of every step in the model’s computational graph, (2) it provides an 
intuitive visualization of the model’s complete computational graph along with metadata about each 
computational step in a model’s forward pass for further analysis, (3) it contains a built-in validation 
procedure to algorithmically verify the accuracy of all saved hidden-layer activations, and (4) the 
approach it uses can be automatically applied to any PyTorch model with no modifications, including 
models with conditional (if–then) logic in their forward pass, recurrent models, branching models 
where layer outputs are fed into multiple subsequent layers in parallel, and models with internally 
generated tensors (e.g., injections of noise). Furthermore, using TorchLens requires minimal additional 
code, making it easy to incorporate into existing pipelines for model development and analysis, and 
useful as a pedagogical aid when teaching deep learning concepts. We hope this contribution will help 
researchers in AI and neuroscience understand the internal representations of DNNs.

Deep neural network models (DNNs) have emerged as the dominant class of AI models for performing many 
tasks, and as promising, albeit debated, candidate models for how the brain  functions1–4. A DNN implements 
a series of operations that transform inputs into outputs. For many practical applications it is not necessary to 
examine the results of intermediate operations in DNNs. However, probing the intermediate steps can help us 
understand the computations used by a particular model to transform inputs into outputs, illuminating the 
reasons for its successes and failures and informing the development of better models.

In addition, neuroscientists seek to evaluate how well DNNs model brain  function2,5. This requires comparing 
not just their performance on task benchmarks, but also the degree to which their intermediate representations 
match those observed in brains. A growing variety of DNN models are now used as candidate models for brain 
computation, including not just visual recognition models, but also language  models6,7, multimodal  models8, 
auditory  models9,10, generative  models11, and deep reinforcement learning  models12, and it is increasingly com-
mon to compare how well multiple models predict brain activity, both in individual  studies1,3,13,14 and in competi-
tive benchmarks such as Brain-Score15 and the Algonauts  Challenge16 in which different research groups submit 
models that are compared based on a shared dataset.

Since advancing the practical goal of improving DNN task performance and the scientific goal of comparing 
DNNs to brains often involves comparing many different models, it is desirable to have convenient methods at 

OPEN

Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA. *email: 
johnmarkedwardtaylor@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-40807-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14375  | https://doi.org/10.1038/s41598-023-40807-0

www.nature.com/scientificreports/

hand for extracting the results of these intermediate operations and understanding their role in the informa-
tion processing of each network. Ideally, such a feature extraction method should have the following qualities. 
First, it should easily work for any DNN without requiring model-specific tinkering by the user, such as editing 
of a model’s code, since this approach can become time-consuming and error-prone when examining many 
models, and since users vary in their technical background in working with DNNs. Second, it should be able to 
extract the results of all internal computations within a model, rather than just a subset. Third, it should render 
transparent—for instance, through visualization or through intuitive metadata—where a given layer fits within 
the broader information flow of a network. This is essential because the function of a layer depends on the other 
operations performed in a network, and models often include architectural complexities such as branching or 
recurrence. Finally, given the infinite space of possible DNN models that can be constructed, and the rapid pace 
of model development, it is desirable to have an automated method for validating the correctness of the extracted 
activations for novel models.

None of the currently existing methods of feature extraction fulfill all the above desiderata (Table 1). We 
focus here on models implemented in  PyTorch17,18, one of the most popular libraries for implementing DNNs for 
both academic and industrial applications. One approach to feature extraction is to simply edit a model’s code to 
return the results of any intermediate operation. This approach can be time-consuming and error-prone, espe-
cially when we have to edit the code for many models. Another option is to use PyTorch’s built-in functionality 
to attach “forward hooks” that return the results of PyTorch module data structures. PyTorch modules provide 
a convenient way of flexibly organizing model code and ensuring that a training optimizer can access a model’s 
parameters. The user can additionally attach “forward hooks”: functions linked to a module that are executed 
when a tensor enters or leaves that module. This is a popular approach to PyTorch feature extraction because it 
requires no direct modification of a model’s code. However, it comes with several limitations. First, there is no 
universal naming convention for characterizing the modular organization of DNNs. A user examining a collec-
tion of models must become acquainted with the nomenclature of all of them. Second, and more importantly, 
PyTorch operations not associated with a module cannot be extracted using this approach. These include many 
elementary operations (e.g., tensor addition, cosine) that have no module equivalent (unless the model designer 
chooses to encode them as such), and operations that the model designer has implemented as functions rather 
than modules. For example, a ReLU operation can be implemented either as a module object (where its activa-
tions can be extracted using the forward-hooking approach), or simply as a function call (where its values cannot 
be extracted in this way). Thus, the ability to extract activations from a given intermediate DNN operation in 
PyTorch with the forward hook approach often depends on computationally irrelevant programming choices 
made by the model designer, which can complicate the construction of an analysis pipeline that examines many 
models. Put differently, while PyTorch modules are indispensable units of code organization, they do not directly 
map onto the elementary computational “units” of DNNs—single operations on tensors—making them subop-
timal for the purpose of exhaustively characterizing the internal operations of a network.

In addition to these manual approaches for extracting intermediate activations from DNNs, four open-source 
packages now exist for facilitating this process. ThingsVision19 is a Python package with user-friendly functionality 
for loading pre-existing DNNs, extracting their activations either to common image datasets or to user-defined 
datasets, and performing various common analyses on the extracted features, such as representational similarity 
 analysis20. While it can extract activations from a large and convenient library of pre-existing models, it does 
not automatically work for arbitrary new models (e.g., user-designed models), and can only extract the outputs 
of PyTorch modules, not every operation in the model. Another Python package, Net2Brain21, has functionality 
for loading pre-existing DNNs, extracting their activations to stimuli, analyzing the extracted activations, and 
comparing them to brain activity measurements, but is similarly limited to a pre-defined library of models, and 
can only extract the outputs of PyTorch modules, not every tensor operation in a model. Another approach is 
the feature_extraction module provided in Torchvision22, which works on novel models (not just a predefined 
library), and can extract the results of non-module operations, but does not support models with dynamic 
control flow, where the computational graph of a network can vary across forward  passes23,24. Examples of such 
models include recurrent neural networks that execute a varying number of loops until a given criterion is 
 reached25, reinforcement learning models where the agent’s behavior can vary stochastically or based on model 
 inputs26, and graph convolutional networks where the computational graph can vary across model  inputs27. A 
fourth package is Surgeon-PyTorch28. This package can extract intermediate activations from both module and 

Table 1.  Comparison of different PyTorch feature extraction methods.

Ease of use Model coverage Layer coverage
Ways of illuminating module 
structure

TorchLens Easy All models All layers Visualization, layer metadata

Manually editing model code Hard All models All layers None

Attaching forward hooks to models Medium Effectively all Only module outputs None

ThingsVision Easy Pre-specified model library Only module outputs None

Net2Brain Easy Pre-specified model library Only module outputs None

Torchvision feature_extraction Medium Models with static computational graph All layers None

Surgeon-PyTorch Easy
All models if only module outputs 
needed; static graphs only if user needs 
to extract non-module operations

All layers for static graphs; only module 
outputs for dynamic graphs None
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non-module operations for models with a static computational graph, and can additionally isolate subcompo-
nents of models such that they can be separately trained. However, for models with dynamic control flow, this 
package can only extract the results of module operations, and thus lacks the ability to extract non-module 
operations for dynamic models.

Here, we introduce a new Python package, TorchLens, that overcomes the limitations of these approaches: it 
works for arbitrary PyTorch models (not just predefined models or models with a static computational graph) 
and can extract the results of all intermediate operations (not just module outputs), requiring just a single line of 
code from the user. The ability to extract information about every operation in the model’s computational graph 
comes with three substantial further benefits. First, it enables the model’s computational graph to be automatically 
visualized, revealing the structure of the model and where a given layer is located within it. The computational 
graph provides a valuable aid for understanding a model’s architecture without manually inspecting its code. 
This visual representation of the model can also help with layer selection, especially for architectures containing 
complexities such as branching or recurrence, where indexing a layer by an ordinal position (e.g., conv9) may 
not clearly convey where a layer is situated in the network. Second, tracing all intermediate operations of a model 
enables producing a full characterization of the model’s computational graph—encompassing the child-parent 
relationships between layers, the functions executed by each layer, and so on—such that the user can program-
matically select layers meeting certain criteria (e.g., all pooling layers that follow a ReLU layer), perform analyses 
that might draw on graph-theoretic properties of the network (e.g., the number of convolutional layers interven-
ing between two target layers of interest), and characterize other useful properties of the network, such as the 
execution time required for different kinds of layers. Finally, extracting the results of all intermediate operations 
enables an automated approach for verifying the correctness of saved activations without manual troubleshooting. 
This verification method re-executes the functions associated with each layer using the saved activations of the 
inputs to that layer and checks that the resulting downstream model outputs match the ground-truth outputs. 
Given the large space of possible DNN models, and the fact that feature extraction bugs can easily yield “silent 
errors” (for instance, if a tensor of the correct dimensions but the wrong values is saved), verification ensures 
that feature activations are being correctly extracted for novel models that may have complex architectures.

User interface
Example workflow. Figure 1 depicts a simple “minimal use-case” example of how to use TorchLens. The 
user simply passes a model and input into the main function of TorchLens, log_forward_pass, and receives a 
ModelHistory object that encodes information both about the entire model and about each individual layer, 
including the saved activations for each layer. Layer information is retrieved simply by indexing the ModelHis-
tory object with any valid layer label. If specified, the same function call also automatically generates a visualiza-
tion of the model’s computational graph (Fig. 2).

Summary of user-facing functions. TorchLens consists of a small handful of user-facing functions, which 
take as input an arbitrary PyTorch model and the input to that model. For ease of use, the main functionality of 
Torchlens is provided via the “core” function log_forward_pass. This function extracts the activations from either 
all layers of a model or a desired subset along with metadata about the model and layers, returns a Python object 
of a class, ModelHistory, that the user can easily index to retrieve this information, and optionally produces a 
visualization of the model’s computational graph (Fig. 2). While the default behavior of this function is to save 
the activations of all layers, to save memory the user can also specify that only a subset of layers be saved via a 
which_layers argument. The next two functions each perform a subset of the operations performed by log_for-
ward_pass. The function get_model_metadata extracts the metadata about a model and its layers without saving 
any activations. This function is useful in cases where the user wishes to analyze the computational structure of 
a model without saving the activations, or where the goal is to programmatically select which layers to save in 

Figure 1.  Example workflow for TorchLens. The user simply passes in the model as-is and an example input, 
and TorchLens returns a ModelHistory object containing information about the model and its layers, including 
saved activations.
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Figure 2.  TorchLens visualization features. (A) Code and visualization for a simple example model. Graph nodes correspond to tensor 
operations, edges correspond to parent–child relationships between operations (i.e., that the output of one operation is the input to 
another). Input operations are shown in green and output operations are shown in red. Operations in a module are shown as a box; 
other operations are shown as ellipses. Nodes for operations that create a new tensor inside of the model (e.g., from torch.rand) are 
rendered with dashed lines. The visualization also shows the name of the model in the top left, the number of tensors computed in 
the model and their total file size, and the number of trainable parameters in the model along with their total file size. (B) The node 
for each layer contains the label of the layer, the shape and file size of the tensor returned by that layer, the shape of any trainable 
parameter tensors involved in that layer, and the module address for that layer (i.e., how it would be indexed from the Python model 
object) if relevant. (C) For models containing (possibly nested) modules in which multiple operations are performed, these modules 
are rendered as boxes surrounding the nodes for those operations, along with a label giving both the address of that module within 
the model, and the class of the module. (D) If an operation is non-commutative and takes multiple inputs (e.g., division), these inputs 
are marked with their argument position in the function call (e.g., 0 for the numerator and 1 for the denominator for the PyTorch 
division function). (E) “Buffer” tensors that are stored along with the model, but do not contain trainable parameters, are rendered in 
light gray. (F) For models containing dynamic control flow with if–then branching, the operation returning the final Boolean value in 
evaluating the “if ” statement is marked in yellow, and the full set of operations involved in evaluating the “if ” statement is labeled with 
a boldfaced “IF”.
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a subsequent call to log_forward_pass (e.g., all ReLU layers that follow a convolution layer). Another function, 
show_model_graph, visualizes the model graph without saving any activations or metadata. Finally, the function 
validate_saved_activations runs the model on a specified input, and executes a procedure, described below, that 
validates the accuracy of the saved activations. All TorchLens functions allow the user to supply a random seed 
as an argument to ensure reproducible results for models with stochastic components, such as dropout layers or 
random noise.

We note that for models with dynamic computational graphs, where the sequence of operations performed 
can vary for different inputs, TorchLens only logs the operations that were actually performed during the model’s 
forward pass for a given set of inputs rather than enumerating all possible branches in a dynamic computational 
graph that a model might take. It is thus important to remember that since the computational graph for certain 
models is conditional on the input, the logging and visualization provided by TorchLens can also vary across 
different inputs.

Layer nomenclature. Since there exists no universal nomenclature for referring to DNN layers, and since 
PyTorch models often have a nested modular design where each module is assigned a name by the model’s 
designer, TorchLens adopts the convention of using a “default” layer naming scheme that is common across all 
models, while also allowing the user to select the results of intermediate layers based on the module of which 
they are the output—helpful in cases where the model’s designer has demarcated meaningful computational 
“chunks” in the model using modules, or where the user is already familiar with the modular structure of a given 
network.

The default name of a layer follows the format {layer_type}_{layer_type_num}_{layer_total_num}; for exam-
ple, “relu_3_6” refers to the third ReLU layer in the network, and the sixth layer overall. While providing the 
layer’s ordinal position both among layers of the same type and among all layers in the network is informationally 
redundant, providing both of these numbers is helpful in getting a quick sense of where the layer falls within 
the network. Given the common convention of referring to a layer with the ordinal position among layers of the 
same type (e.g., “conv2” is the second convolutional layer), we adopt the practice that while the full layer label 
is always provided in outputs, the user can also refer to layers with a truncated label that only specifies the first 
index (e.g., just “relu_3” instead of “relu_3_6”). In cases where a model has a branching structure (i.e., where 
a layer may have multiple output layers), such that layers do not have a unique ordinal position, numbering is 
based on the programmatic execution order of the layers in the code, which guarantees that a given layer always 
has a lower positional index than any downstream layers (i.e., they are topologically sorted). In case a model is 
recurrent and a layer contains multiple passes, the specific pass of a layer is indicated with a colon; for instance, 
conv2d_3_7:2 is the second pass of the third convolution layer (and seventh layer overall). The logic of assigning 
operations to the “same” layer is described in the section “Handling of recurrent networks”.

In addition to this default naming convention, which provides a way of referring to layers that is common 
across models, layers are also labeled based on the module for which they are an output. To provide a specific 
example, the PyTorch implementation of  AlexNet29 consists of a nested design with two top-level modules: a 
“features” module containing the convolutional layers, and a “classifier” module with the fully-connected layers, 
each of which itself contains a module for each of the individual operations in that block. The second convo-
lutional layer of AlexNet is the fourth submodule of the “features” module, so the “module name” of that layer 
would be features.3 (following Python’s zero-indexing convention). Under the default naming convention of 
TorchLens, the same layer would be indexed as conv_2_4 or conv_2. Layers can be fetched with their “module 
address” at any level of nesting: for instance, the output of the third pooling layer in AlexNet is the output of 
module “features.12”, but also of the higher-level module “features” (of which “features.12” is the last submodule).

The ModelHistory object: a full characterization of the model’s forward pass. The core user-
facing data structure used by TorchLens (returned by log_forward_pass and get_model_metadata) is an object 
of class ModelHistory, which contains both metadata about the entire model, and information about each indi-
vidual layer, including both metadata and the saved activations for that layer if specified by the user. Broadly, the 
provided metadata includes information about the overall structure of the network’s computational graph, the 
tensor returned by a given layer, the function executed by each layer (including any trainable model parameters 
associated with that function, such as convolution weights), and the parent–child relationships between layers 
along with further graph metadata (e.g., the number of layers separating a given layer from the input or output). 
This metadata also includes useful performance-relevant data for a network: for instance, it includes the execu-
tion time of each layer, the memory size of the tensor returned by each layer, and the memory size of any train-
able model parameters associated with a layer, facilitating profiling of the execution time and memory usage of a 
model. Supplementary Table 1 provides a complete list of the metadata provided by TorchLens. Simply printing 
the ModelHistory object provides an overall summary of the model, with further metadata available by indexing 
the attributes of the object. Data about each layer can be retrieved by indexing ModelHistory, using any of several 
valid labels for a layer: the “default name” of a layer, such as conv2d_3_7 or conv2d_3, the “module name” of a 
layer, such as “features.8”, or the overall ordinal position of the layer in the network, following the conventions of 
Python list indexing (e.g., model_history[2] is the third layer, and model_history[− 5] is the fifth-to-last layer). 
If only a subset of layers is saved, numerical indexing is performed with respect to the saved layers only.

Visualization. In addition to returning the ModelHistory data structure with information about the forward 
pass, TorchLens can also automatically produce a visualization of the model’s computational graph (Fig. 2). The 
visualization enables the user to easily understand the structure of the model and a given layer’s place within 
that structure, aiding in both the overall understanding of a model, and in the selection of particular layers from 
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which to extract activations. TorchLens uses the graphviz  library30 to programmatically draw the computational 
graph without requiring the user to manually position the nodes.

The visualization produced by TorchLens is designed to make the overall organization of the network and the 
important properties of individual layers visually salient. Figure 2 depicts the visual code used by TorchLens. Each 
node is a particular layer, and the directed edges (arrows) show parent–child relationships between layers (i.e., 
the layers whose output feeds into subsequent layers). Input layers are shown in green, output layers are shown in 
red, and layers whose functions have trainable parameters are shown in gray. Elliptical nodes are single operations 
that are not associated with a module, whereas rectangular nodes are associated with a “bottom-level” module 
associated with a single operation; for instance, a ReLU operation implemented as a function call would be 
shown as an ellipse, and a ReLU operation connected with a module is shown as a rectangle. In addition to these 
“bottom-level” modules that only execute a single tensor operation, PyTorch contains “higher-level” modules 
that encompass multiple operations, which are shown as (potentially nested) rectangles surrounding the nodes 
corresponding to layers contained within those modules (Fig. 2C). Since many DNNs have a complex hierarchical 
organization, as an aid for visualizing and understanding complex models TorchLens includes a nesting_depth 
argument that allows the user to specify how many levels of module nesting to visualize; for example, a nesting 
depth of 1 means that only top-levels modules will be visualized (with their contents collapsed into single nodes 
in the graph visualization), a nesting depth of 2 means that top-level modules and modules one level deeper will 
be visualized, but not modules deeper than that, and so on. Figure 3 shows several different levels of module 
nesting in the case of  GoogLeNet31, which has a nested hierarchical organization.

The visualization includes metadata both about the overall model, and about each individual layer. For the 
overall model, the visualization shows the name of the model class, the number of tensor operations in the model 
along with the total memory size of the resulting output tensors, and the number of trainable parameters in the 
model, along with the total memory size of these parameters (Fig. 2A). The node corresponding to each layer 
in the model is marked with (1) the layer’s “default” name (e.g., conv2d_2_4 for the second convolution layer, 
and fourth layer overall), (2) the dimensionality and memory size of the output tensor (useful for choosing 
which layers for which to save activations), (3) the shape of any associated parameter tensors for that layer (if 
applicable), and (4) the “module address” of that layer if it associated with a module (Fig. 2B). The box outlines 
corresponding to higher-level modules are also marked with this address.

Finally, TorchLens indicates several other kinds of information to remove ambiguity about the structure of 
models that include less common “special case” components. Some PyTorch models contain internally-generated 
tensors that are not computed from the model’s input, but contribute to the model’s computations (e.g., if ran-
domly generated noise is injected at some stage of processing via a function like torch.rand). These operations 
are indicated with dashed lines, intended to make it easy to visually distinguish them from layers whose inputs 
originate from model inputs, such that the user can visually trace the path from input to output (Fig. 2A).

In cases where a layer performs a non-commutative operation (e.g., division) on the outputs of multiple 
parent layers (Fig. 2D), the function argument number of each edge is explicitly marked (e.g., “arg 0” for the 
incoming layer whose output tensor serves as the numerator, and “arg 1” for the denominator layer) for positional 
arguments, and the name of the argument is marked for keyword arguments. Some PyTorch models contain 
hard-coded “buffer” tensors stored along with a model that are not trainable parameters; these are rendered in 
greyscale (Fig. 2E). In cases where a network contains conditional control flow, where an if–then statement is 
evaluated on a tensor to yield a single Boolean value (e.g., to perform different computations based on the value 
of the model’s input), TorchLens marks the node yielding this single Boolean value in yellow, infers the beginning 
of the set of computations involved in computing this Boolean value, and marks the beginning of the branch of 
the computational graph involved in computing this Boolean value with a bold “IF” label (Fig. 2F). Marking the 
tensor operations involved in evaluating conditional statements in this manner serves to clarify the role of these 
operations, since they would otherwise appear as a puzzling “dead end” in the graph visualization.

We include a publicly available collection of visualizations for over 800 commonly used image, video, audio, 
and language models, demonstrating the generality of this automated visualization approach.

Handling of recurrent operations. Since many DNN models contain recurrent (feedback) processing, 
TorchLens has built-in procedures that automatically identify and demarcate recurrent layers, using the conven-
tion of marking passes of a layer with a colon as noted above (e.g., conv2d_2_4:3 for the third pass through this 
layer).

An important conceptual question to address is what counts as a “recurrent layer”. At a ground-truth level, 
a DNN is simply a series of tensor operations, some of which have trainable parameters associated with them. 
A complete description can be given of a network in this way without invoking the notions of “feedforward” 
and “recurrent” processing. Nonetheless, distinguishing feedforward and recurrent operations can be helpful 
in clarifying the computational structure of a network. We stipulate that in a “feedforward” network, each layer 
executes one operation, but in “recurrent” networks a layer may execute its associated operation multiple times 
during a forward pass. Thus, identifying “recurrent” layers corresponds to finding sets of operations in the 
computational graph that can be usefully regarded as belonging to “the same layer”. The most obviously useful 
operations to treat in this way are ones in which functions with the same trainable parameters are executed 
multiple times during a forward pass. For example, if a convolution operation with a given set of weights is 
executed three times over the course of a network, these operations should be regarded as being associated with 
the “same” layer. However, other operations may also be usefully regarded as “the same”. For instance, if each of 
the three aforementioned convolutional layers is followed by an identical ReLU layer and a pooling layer, it is 
also sensible to group together these three ReLU operations as belonging to “the same” layer, and likewise for 
the three pooling layers. Finally, if a repeated and contiguous series of operations with no stored parameters is 
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executed (e.g., XYZXYZXYZ, where X, Y, and Z are different functions), it is also useful to regard this as a “loop” 
in the graph, and to mark corresponding operations in the loop as the same layer.

TorchLens thus adopts the following conventions (illustrated in Fig. 4) for marking layers as “recurrent”:

1. Operations with associated trainable parameters that are executed multiple times in the forward pass are 
always marked as passes of the same layer,

2. All repeated operations adjacent to these repeated-parameter layers are marked as passes of the same layer, 
irrespective of whether the “chunk” of layers associated with a pass of a parameter layer ends up being adja-
cent to a chunk associated with another pass of that parameter layer, and

3. If there are repeated, adjacent sequences of operations without trainable parameters, then corresponding 
layers in these sequences are marked as the same, but not if these sequences are separate (e.g., XYZXYZXYZ 
is recurrent, but XYZAXYZBXYZ is not, since the XYZ operations are not adjacent).

Figure 3.  Model visualization of GoogLeNet at different levels of module nesting. As an aid for visualization, 
the user can specify how many levels of module nesting to depict. (A) With a nesting depth of 1, an Inception 
module of GoogLeNet is shown as a single node, since it is a top-level module. (B) With a nesting depth of 2, the 
contents of the Inception module are shown one level of nesting deeper, with the module for each branch being 
depicted as its own node. (C) With a nesting depth of four, the contents of each branch of the Inception module 
are now shown.
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A B

Figure 4.  Definition and visualization of recurrent layers. (A) Operations are considered as passes of the same 
layer if the same parameters are repeated (e.g., here the same fully-connected operation parameters are applied 
twice), or if there are operations that are both identical to each other, and contiguous to repeated-parameter 
layers (e.g., here the same cosine operation is applied prior to both passes of the fully-connected layer, and 
the same addition operation is applied after both passes). For the unrolled visualization, each pass of a layer is 
rendered with a separate node, with the pass number marked with a colon (e.g., linear_1_3:2 for the second 
pass of layer linear_1_3). For the rolled visualization, all passes of a layer are marked with the same node, the 
number of passes for that layer is given in parentheses (e.g., “(×2)”), and in cases where a layer has different 
input and output layers for different passes, these passes are labeled next to the incoming or outgoing arrows to 
the node for that layer. For instance, the layer cos_1_2 takes input from input_1_1 for its first pass, but sin_1_5 
in its second pass. (B) Operations are also considered as passes of the same layer if they do not contain trainable 
parameters, but repeat as part of an identical sequence. For instance, here the same sequence of cosine, ReLU, 
and multiplication operations is repeated twice in a row, so the two repetitions of each operation are assigned 
to the same layer. However, the same series of three operations occurring later (after the intervening tangent 
operation) are not grouped together with the earlier corresponding layers, since they are not contiguous with 
other occurrences of this sequence.
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Note that these are simply conventions to aid in quickly understanding a model, since whether a layer is 
“recurrent” is to some degree a matter of definition.

For visualizing recurrent models (Fig. 4), TorchLens also includes functionality for showing the model in 
both unrolled format, where separate operations of a recurrent layer are shown as different nodes, and in rolled 
format, where separate operations of a recurrent layer are shown as just one node (Fig. 4). In the unrolled format, 
each node is marked with the pass of the layer associated with that node: for instance, linear_1_1:2 is the second 
pass of the first linear layer. In the rolled-up format, recurrent layers are marked with the number of passes they 
perform next to the name of the layer. For instance, “linear_1_1 (×3)” means the layer has three passes. In some 
cases, a layer’s inputs and output layers can vary across passes. For example, perhaps in the first two passes a 
layer sends feedback to the beginning of a loop of which it is a part, but in the third pass it sends activation out 
of the loop. TorchLens explicitly marks such cases when they occur by indicating the pass number on incoming 
and outgoing edges (e.g., “In 1” next to an incoming edge means that input comes from the associated parent 
layer during the first pass, and “Out 2–3” next to an outgoing edge means that output is sent to that child layer 
in the second and third passes).

Validation. The approach used by TorchLens (described in the “Implementation” section below) can in prin-
ciple be used for any PyTorch model. The space of possible DNN models is infinite because the number of ways 
that tensor operations can be assembled into a computational graph is unlimited. It is important to have con-
fidence that the activations saved from these models are correct, even for novel models with complex or exotic 
architectures that we may not have anticipated while developing TorchLens. This is especially important because 
of the possibility of “silent errors”, where a given DNN operation (e.g., a ReLU operation) may change the values 
of a tensor without changing its shape, such that an error in saving the activations would be harder for the user 
to detect. Since manually checking the correctness of saved activations for a new model can be time-consuming 
and error-prone, TorchLens contains a built-in procedure for algorithmically validating the accuracy of saved 
activations. This is achieved by re-executing the function associated with each layer with the saved tensor values 
of the layer’s parents and verifying that the resulting tensor matches the saved tensor for the layer. This proce-
dure is described in more detail in the “Implementation” section. The user can execute this procedure using the 
validate_saved_activations function on a given model and input, which will return True if the saved activations 
for that input pass the validation test, and False if they do not.

So far, this procedure has been internally run on a large collection of DNNs, including (1) all image and video 
models in the TorchVision model  zoo22, including various visual transformer models, (2) over 700 models in 
the TIMM model zoo, (3) the CORNet class of image models inspired by the primate ventral visual  pathway32, 
(4) all models in the TorchAudio model zoo, and (5) the language models  BERT33 and  GPT234. Based on these 
extensive tests, we believe TorchLens works robustly. In case any architectural “edge cases” are not currently 
accounted for by TorchLens, this built-in validation procedure will detect such cases and allow them to be cor-
rected in subsequent updates to TorchLens.

Example full workflow. As a way to summarize the elements of the user interface described above, we 
briefly describe an imagined use-case for TorchLens: a user has either designed their own PyTorch model, or 
downloaded a model and wishes to extract the activations from a selected set of layers.

(1) Inspect the model graph. First, to get a sense of how large the model is and which layers may be interest-
ing to examine, the user calls the show_model_graph function to visualize the computational graph of a 
model without saving any activations. The user notes that the network is very large, such that saving the 
activations of all layers may use up a prohibitive amount of RAM, and selecting only a subset of layers to 
save may be desirable. The user notes that the model is organized into several high-level modules, each of 
which contains multiple recurrent feedback loops, and further note that the model contains many cases 
where a pooling layer follows a ReLU layer.

(2) Optionally use model structure to find representations of interest. The user decides they wish to extract the 
outputs of all high-level modules in the model, the end of each pass of the recurrent loops within the mod-
ules, and the results of all pooling layers that follow a ReLU layer. To identify these ReLU-pooling layer 
pairs, the user calls get_model_metadata to extract the metadata of the model, loop through each layer’s 
metadata, and find all pooling layers that have a ReLU layer as a parent.

(3) Extract activations for representations of interest. Finally, the user calls log_forward_pass, specifying the 
desired layers whose activations they wish to save, and verify that the activations were accurately saved for 
this new model by calling validate_saved_activations for the model and input.

Implementation
Logging the forward pass. We now describe the internal implementation of TorchLens. As laid out in 
the introduction, we sought an approach that could automatically extract the results of any tensor operation 
from arbitrary PyTorch DNN models without manually editing model code. As noted earlier, currently existing 
approaches face various limitations: for example, they can extract the results of module operations but not the 
results of operations that are not linked to modules, or they only work in the case of models with a static com-
putational graph, but not for models with a dynamic computational graph that can vary across forward passes 
(e.g., via if–then branching).

To overcome these limitations, we devised a dynamic tracing approach that relies upon Python’s built-in 
decorator functionality in order to transiently modify all built-in PyTorch functions that return a tensor. These 
modified functions log information related to each tensor operation. A decorator is a Python function that wraps 
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another function with additional code that is executed whenever that function is called. To extract the results of 
the tensor operations in a model, we constructed a decorator that inspects the inputs and outputs of a PyTorch 
function call and logs information about the function and its inputs and outputs to a Python object of a class 
called ModelHistory that we implemented for this purpose. Additionally, any output tensors are tagged with a 
“barcode” (simply an identifier attribute assigned to the tensor data structure) such that when any subsequent 
functions are called on that tensor, the parent layers feeding into that function can be looked up from ModelHis-
tory, thus establishing the parent–child relationships in the computational graph. To log the results of the forward 
pass of a model, TorchLens applies this decorator to all PyTorch functions that return a tensor as output, and a 
forward pass is then run on the model. The model’s code remains unchanged, but the functions called within 
that code now are decorated with the additional logging functionality, and thus log their results to ModelHistory. 
Additionally, in order to log the modules in which operations occur, TorchLens also attaches a forward hook to 
each module that tracks whenever a tensor enters or leaves the module and logs this to ModelHistory. When 
the forward pass is completed, the logging decorators are removed from the PyTorch functions, returning them 
to their original definitions.

The advantage of this approach is that PyTorch contains a limited (though still substantial) set of elementary 
operations from which nearly all higher-level functions are constructed; thus, so long as TorchLens properly 
handles the logic of logging the results for each elementary operation, it should in principle be able to work for 
all models built from the elementary operations, instead of being limited to a predefined library of models. We 
note that this approach sometimes requires dealing with various “special case” functions. For example, some 
functions change their input tensors in place and either return nothing or return the same tensor object (without 
creating a new tensor), and some return a list or tuple of tensors rather than a single tensor. Each of these cases 
must be specifically dealt with, and it is possible that new elementary operations with unique programming logic 
will be added to PyTorch with further updates. However, PyTorch’s elementary operations will always constitute 
a finite set, and it should be straightforward to address them as they arise with further updates to TorchLens. 
Furthermore, since TorchLens also contains a built-in validation procedure (implementation described below), 
it can detect these special cases when they arise. Thus, the approach used by TorchLens should be both broadly 
generalizable to any PyTorch model, and easily adapted to any potential further additions to PyTorch’s set of 
elementary operations.

Post-processing the model’s computational graph. Following the forward pass, several post-pro-
cessing operations are applied to the stored computational graph. First, “orphan operations” that neither arise 
from the model’s input nor contribute to the model’s output are trimmed from the graph. Second, the number of 
layers separating each layer from the model’s input and output layers is computed. Third, TorchLens attempts to 
infer cases where the model contains conditional branching via if–then statements. To do this, it identifies and 
marks operations whose output is a tensor consisting of a single Boolean value that is not subsequently fed into 
any further operations, which is a plausible candidate for an operation evaluated in an “if ” block. While this is 
not a bulletproof heuristic, there are few cases in which a coder would compute a childless Boolean tensor in 
this way that is not part of an “if ” block. Additionally, TorchLens traces backwards from the layer whose output 
is this Boolean tensor until it finds a layer that is an ancestor of the model’s output, and marks this transition 
point as the beginning of an “if ” branch. For example, if an “if ” statement consists of “if torch.mean(x − 5) > 3”, 
the “greater than” operation would be the childless node that returns a single Boolean value, and the subtraction 
operation would be the first operation that branches off from the input and leads into the series of calculations 
involved in evaluating this if-statement (as in Fig. 2F). Tagging if-statements in this way enables them to be 
marked on the visualization of the computational graph produced by TorchLens, clarifying the control flow of 
the forward pass.

Fourth, TorchLens corrects the module containment information (i.e., which of the possibly-nested modules 
the operation occurs in) for operations performed on internally generated tensors—for instance, via functions 
such as torch.ones, or torch.rand. Since these tensors can be generated inside a module, the module in which 
they are generated cannot be inferred on the fly by tracking the modules entered by any ancestor tensors. To 
correct this, TorchLens recursively traces the children of these layers until it finds a layer that descends from the 
model input—which will have accurate module containment information—and propagates this information 
backwards to the internally generated tensors.

Fifth, TorchLens identifies and marks recurrent layers in the network. While the question of which layers 
should count as “recurrent” is a matter of definition, we stipulate that an operation is associated with a recurrent 
layer if it meets any of these conditions:

(1) It contains trainable parameters and is executed more than once during the forward pass.
(2) It is a parent or child of a pass of a layer meeting condition #1, and there is another operation of the same 

type adjacent to another pass of that layer (e.g., a ReLU operation following multiple passes of a recurrent 
convolutional layer). This condition is applied recursively (e.g., if the ReLU operation is in turn followed 
by a pooling layer in multiple passes), growing out a block of repeated layers surrounding the repeated-
parameter layers, until no further layers can be added in this manner.

(3) It is part of a sequence of operations that adjacently repeats, signifying a computational “loop”; correspond-
ing operations in each pass of the loop are marked as passes through the same layer.

These conditions are illustrated in Fig. 4.
To identify these repeated layers, we apply the following algorithm. First, candidate sets of “repeated layers” 

are identified in an initial first pass: these include layers in which the same trainable parameters are applied 
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multiple times during the forward pass, and layers with no trainable parameters for which the same function 
with the same non-tensor arguments is applied multiple times during the forward pass (e.g., a ReLU operation, 
or scalar multiplication by a certain constant value). Second, the algorithm checks whether these candidate layers 
meet any of the above three criteria to count as “repeated”. To do this, the algorithm applies a procedure where 
it begins from any parentless layers (e.g., input layers or layers corresponding to an internally generated tensor) 
and steps forward one layer at a time, successively grouping together repeated sets of operations into blocks. 
For instance, for a given operation X (e.g., scalar multiplication by 10) that recurs multiple times, the algorithm 
identifies cases where that operation is also followed by recurring operations Y and Z (e.g., a ReLU operation and 
a pooling operation), identifying XYZ “blocks”. Third, after identifying these repeated blocks, it checks whether 
these blocks either contain a layer with trainable parameters, or repeat back to back (e.g., XYZXYZXYZ); if so, the 
corresponding operations in each block are marked as different passes of the “same” layer, completing the process.

Finally, all layer metadata is processed into its user-facing, human-readable form, and returned to the user.

Validating the accuracy of saved activations. As noted above, it remains possible that unanticipated 
“edge case” scenarios may emerge for graphs with unexpected architectures, or that future updates to PyTorch 
may introduce elementary tensor functions that raise unique programming peculiarities. Thus, as a way of 
detecting such cases when they occur, and of ensuring the accuracy of any saved activations, TorchLens contains 
a built-in procedure for validating the accuracy of saved activations. This procedure works by executing the 
function (e.g., convolution) associated with a target layer on the saved values of the input layer(s) for that target 
layer, and verifying that the resulting output of this function call matches the saved tensor of that target layer. 
As a further check, it substitutes in random values instead of the saved values for the parent layers, and verifies 
that executing the function on these nonsense activations returns a tensor that differs from the saved tensor of 
the target layer (with additional logic that checks for “special case” like multiplying a tensor by zero, such that 
changing the input would not change the output). If the values of the target layer are saved correctly, then this 
procedure establishes that the parent layers of this target layer were also correctly saved. Since the final ground-
truth outputs of the model are known, this procedure begins by using the model outputs as the “target” layer, 
and checking the parent layers to this target layer. If these parent layers pass the test, then they each become 
the new “target layer”, and the same procedure is applied to the parents of these layers. The procedure is then 
recursively applied until only layers with no parents (i.e., input layers and layers producing internally generated 
tensors) are left.

This approach has the benefit of requiring no manual troubleshooting, and is fully automatic. One drawback 
is that it logically requires saving the values of all intermediate tensors, which can impose high memory demands 
for large models.

Compatibility. TorchLens is compatible with both CPU and GPU processing, and has been validated for 
PyTorch versions 1.9.0 and higher. Currently, it has not been tested in the case of parallel computing, although 
further updates to TorchLens are intended to address this.

Discussion
TorchLens provides a method for not only automatically and exhaustively extracting the results of intermedi-
ate activations from arbitrary PyTorch DNN models, but also understanding the structure of these models via 
visualizations and metadata. We envision several possible use cases for TorchLens.

First, it can be used to streamline analysis pipelines for extracting and analyzing the internal representations 
encoded by DNNs for the purposes of better understanding their underlying computational principles and com-
paring these intermediate processing stages to those of the brain. Uniquely among existing approaches for this 
goal, TorchLens works automatically for arbitrary PyTorch models, exhaustively extracts the results of any desired 
operations without limitation, and provides metadata and visualizations to help characterize how a given layer 
fits into the broader architecture of the network. Since the ModelHistory object returned by TorchLens constitutes 
a full and easily queried representation of the model’s computational graph, it can also facilitate programmatic 
graph-theoretic analyses of a network, such as assessing how the similarity of the representations in two layers 
varies based on the nature of the intervening layers. The fact that TorchLens works for arbitrary PyTorch models 
makes it especially useful for computational neuroscientists who may wish to compare many different DNNs as 
models for brain function.

Second, TorchLens can be used as a prototyping, profiling, and visualization tool during model development. 
Since its visualization features provide an intuitive “picture of the code” for a model, it can provide a helpful visual 
aid when designing large or complicated models. Furthermore, the model metadata it provides includes informa-
tion about the execution time of the functions in the model, and about the memory space used by the parameters 
and output tensors of all operations in the model, revealing runtime and storage bottlenecks. The automatic 
visualization functionality may also be useful when preparing presentations or publications describing a model.

Third, we envision TorchLens being pedagogically useful. For individuals who are first becoming acquainted 
with implementing deep learning models, the visualizations and information it provides can help in translating 
between model code and underlying concepts. Even for more seasoned practitioners, the ability to automati-
cally generate a visual representation of a model can accelerate the process of understanding a new and complex 
model, which might otherwise require cumbersome inspection of a model’s code.

Fourth, TorchLens can be readily imported and used in other deep learning analysis pipelines. While our 
strategy of logging PyTorch tensor operations using decorators and assembling them into a full representation of 
the model’s computational graph is conceptually simple, implementing this functionality involves various techni-
cal complexities (amounting to several thousand lines of code), and so we hope that other pipelines can benefit 
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from the flexible feature extraction enabled by TorchLens with minimal changes to their code. We note that while 
TorchLens can readily extract intermediate activations given a model and input, it does not have functionality for 
loading models or inputs, or for performing further analyses on the extracted activations. We make this design 
choice because we intend for TorchLens to be applicable in any of the many domains in which DNNs are used 
rather than tying it to a particular use case, making it infeasible to implement general functionality for loading 
models or stimuli and analyzing activations. We note, however, that field-specific packages already exist for these 
purposes, enabling workflows that mix and match different packages. For example, ThingsVision19 or Net2Brain21 
could be used for loading pretrained models and fetching stimuli, TorchLens could be used for visualizing the 
models, selecting layers, and extracting layer activations, and packages such as rsatoolbox35,36, Himalaya37, or 
Net2Brain21 could be used for analyzing the extracted activations and comparing them to neural measurements 
using techniques such as representational similarity analysis or voxelwise encoding.

While we intend for the current functionality of TorchLens to be largely self-contained, its ability to auto-
matically extract a complete representation of the computational graph of a model does raise the potential for 
further applications built upon the same groundwork. One intriguing possibility is the ability to easily change 
or intervene upon an existing DNN model without directly changing the code, making it easier to apply causal 
inference  methods38 to DNNs to evaluate causal claims about the effect of interventions, or to conduct counter-
factual simulations. Since TorchLens stores the actual functions used in the forward pass of a model, the model 
can also be “re-run” from any intermediate stage, potentially with targeted changes introduced. For instance, if 
a user wishes to test how using a different nonlinearity function in a model changes a model’s internal represen-
tations, keeping all else the same, it would be simple to alter these nodes in the computational graph to use the 
new nonlinearity. Another example would be to “lesion” parts of a model by zeroing out particular parameters or 
values of a layer’s output tensor to examine the causal contribution of particular DNN units to a model’s behavior.

In summary, we hope that TorchLens will serve the role of removing arbitrary limitations to extracting and 
characterizing the results of internal DNN operations, streamlining both the scientific investigation and engi-
neering of DNNs.

Data availability
The open-source code for TorchLens is available on GitHub here. A gallery of visualizations for over 800 pre-
trained DNNs is available here. A CoLab tutorial for TorchLens is available here.
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