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Benchmarking of force fields 
to characterize the intrinsically 
disordered R2‑FUS‑LC region
Maud Chan‑Yao‑Chong 1,2, Justin Chan 1 & Hidetoshi Kono  1*

Intrinsically Disordered Proteins (IDPs) play crucial roles in numerous diseases like Alzheimer’s and 
ALS by forming irreversible amyloid fibrils. The effectiveness of force fields (FFs) developed for 
globular proteins and their modified versions for IDPs varies depending on the specific protein. This 
study assesses 13 FFs, including AMBER and CHARMM, by simulating the R2 region of the FUS-LC 
domain (R2-FUS-LC region), an IDP implicated in ALS. Due to the flexibility of the region, we show 
that utilizing multiple measures, which evaluate the local and global conformations, and combining 
them together into a final score are important for a comprehensive evaluation of force fields. 
The results suggest c36m2021s3p with mTIP3p water model is the most balanced FF, capable of 
generating various conformations compatible with known ones. In addition, the mTIP3P water model 
is computationally more efficient than those of top-ranked AMBER FFs with four-site water models. 
The evaluation also reveals that AMBER FFs tend to generate more compact conformations compared 
to CHARMM FFs but also more non-native contacts. The top-ranking AMBER and CHARMM FFs can 
reproduce intra-peptide contacts but underperform for inter-peptide contacts, indicating there is 
room for improvement.

Intrinsically disordered proteins (IDPs) are proteins that can form different conformations depending on the 
environment and their binding partners1. Some IDPs can self-aggregate to form amyloid fibrils which take on 
the cross-β structure2. The cross-β structure consists of beta-strand proteins/peptides that are stacked along the 
length of the fiber forming long beta-sheets called protofibril. Finally, complexes of protofibrils form amyloid 
fibrils3.

Amyloid fibrils are associated with diseases4,5 such as Alzheimer’s, Parkinson’s, type II diabetes, Amyotrophic 
Lateral Sclerosis (ALS)4,6,7 and others. ALS is a rare neurodegenerative disease8,9 where in 50% of cases, death 
occurs within three years of the first clinical manifestation10. In ALS patients, amino acid mutations have been 
found in the Low-Complexity (LC) region of the Fused in Sarcoma (FUS) protein11–16. Irreversible amyloid 
fibril aggregation has been observed in mutated FUS-LC region, whereas reversible fibrils are observed in the 
wild-type11,16,17.

The human FUS protein (526 residues) is involved in mRNA splicing and transcription. The FUS-LC-core33–96 
is involved in amyloid fibril formation11,17–21 and contains four repeat motifs (R1-R2-R3-R4)17 (Fig. S1, violet 
boxes). Within R1/R2, the tandem [S/G]Y[S/G] motifs have been implicated in the formation of Reversible 
Amyloid fibril Cores (RAC)17 (Fig. 1 and Fig. S1). The R2 region has been known to be more important for fibril 
formation than R122,23. The structures of the FUS-LC-core33–96

16,24 (Fig. 1) show the R2 region has few long-
distance contacts with the rest of the LC-core domain (Fig. S2). Therefore, the R2-FUS-LC50–65 region is a good 
candidate for studying amyloid fibrillation.

Our current understanding of the mechanism of amyloid fibril aggregation is poor. Furthermore, some of the 
transient intermediate structures of IDPs have been reported to be toxic26. One approach to study fibril formation 
and its intermediates is by performing all-atom Molecular Dynamics (MD) simulations. Amyloid β-peptides that 
form the amyloid fibrils in Alzheimer’s are commonly studied using MD simulations27–29.

However, experimental data and simulation results often show discrepencies27,30. One of the main reasons 
for this is that the all-atom force fields (FFs) such as AMBER, CHARMM31,32, OPLS-AA33,34 and GROMOS35,36 
were developed to reproduce the properties of stable globular proteins. In contrast, IDPs adopt multiple unstable 
conformations where nonpolar residues are often exposed to the solvent. Multiple research groups have tuned 
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FFs to better reproduce experimental data27,37–42 [Table S1 and Sup. Info. Section Benchmark of Force Fields 
(FFs) and Water Models (WMs)]. It is unclear if these modified FFs are generalizable across all IDPs. Note that 
throughout the text, when we refer to the FFs’, we are referring to the result or properties observed from perform-
ing simulations with the respective FF.

In this work, we apply widely used MD force fields for studying IDPs to the R2-FUS-LC (Fig. 1 and Fig. S1) to 
evaluate whether they can sample conformational ensembles of fibrils that are consistent with experimental data. 
We select ten FFs and water models (WMs) recently developed for IDPs. For comparison, we included c27s3p, 
a99sb4pew and a14sb3p FFs which were used to develop some of the IDP FFs. We score these thirteen FFs based 
on three criteria: the compactness of the fibrils, the intra-peptide contacts in the cross-β state and the secondary 
structure propensity. Surprisingly, most FFs fail to reproduce the experimental data. Our scoring method sug-
gests that CHARMM36m2021 FF with the mTIP3P water model is the best for studying R2-FUS-LC fibrillation.

Results
We conducted six MD simulations, each lasting 500 ns, totaling 3 μs, with each of thirteen FFs (Table S1). To 
evaluate the FFs against the reversible amyloid fibril R2-FUS-LC region (trimer of 16 residue peptides), we 
employed three measures: radius of gyration (Rg), secondary structure propensity (SSP) and intra-peptide con-
tact map. Rg measures the global compactness/extension of the trimer and individual peptides (Fig. S3). SSP 
and intra-peptide contact map both concern the local contact details of the R2-FUS-LC region. We ranked the 
thirteen FFs based on a combined score derived from these three measures (Table 1, Final Score).

Based on the final score (Table 1), the thirteen FFs can be separated into three distinct groups: top (“*”), 
middle (“•”) and bottom (“#”) ranking groups according to the order of scores.

FFs in the “top” group have medium (0.3–0.7) to high (> 0.7) scores for all measures. FFs in the “bottom” 
group like c27s3p and a03ws, have low scores (< 0.3) in all three measures. However, a14sb3p stands out with 
relatively good scores for SSP and contact map, but a low Rg score. On the other hand, c36m3pm has the best 
intra-peptide contact map score but poor SSP score. FFs in “middle” ranking group tend to have low scores for 
at least one of the three measures but have medium agreement for the remaining. Details of the three measures 
will be explained in the following sections.

Global compactness of R2‑FUS‑LC tripeptides.  The Rg score measures the ability of the FFs to sample 
both compact and unfolded states of the R2-FUS-LC region. The reference data for the folded cross-β structure 
state comprises two distinct conformations of the R2-FUS-LC region: “U-shaped” conformation (PDB: 5W3N16) 
and “L-shaped” conformation (PDB: 7VQQ24), as shown in Fig. 1. Both conformations form a cross-β structure. 
Twenty U-shaped models with different loop conformations were solved by NMR with an average Rg of 10.0 Å 
(trimer of R2-FUS-LC) and the less compact (Rg: 14.4 Å) L-shaped conformation (trimer of R2-FUS-LC) was 
solved by cryo-EM. The reversibility of the cross-β structure11,17 suggests that the R2-FUS-LC region could adopt 
the unfolded state. To estimate the Rg of the unfolded state, we employed Flory’s random coil polymer model 
with optimized parameters for IDPs43. We thus have three different measures of Rg: L-shaped, U-shaped, and 
Unfolded Rg’s.

Figure 1.   Domain organization of the full length Fused in Sarcoma (FUS) protein. The FUS N-terminal low-
complexity (LC) domain (residues 1–214) contains a QGSY-rich prion-like domain (1–165, violet box) and 
a Gly-rich region (166–214, pink box). Within the QGSY-rich domain, there are four repeat motifs (R1–R2–
R3–R4). Within R2 (R2-FUS-LC region) there is a Reversible Amyloid Fibril Core (RAC 2) that is involved in 
fibril formation. We take only the R2-FUS-LC region to study FUS fibrillation. Inside on the top red square are 
two different experimentally solved conformations of the R2-FUS-LC region. On the left, six representatives of 
R2-FUS-LC region selected from the 20 models of the NMR structure (PDB ID: 5W3N16, “U-shaped”). On the 
right, the cryo-EM model from PDB ID: 7VQQ24, “L-shaped”. Figure was prepared with Microsoft PowerPoint 
and VMD v1.9.325 (https://​www.​ks.​uiuc.​edu/​Resea​rch/​vmd/).

https://www.ks.uiuc.edu/Research/vmd/
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The distributions of Rg for snapshots from the simulation data are presented in Fig. 2 and Fig. S4. In order 
to assess how frequently the FFs can generate conformations that closely resemble the reference structures in 
terms of Rg, we fitted the Rg distributions with two Gaussian distributions. The distance from the i’th mean 
to the k’th reference Rg was computed as the absolute number of standard deviations ( Z-scoreFF,k,i ) of the i’th 
Gaussian. The lowest Z-scoreFF,k,i was chosen, inverted and normalized by linearly scaling it from 0.00001 to 
1.0 (Table 2). The final Rg score was calculated by multiplying the three normalized scores and rescaling them 
in the same manner (Table 2).

Table 1.   Force field evaluation: summary of scores and measures. ªObtained by multiplication of the three 
normalized Rg, SSP and contact map scores. The raw Rg, SSP and contact map scores were normalized by 
linearly rescaling them between 0.0001 to 1 (see “Methods” for details). Rg Radius of gyration, SSP Secondary 
Structure Propensity. *Top ranking group. • Middle ranking group. # Bottom ranking group.

Force fields Rg score SSP score Contact map score Final Scoreª RANKING

c36m2021s3p* 1 0.65613 0.77657 5.10E−01 1

a99sb4pew* 0.39845 1 0.64988 2.59E−01 2

c36ms3p* 0.8692 0.31996 0.85621 2.38E−01 3

a19sbopc* 0.30691 0.61874 0.7161 1.36E−01 4

a99disp• 0.21986 0.51499 0.543 6.15E−02 5

a99sbildn4pd• 0.19783 0.45716 0.47616 4.31E−02 6

a99sbCufix3p• 0.07391 0.7345 0.34292 1.86E−02 7

c22s3p• 0.05156 0.4001 0.53323 1.10E−02 8

a03ws# 0.02029 0.10312 0.1012 2.12E−04 9

a14sb3p# 0.00001 0.76161 0.40067 3.05E−06 10

c36m3pm# 0.00029 0.0032 0.9946 9.23E−07 11

c36m2021s3pm# 0.04438 0.00001 1 4.44E−07 12

c27s3p# 0.0313 0.00001 0.00001 3.13E−12 13

Figure 2.   Distribution of the Radius of gyration (Rg). The top two ranking FFs for the final Rg score (Table 2) 
are C36m2021s3p (red) and c36ms3p (pink). These FFs can generate compact and extended conformations 
covering both the U and L-shaped Rg’s. However, a14sb3p (green) sampled compact conformations only 
(shown in the inset for a zoomed-in view). On the other hand, c36m3pm (light green) generated extended 
conformations. Both FFs rank at the bottom. Figure was prepared with Matplotlib v3.544 (https://​matpl​otlib.​
org/).

https://matplotlib.org/
https://matplotlib.org/
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The thirteen FFs can be separated into three groups. Comparing the ranking of the final score (Table 1) and 
the final Rg score (Table 2), the top four FFs (c36m2021s3p, a99sb4pew, a19sbopc and c36ms3p) are the same 
although the order is slightly different.

Analyzing Table 2, we identified two distinct types of FFs among the top four. The first type includes 
c36m2021s3p and a19sbopc, both of which exhibited consistent performance across the three reference Rg’s. 
On the other hand, the second type consists of c36ms3p and a99sb4pew, which demonstrated a preference for 
flexible and compact conformations, respectively. We also observed bias towards the U-shaped Rg in a99sb4pew, 
a99sbCufix3p, and a14sb3p (Fig. S4), while c36m2021s3pm and c36m3pm (Fig. S4) favored the unfolded Rg. 
However, it is worth noting that the final Rg rank of these FFs is inversely correlated with the strength of their 
bias of sampled conformations. This is because our scoring scheme penalizes FFs that fit well to only one specific 
reference Rg but perform poorly for the others. As a result, the two worst-performing FFs are c36m3pm and 
a14sb3p (Fig. 2).

Overall, CHARMM FFs tend to generate more extended conformations than AMBER FFs (Figs. S3 and S4), 
except for a03ws.

Rg is a measure of the global compactness of a conformation, but it is not suitable for evaluating the details of 
the conformation. To assess the sampled conformations in more detail, we introduced two measures in the next 
sections: the intra-peptide contact map and the secondary structure propensity (SSP). These measures evaluate 
the intra-peptide interactions.

Intra‑peptide contacts of the R2‑FUS‑LC region.  The U-shaped and L-shaped conformations contain 
20 and 15 intra-peptide contacts, respectively (Fig. 3). In the L-shaped conformation, there were no observed 
contacts between residues j and > j + 5 (medium-distance contacts) within a 5 Å cutoff. However, in the U-shaped 
conformation, medium-distance contacts are found between Tyr50–Tyr55, Tyr50–Thr64, Tyr50–Gly65, Tyr55–Asn63 
and Ser57–Ser61. Therefore, we will only consider the U-shaped conformation for evaluating the FFs.

For each of the thirteen FF’s MD simulations, we calculated the average intra-peptide contacts for the trim-
ers across all snapshots. The contacts from the FFs and the U-shaped conformation were compared using the 
Matthews Correlation coefficient (MCC)45 score (Table 3). The MCC score ranges from − 1 to 1, with a value of 
1 indicating perfect correlation, − 1 indicating perfect anti-correlation, and 0 indicating no correlation. MCC 
scoring penalizes false predictions, which means that FFs that predicted the most native contacts (True Positives, 
TP), such as a99sb4pew, c27s3p, and a14sb3p (Table S2), may not necessarily be the top scoring FFs (Table 3). 
The process of normalization was carried out in a similar manner as described in the previous section.

In the contact map score ranking (Table 3), there are some surprising results. Despite being classified as a bot-
tom performer based on the final score (Table 1), the c36m2021s3pm and c36m3pm FFs were ranked at the top 
in the contact map score. On the other hand, c36m2021s3p, which had the highest final score, was only ranked 
4th. Additionally, a99sbCufix3p was placed at the bottom even though it had middle ranking in the final score.

Upon examining the confusion matrices for the four FFs (Table 4 and Table S2), we have a few observations. 
Firstly, c36m2021s3pm, c36m3pm, and c36m2021s3p, which have the highest Unfolded Rg scores, tend to favor 
more extended conformations. This is evident from the fact that < 20% of residues pairs are in contact. In contrast, 
a99sbCufix3p prefers more compact conformations, with 23.16% of residue pairs in contact.

It is worth noting that while CHARMM FFs with extended conformations have fewer overall contacts (Table 4, 
Total Pred. True), they also have significantly lower non-native contacts (Table 4, bolded). Conversely, a99sbCu-
fix3p has more contacts overall, but a larger proportion of these contacts are non-native (Table 4). After excluding 

Table 2.   Normalized radius of gyration (Rg) scores for the 13 force fields. ªObtained by multiplication of the 
three normalized Rg scores and renormalizing them to 0.00001–1.0. FFs are sorted by the final Rg score in 
descending order. *, • and #: Same as in Table 1.

Force fields

Normalized Rg score (rank)

Final Rg ScoreªU-shaped L-shaped Unfolded

c36m2021s3p* 0.05654 (8) 0.26227 (3) 0.04817 (3) 1.00000

c36ms3p* 0.02194 (11) 1.00000 (1) 0.02830 (4) 0.86920

a99sb4pew* 1.00000 (1) 0.43082 (2) 0.00066 (12) 0.39845

a19sbopc* 0.11252 (4) 0.17544 (6) 0.01111 (5) 0.30691

a99disp• 0.09730 (5) 0.16614 (7) 0.00972 (7) 0.21986

a99sbildn4pd• 0.06440 (7) 0.20090 (5) 0.01092 (6) 0.19783

a99sbCufix3p• 0.14855 (3) 0.21916 (4) 0.00162 (11) 0.07391

c22s3p• 0.04650 (9) 0.11735 (9) 0.00675 (8) 0.05156

c36m2021s3pm• 0.00035 (12) 0.08977 (12) 1.00000 (1) 0.04438

c27s3p# 0.07513 (6) 0.13992 (8) 0.00213 (10) 0.03130

a03ws# 0.03703 (10) 0.10192 (10) 0.00384 (9) 0.02029

c36m3pm# 0.00001 (13) 0.08983 (11) 0.22404 (2) 0.00029

a14sb3p# 0.91433 (2) 0.00001 (13) 0.00001 (13) 0.00001
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Figure 3.   Intra-peptide contact map for U-shaped (left, PDB ID: 5W3N) and L-shaped (right, PDB ID: 7VQQ) 
conformations with a 5 Å cutoff. Contact types are color-labeled, with "Sc" corresponding to Side Chain and 
"Bb" to Backbone. In both conformations, the majority of contacts occur within ± 3 residues. The U-shaped 
conformation exhibits a few medium-distance contacts, whereas the L-shaped conformation lacks any medium-
distance contacts. Figure was prepared with Matplotlib v3.544 (https://​matpl​otlib.​org/).

Table 3.   Matthews correlation coefficient (MCC) score of intra-peptide contact maps between force fields and 
the U-shaped conformation. *, • and #: Same as in Table 1.

Force fields Contact map score: MCC (U-shaped)
Norm. Contact Map 
Score

c36m2021s3pm• 0.70418 1.00000

c36m3pm# 0.70323 0.99460

c36ms3p* 0.67892 0.85621

c36m2021s3p* 0.66494 0.77657

a19sbopc* 0.65431 0.71610

a99sb4pew* 0.64268 0.64988

a99disp• 0.62391 0.54300

c22s3p• 0.62219 0.53323

a99sbildn4pd• 0.61217 0.47616

a14sb3p# 0.59891 0.40067

a99sbCufix3p• 0.58877 0.34292

a03ws# 0.54631 0.10120

c27s3p# 0.52854 0.00001

Table 4.   Confusion matrices of the intra-peptide contact maps for four FFs. T: True/In contact (%). F: False/
No contact (%). Bolded: False Positives (FP) or non-native contacts.

c36m2021s3p

Ref

Total Pred a99sbCufix3p

Ref

Total PredT F T F

Pred
T 13.86 5.13 18.99

Pred
T 14.17 8.99 23.16

F 5.18 75.82 81.01 F 4.88 71.96 76.84

c36m2021s3pm

Ref

Total Pred c36m3pm

Ref

Total PredT F T F

Pred
T 13.75 3.52 17.27

Pred
T 13.75 3.57 17.32

F 5.3 77.43 82.73 F 5.29 77.38 82.67

https://matplotlib.org/
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these four FFs, the contact map score rankings of the remaining FFs (Table 3) were found to be consistent with 
the final score rankings (Table 1).

The L-shaped conformation primarily consists of β-strands but does not form β-sheets within the peptide. 
As a result, its conformations cannot be determined from the intra-peptide contact maps. This motivates us to 
assess the Secondary Structure Propensity (SSP) of these FFs in the following section.

Secondary structure propensity (SSP) of R2‑FUS‑LC region.  In each snapshot, Dictionary of Pro-
tein Secondary Structure (DSSP)46,47 is used to assign the secondary structure type (α-helix, β-strand, or coil) 
to each residue. For each residue, we define its SSP/probability for all secondary structure types by counting 
the number of occurrences in all snapshots and dividing it with the total number of snapshots. To evaluate the 
FFs’ SSP for the R2-FUS-LC region, we define the SSP score as the log likelihood of observing the experimental 
(U-shaped and L-shaped) secondary structures given the SSP probability distributions obtained from the simu-
lation snapshots (details in Methods). Normalization was performed in a similar fashion as outlined previously.

In Table 5, we observe that the SSP score is higher for a14sb3p and a99sbCufix3p, but lower for c36ms3p and 
c36m2021s3pm compared to their final rank. The FFs with higher SSP scores tend to produce more compact 
conformations, as evidenced by their Rg scores (Table 2). Conversely, the FFs with lower rankings tend to favor 
more extended conformations. This suggests that the formation of native secondary structures is necessary for 
the development of compact fibrils.

The a03ws and c27s3p FFs, which have the lowest SSP scores, exhibit a strong tendency to generate con-
formations with α-helices around the RAC2 motif (Fig. 4). However, in both the L-shaped24 and U-shaped16 
conformations, this region forms β-strands. NMR chemical shift data also confirms the absence of α-helices in 
the R2-FUS-LC region16–18,22,48.

Table 5.   Normalized secondary structure propensity (SSP) scores. *, • and #: Same as in Table 1.

Force fields SSP score U-shaped SSP score L-shaped
SSP 
Score

a99sb4pew* 1 1 1

a14sb3p# 0.852963 0.892893 0.761607

a99sbCufix3p• 0.823343 0.892089 0.734498

c36m2021s3p* 0.787453 0.833228 0.656131

a19sbopc* 0.725248 0.853141 0.618743

a99disp• 0.708013 0.72737 0.514992

a99sbildn4pd• 0.677607 0.674657 0.457158

c22s3p• 0.630039 0.635035 0.400103

c36ms3p* 0.564177 0.567119 0.319962

a03ws# 0.330989 0.311533 0.103123

c36m3pm# 0.044558 0.071552 0.003198

c36m2021s3pm• 0.00001 0.057822 0.00001

c27s3p# 0.011461 0.00001 0.00001

Figure 4.   α-Helix Secondary Structure Propensity (SSP). Experimental data from Murray et al. indicate no 
α-helix propensity within the 16 residues. Only FFs with a per residue α-helix propensity greater than 0.1 are 
displayed. All FFs, except for a14sb3p (2nd ranked), are located at the bottom of the SSP rank (Table 5). Despite 
having a small amount of α-helix SSP, a14sb3p has a high SSP ranking due to its high β-strand SSP (Fig. S5). 
Figure was prepared with Matplotlib v3.544 (https://​matpl​otlib.​org/).

https://matplotlib.org/
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Discussion
Our observation indicates that AMBER FFs, specifically a14sb3p and a99sbCufix3p, generate more compact 
conformations compared to the CHARMM FFs, c36ms3p and c36m2021s3pm, which tend to produce more 
extended conformations. FFs that have more extended conformations can better replicate the properties of both 
U- and L-shaped conformations when compared to FFs generating more compact conformations that fit well 
only to one of these conformations.

Both AMBER and CHARMM FFs do not properly reproduce the inter-peptide interactions required to 
form fibrils (Table S3), although AMBER FFs perform relatively better than CHARMM FFs. The preference 
of CHARMM FFs for extended conformations extends to their inter-peptide interactions: the peptides spend 
approximately half the time as dimers or monomers in contrast to AMBER FFs (except a03ws) which mainly stay 
as trimers (Table S4). The inter-peptide interaction scores were not included in the final score as all FFs perform 
poorly and would just add noise to the final ranking.

In our study, the limited sampling time (only 3 µs) may have contributed to the poor performance observed. 
Fibril formation typically occurs over a much longer timescale of hours to days16,24. To alleviate but not resolve this 
issue, we have increased the peptide concentration from 0.16 mM (as used in NMR structure determination16) to 
10 mM by decreasing the ratio of the number of peptides to the number of water molecules (add more waters) 
and initiated simulations from the U-shaped conformation in fibril form. Higher concentration of FUS pep-
tides increases the chance of these peptides interacting with one another and forming fibrils. Additionally, we 
observed that most FF simulations have nearly converged within 300 ns by monitoring the average Rg values 
over time (Fig. S6).

It is possible that the chosen fragment is not capable of forming fibrils independently. To investigate this pos-
sibility, we analyzed the intra-protein interactions of the full-length LC domain (residues 1–214). The contact 
maps show that there are limited long-distance contacts between the R2-FUS-LC regions and the rest of the 
protein in the U/L-shaped conformations (Fig. S2), indicating that the R2-FUS-LC region functions as a distinct 
domain within the larger LC domain, at least in the fibril.

Our study corroborates previous research conducted by Lao et al. who utilized the a99sbildn4pd with TIP3P 
water model instead of TIP4PD to simulate a longer region of FUS that included the R2-FUS-LC region23. Our 
findings show similar contact map patterns as their study, and we also observed ~ 5% propensity of α-helices, 
which is consistent with their work. However, we noted a discrepancy in the β-strand propensity between our 
study and theirs, with their study observing much higher β-strand propensity than we did (Fig. S5). This differ-
ence may be attributed to the length of the peptide used in each study, with their study using a peptide length of 
60 residues compared to our study’s length of 16 residues.

Our findings are also consistent with other studies on Amyloid-β proteins, where different FFs produced 
different conformational ensembles, some of which are compatible with fibril aggregation42,49,50. For example, 
Pedersen et al. found that a19sbopc produces more compact conformations and forms more β-strand than 
a99disp49, while Samantray et al. demonstrated c36ms3p gave promising results for sampling and giving confor-
mational ensembles with random coil and β-strand structures50. Finally, our final score ranking is the same as 
the Amyloid-β peptide (Aβ40) results from Robustelli et al. showing that c36ms3p is the best, except for c22s3p 
which underperformed a99disp and a99sbildn4pd in our ranking27. Additionally, they also observed that c22s3p 
and a03ws overestimates the α-helix propensity (Fig. 4).

Additionally, our results are consistent with Piana et al., who tested three and four-site water models with 
AMBER and CHARMM FFs42. Where using the TIP3P (3-site) water model, CHARMM FFs were found to be 
more flexible than AMBER FFs, and when using 4-site water models, AMBER FFs became a lot more flexible, 
except for a99sb4pew (Fig. S4).

In this study, we investigated the effectiveness of force fields developed for globular proteins and their modi-
fied versions for intrinsically disordered proteins. We found that these force fields, with their adapted water 
models, produce distinct conformational ensembles. Our results highlight the importance of utilizing multiple 
measures for a comprehensive evaluation of force fields due to the intrinsic flexibility of this system which can 
form β-strand fibrils and adopt random coiled conformations.

Our evaluation of thirteen force fields from CHARMM and AMBER families revealed that c36m2021s3p 
is the most balanced in terms of the three measures used. This force field can generate various conformations 
that are compatible with U/L-shaped conformations, and it showed good agreement in terms of the SSP and 
intra-peptide contact map. Additionally, its mTIP3P water model is computationally less expensive than those 
of top-ranked AMBER FFs with four-site water models.

Methods
Preparation of initial conformations for molecular dynamics simulations.  Multiple 3D-struc-
tures of FUS-LC domain have been solved by X-ray crystallography17,51, electron crystallography17,52, cryo-Elec-
tron Microscopy (cryo-EM)24, and NMR16. The details of the structures are listed in the Table S5.

From the 20 U-shaped NMR models (PDB ID: 5W3N16), the region of residues 50–65 (R2-FUS-LC region, 
Fig. 1, red square) of the first three chains (trimer) was used. The 20 structures were clustered into six groups 
using the GROMACS tool gmx cluster53 with a RMSD cutoff of 1.7 Å (Cα-only). The six representative structures 
were used to run six independent MD simulations.

Molecular dynamics simulations.  Systems.  All-atom MD simulations were performed using 
GROMACS 2020.454,55. The six initial conformations of R2-FUS-LC (663 atoms) were solvated in a cubic box of 
80 × 80 × 80 Å3. To replicate the conditions of the NMR experiment22, 137 mM NaCl ions were added (~ 17,000 
water molecules). The final systems contain 52,000–68,000 atoms.
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Force fields.  The 13 IDP force fields (FFs) and their corresponding water models (WMs) (details in Table S1 
and Sup. Info. Section Benchmark of Force Fields (FFs) and Water Models (WMs)): a03ws, a14sb3p, a19sbopc, 
a99disp, a99sb4pew, a99sbCufix3p, a99sbildn4pd, c22s3p, c27s3p, c36m2021s3p, c36m2021s3pm, c36m3pm 
and c36ms3p.

Molecular dynamics simulations.  Non-bonded cutoff is set to 12 Å. Electrostatic interactions were treated with 
the smooth particle mesh Ewald method56 for long range interactions and Coulomb for short range interac-
tions. For CHARMM FFs, the Lennard–Jones potential is modified by GROMAC’s force-switching function54,55 
between 8 and 12 Å.

The length of solute and water covalent bonds involving hydrogen atoms were kept constant using the LINCS57 
and SETTLE58 algorithms, respectively, allowing integration of equations of motion with a 2 fs time step.

For each system, energy minimization followed by a constant pressure and temperature (NPT) 1 ns equilibra-
tion run were performed at 1 bar and 300 K. Temperature is controlled by the v-rescale thermostat and pressure 
by the Berendsen barostat59,60 with the time coupling constants τT = 0.1 ps and τP = 0.5 ps, respectively. A second 
equilibration run was performed with Nose–Hoover thermostat and Parrinello–Rahman barostat61–63 with the 
time coupling constants τT = 0.5 ps and τP = 2.5 ps for 1 ns.

For the production run, each of the six systems were simulated for 500 ns under the same conditions as in 
the second equilibration run but with a velocity random seed. Snapshots were saved every 20 ps. The first 100 ns 
of the production run were discarded, and the remaining 400 ns was used for further analysis.

The above protocol was applied to each of the 13 force fields, giving an accumulated trajectory of 3 μs.

Data analysis.  Analysis of snapshots were performed with MDAnalysis64,65, MDtraj66, DSSP46,47 and our 
own scripts. All figures were plotted with Matplotlib44 (Python module).

Normalization of raw scores.  All the raw scores were linearly rescaled such that they are between 0.0001 and 
1 by:

where Snorm,FF and Sraw,FF are the normalized and raw scores for a specific force field (FF), respectively.

Radius of gyration.  For each snapshot, the radius of gyration (Rg) of the heavy-atoms of the 16-residue trimer 
and the individual peptides were computed with MDAnalysis.

The Rg distribution of the trimer (Fig. 2 and Fig. S4) was fitted to two Gaussians using the gaussian mixture 
model.

To evaluate the FFs, the Rg-ScoreFF,k (raw score) compares the simulation results to the experimental Rgexp,k 
of k (U-shaped [averaged over 20 models]: 10 Å or L-shaped: 14.4 Å). It is computed as:

where 〈RgFF,i〉 and SDFF,i are the average and standard deviation, respectively, of the i’th Gaussian.
The Rg of the individual peptides was compared to the predicted RgFL (10.8 Å) from Flory’s polymer theory 

with parameters optimized for IDPs by Bernado and Blackledge43:

where R0 = 2.54 Å is the persistence length, ν = 0.522 is the exponential scaling factor, N is the number of resi-
dues, RgFF,med is the median Rg of the FF and q3 and q1 are the 75th and 25th percentile, respectively.

The raw scores from (2) and (3) were normalized. The final Rg score is the normalized product of the normal-
ized U-shaped, L-shaped, and Unfolded Rg (Table 2).

Intra‑peptide contact map analysis.  To analyze the heavy atom contacts in each peptide, we developed custom 
code to generate contact maps. A contact was defined as two atoms being within a 5 Å distance, except for 
neighboring residues along the protein sequence. We counted intra-peptide contacts across all snapshots and 
filtered out contact frequencies < 1%. Average contact frequencies were then calculated across all three peptides.

Comparing the average contact map from each snapshot to the representative U-shaped conformation (Fig. 3), 
contacts were classified into one of four groups [Table 6; True(T)/False(F) Positive(P)/Negative(N)]. A contact (no 
contact) is considered positive (negative). The contacts from all snapshots of the six replicas were accumulated 
in the confusion matrix (Table S2).

(1)Snorm,FF =
Sraw,FF

max
FF

Sraw,FF −min
FF

Sraw,FF

Z-scoreFF,k,i =
Rgexp,k − �RgFF,i�

SDFF,i

(2)Rg-ScoreFF,k =
1

min
i

∣

∣Z-scoreFF,k,i
∣

∣

RgFL = R0 × Nv

(3)Unfolded Rg-ScoreFF =
q3− q1

∣

∣RgFL − RgFF,med

∣

∣
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The Matthews correlation coefficient (MCC)45 was used to measure the agreement of the contact maps:

Note that the MCC score is between − 1 and 1. An MCC score of 1 shows perfect correlation with the refer-
ence, 0 with no correlation and − 1 with perfectly negative correlation. The raw MCC score is then normalized 
to obtain the normalized intra-peptide Contact Map score (Table 3).

Inter‑peptide contact map analysis.  We classified the peptide’s conformation in each snapshot as monomer, 
dimer, or trimer based on their contacts with other peptides (Table S4). The monomer was defined as having no 
contact with other peptides, while the dimer had exactly two peptides in contact. The trimer was characterized 
by each peptide being in contact with another peptide. Two peptides are considered in contact if they have at 
least one contact. We use the same contact definition as in the intra-peptide analysis.

To identify the middle peptide in trimers, we determined the peptide with the highest inter-peptide contacts 
in the fibril. We then compared the computed contact map with the experimental contact map of the middle 
peptide with one of the other two peptides.

For experimental structures, the contact maps of the middle peptide with either of the edge peptides were 
similar so we chose chain A-B for comparison with the computed contact maps (see Fig. S7). The same contact 
map was used for dimers.

All contacts between two edge peptides in the ensembles were considered false positives (FPs). We employed 
the same method as the previous section to classify contacts and compute Matthews Correlation Coefficient 
(MCC) scores (Table S3).

Secondary structure propensity.  To assign secondary structures, we utilized the Dictionary of Protein Second-
ary Structure (DSSP)46,47. Each residue was classified as either α-helix (H), β-strand (E), or coil (C).

Each residue’s secondary structure propensity/probability ( pi,ss , SSP) is computed from the snapshots, com-
bining the data from all three peptides from the same FF:

where: i is the residue position in peptide j at snapshot t from the simulation performed with the forcefield. ssi,j,t 
is 1 when assigned the respective secondary structure type ss by DSSP or 0 otherwise. ss represents the secondary 
structure type: α-helix (H), β-strand (E), or coil (C).

The reference secondary structures were obtained from the U-shaped (20 models) and L-shaped (single 
structure) structures, as shown in Table S6. The FF’s secondary structure score with respect to the experimental 
structure k (U/L-shaped) is:

where, i represents the residue position, and exptlk,i is the secondary structure of residue i in the experimental 
structure k.

For each FF, the SSP-Score is the log likelihood of observing the experimental secondary structures. We 
derived the probabilities from the observed propensities from the simulations, assuming that the positions are 
independent of one another.

The raw FF’s SSP-Scores for the U-shaped and L-shaped conformations were independently renormalized. We 
took the product of these two normalized SSP-scores and re-normalized them to get the final SSP score (Table 5).

Final scoring.  Using the three normalized Rg score, SSP score and intra-peptide MCC score, we calculated 
the final score for each FF by multiplying the scores and re-normalizing the product (Table 1).

Data availability
Data available on reasonable request to HK.
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(4)MCC =
(TP ∗ TN)− (FP ∗ FN)

√
(TP+ FP)(TP + FN)(TN + FP)(TN+ FN)

(5)pi,ss =
∑

j,t ssi,j,t
∑

ss=H ,E,C

∑

i,j,t ssi,j,t

(6)SSP-Scorek =
∑Nres

i=1
logpi,ss=exptlk,i

Table 6.   General confusion matrix.

Total population

Contacts in the U-shaped reference structure

Positive (P) Negative (N)

Contacts in the trajectory
 Positive (PP) True positive (TP) False positive (FP)

 Negative (PN) False negative (FN) True negative (TN)
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