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Improved EEG‑based emotion 
recognition through information 
enhancement in connectivity 
feature map
M. A. H. Akhand 1*, Mahfuza Akter Maria 1, Md Abdus Samad Kamal 2 & Kazuyuki Murase 3

Electroencephalography (EEG), despite its inherited complexity, is a preferable brain signal for 
automatic human emotion recognition (ER), which is a challenging machine learning task with 
emerging applications. In any automatic ER, machine learning (ML) models classify emotions using 
the extracted features from the EEG signals, and therefore, such feature extraction is a crucial part 
of ER process. Recently, EEG channel connectivity features have been widely used in ER, where 
Pearson correlation coefficient (PCC), mutual information (MI), phase-locking value (PLV), and 
transfer entropy (TE) are well-known methods for connectivity feature map (CFM) construction. CFMs 
are typically formed in a two-dimensional configuration using the signals from two EEG channels, 
and such two-dimensional CFMs are usually symmetric and hold redundant information. This study 
proposes the construction of a more informative CFM that can lead to better ER. Specifically, the 
proposed innovative technique intelligently combines CFMs’ measures of two different individual 
methods, and its outcomes are more informative as a fused CFM. Such CFM fusion does not incur 
additional computational costs in training the ML model. In this study, fused CFMs are constructed by 
combining every pair of methods from PCC, PLV, MI, and TE; and the resulting fused CFMs PCC + PLV, 
PCC + MI, PCC + TE, PLV + MI, PLV + TE, and MI + TE are used to classify emotion by convolutional neural 
network. Rigorous experiments on the DEAP benchmark EEG dataset show that the proposed CFMs 
deliver better ER performances than CFM with a single connectivity method (e.g., PCC). At a glance, 
PLV + MI-based ER is shown to be the most promising one as it outperforms the other methods.

The process of identifying the mental states or conditions of the human mind is known as emotion recognition 
(ER), and the brain signal is the most prospectus for ER. ER has become an essential part of research in neu-
rology, computer science, cognitive science, and medical science1. Most commonly, modalities such as facial 
images2, speech3, and gestures4 can be used to identify emotions. However, these approaches to recognition are 
not ubiquitous and have low recognition accuracy because they depend on the person’s age, appearance, cul-
ture, language, and habits5. On the other hand, the brain is regarded as the place where emotional activities are 
evoked6. According to research in cognitive psychology and neuropsychology, the development and evolution 
of emotions are strongly related to the functioning of the central nervous system7. Therefore, the brain signal 
is highly reliable for ER. Among different brain signals, Electroencephalography (EEG) signal has drawn great 
attention in the emotion recognition research community.

EEG can capture the electrical impulses generated by neuronal activities of the brain through its small sen-
sors (i.e., EEG channels) attached to the brain; it records the voltage alterations caused by ionic current flows 
within the brain’s neurons8. Recently, EEG has been studied for different applications in real-life human activi-
ties, such as emotion recognition9, autism detection10, recognition of seizures11, depression detection12, motor 
imagery classification13, and so on. EEG has been increasingly popular for researching the brain’s reactions to 
emotional stimuli and responses for its excellent temporal resolution, noninvasiveness, portability, ease of use, 
and relatively inexpensive and fast7,8. EEG is a composite signal, and different mental states are incorporated into 
the various EEG sub-bands of waves. Delta (0–3 Hz), Theta (4–7 Hz), Alpha (8–12 Hz), Beta (13–29 Hz), and 
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Gamma (30–50 Hz) are the five main types of brain waves that make up the human EEG. These sub-bands may 
provide more precise information on the constituent neuronal processes activities14,15. Different mental states 
and activities are incorporated into the various sub-bands. Emotion has a strong relationship with the Gamma 
and Beta sub-bands, a weak relationship with the Alpha sub-band, and a very weak relationship with the Theta 
and Delta sub-bands16.

The typical steps of EEG-based ER are extracting features from EEG signals first and then classifying (i.e., 
recognition) of emotion using the extracted features. The significance of individual studies primarily depends 
on the feature extraction technique, which is the most crucial element in ER. EEG signals are collected through 
different channels (by placing channel-specific electrodes on the skull). Most studies (mainly the pioneer ones) 
extract features from the channels individually, and they are collectively used for emotion classification17,18. 
Although setting the electrode position appropriately for any channel is an issue in EEG signal, individually 
extracted features do not maintain spatial relation (i.e., connectivity) with the other channels. Brain connectivity 
has become an essential part of the examination in neuroscientific research. Consequently, features related to 
brain connectivity emerge as an active research focus since they can reflect the relationship between the differ-
ent brain regions. The effectiveness of brain connectivity features in recognizing emotional states was validated 
in recent studies14,19–21.

Recently, EEG channel connectivity features mimicking the relationship or connectivity between brain 
regions, represented in a map called a connectivity feature map (CFM), have been widely used in ER9. Several 
methods can measure the relationship between brain regions, e.g., Pearson correlation coefficient (PCC)20, 
cross-correlation (XCOR)22, mutual information (MI)23, normalized MI (NMI)24, phase-locking value (PLV)25 
and transfer entropy (TE)14. XCOR and its variant PCC can detect the linear dependencies, MI and its variant 
NMI measure the shared information, PLV represents the phase synchronization, and TE measures the directed 
information flow between two brain regions. The relationship or connectivity between brain areas can be repre-
sented as a brain network. The vertices and edges of the network correspond to brain areas and their connections, 
respectively. If the edges are weighted, they represent the strength of connectivity, then the adjacency matrix (i.e., 
CFM) is formed, whose elements are the strength of connectivity between different areas. Finally, CFM can be 
used to classify emotion with a suitable machine learning (ML) or deep learning (DL) method. Many existing 
EEG-based studies9,14,19–21 evaluated on the DEAP benchmark dataset, and ML/DL models were used to clas-
sify emotion in Valence and Arousal scales, the emotional measures available along with corresponding EEGs.

This study aims to develop an improved EEG-based ER through innovative information enhancement in CFM 
formation. Existing ER methods using CFMs considered CFM with a single connectivity method6,24,26, and the 
CFMs are symmetric for undirected connectivity methods where each feature value appears in two places inside 
a CFM. Thus, the ML or DL methods classify emotion using redundant information when using such CFMs. 
Classification from redundant information is neither beneficial nor efficient. Alternating a portion of such a 
symmetric CFM with different informative values might be helpful to enhance the classification performance of 
ML/DL due to information enhancement. This hypothesis is the main motivation of this study. For information 
enhancement, CFMs constructed with two individual methods are fused in a single CFM, and the fused CFM 
holds distinct informative values of the two source CFMs (called base CFMs). Four widely used connectivity 
methods investigated for base CFM construction are PCC, PLV, MI, and TE, and, the six fused CFMs developed 
using those base CFMs are PCC + PLV, PCC + MI, PCC + TE, PLV + MI, PLV + TE, and MI + TE. Convolutional 
neural network (CNN), the prominent DL method, was used for emotion classification in Valence and Arousal 
scales. Experimental studies also included the ER performance with base CFMs by individual connectivity meth-
ods to examine the effectiveness of fused CFM. Rigorous experiments have been conducted on the DEAP bench-
mark EEG dataset with the constructed CFMs. The major contributions of this study are summarized as follows:

1.	 Construct base CFMs using PCC, PLV, MI, and TE from EEG, and construct fused CFMs using a pair of 
individual methods, i.e., PCC + PLV, PCC + MI, PCC + TE, PLV + MI, PLV + TE, and MI + TE.

2.	 Classify emotion from constructed CFMs using CNN in Valence and Arousal scales.
3.	 Analyze ER performance among fused CFMs and traditional CFMs, and identify the best-suited CFM fusion 

for ER.
4.	 Compare the performance of the proposed ER method with fused CFMs and CNN with existing state-of-

the-art methods, and show that the proposed method outperformed those.

The rest of this paper is organized as follows. Section “Related works” describes the related studies of EEG-
based ER. Section “EEG-based emotion recognition through information enhancement in CFM” presents the 
proposed ER method, including data preprocessing, CFM construction, and classification. Section “Experimental 
studies” presents experimental studies, which include experimental setup, experimental results, and performance 
comparison. At last, Section “Conclusions” concludes the paper with a few remarks.

Related works
EEG has been well-studied to investigate how the brain reacts to emotional experiences. Typically, ML or DL 
methods are used for ER using extracted features from EEG signals. Several ER studies are available using differ-
ent feature extraction and classification techniques. The features broadly fall under the categories of individual 
channel features and connectivity features. The following subsections review prominent ER studies categorically 
based on the EEG features’ type.

ER using individual channel features.  Individual channels are considered as independent signal sources 
in this category, and the characteristic(s) of signal from a particular channel are exposed as feature value(s). 
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Generally, features are extracted from EEG signals in the time domain (e.g., fractal dimension, statistical), fre-
quency domain (e.g., statistical, power spectral density (PSD)), and time–frequency domain (e.g., discrete wave-
let transform, Entropy). Pioneer studies considered different ML methods to classify emotions from different 
time and frequency domain features17,27–31.

Support vector machine (SVM) was used by Liu et al.17 to classify discrete emotional states (e.g., happiness, 
sadness) from PSD features. The PSD features were extracted from six frequency bands for each EEG channel; 
thus, 6 (band) × n (channel) features were included in each feature set. Apicella et al.32 collected EEG signals 
through an 8‑channel dry electrode cap and classified Valence using neural network (NN) and k-nearest neigh-
bors (KNN). Pane et al.30 considered hybrid features of different time domain and frequency domain features 
to classify emotion using random forest (RF). Jagodnik et al.28 extracted different time domain (e.g., mean), fre-
quency domain (i.e., frequency band energies of sub-bands, e.g., Alpha), and nonlinear dynamic (e.g., Entropy) 
features from EEG; selected features using MI with sequential forward floating selection; finally, classified emo-
tion using SVM, KNN, and RF. Statistical features have been extracted in both time and frequency domains in 
the study31, where 364 features were extracted for each EEG segment, and then feature selection was applied to 
use the features with the least square SVM and Naive Bayesian (NB) classifier. Subasi et al.33 utilized a tunable Q 
wavelet transform in the feature extraction step and rotation forest ensemble classifier with different classifiers 
such as KNN, SVM, NN, and RF. Goshvarpour and Goshvarpour34 constructed Poincare’s plot (a 2D representa-
tion of signal) of EEG signals, extracted features, and classified emotion using SVM, KNN, and NB. In another 
recent study35, they investigated Lemniscate of Bernoulli’s Map (which belongs to the family of chaotic maps) 
construction from EEG signal and classified emotion using KNN and SVM.

While the aforementioned studies used conventional ML models, DL methods were used in recent studies 
for emotion analysis, as such methods extract features through their embedded learning process. The differential 
entropy (DE) feature represented in the 2D map was employed with CNN by Li et al.18 to classify three types of 
emotions (positive, neutral, and negative). Moctezuma et al. used 2D CNN to identify emotions according to 
Valence and Arousal scales from EEG channels selected by a multi-objective evolutionary algorithm36. In the 
study37, a combined CNN + SVM model was used to classify emotions from different time domain features (e.g., 
where fractal dimension, Hjorth parameters, peak-to-peak, and the root-mean-square) and frequency domain 
features (e.g., band power, DE, PSD). The study37 created feature maps based on topographic (called TOPO-FM) 
and holographic (called HOLO-FM) representations of EEG signal characteristics. Meanwhile, Li et al.38 designed 
a hybrid model incorporating recurrent NN (RNN) and CNN for emotion classification in the Valence-Arousal 
plane by using TOPO-FM of the PSDs of the EEG signals. Liu et al.19 used statistical characteristics (i.e., variance, 
mean, kurtosis, and skewness) of the EEG signal as time domain features and used a combined CNN + sparse 
autoencoder (SAE) + deep NN (DNN) model to classify emotions. The statistical features were extracted from 
four frequency bands and represented in a 2D map band-wise individually; thus, a 3D map was constructed 
concatenating features from all four frequency bands. Yuvaraj et al.39 also constructed a 3D map staking 2D 
spatiotemporal representation of EEG signals and then employed a 3D form of CNN for emotion recognition.

CNN‑XGBoost fusion method was applied by Khan et al.40 on signal spectrogram images for recognizing 
three dimensions of emotion, namely Arousal (calm or excitement), Valence (positive or negative feeling), and 
Dominance (without control or empowered). Moon et al.21 used PSD features, which were extracted from ten 
frequency bands, and SVM and CNN were used as classifiers. ER was performed using simple recurrent units 
network and ensemble learning by Wei et al.41, where the mean absolute value method is employed to extract the 
time-domain features; the PSD approach is adopted to obtain the characteristics of EEG signals in the frequency 
domain; and Fractal dimension and DE features were used for nonlinear analysis of the EEG signals. Hurst, 
sample entropy, Hjorth complexity, vector autoregression, wavelet entropy, spectral entropy, and PSD features 
were extracted by42, where DNN was employed to classify emotions. Song et al.43 employed the dynamical graph 
CNN to classify emotion from five different features, including DE and PSD. Dynamical graph CNN was also 
used by Asadzadeh et al.44, where each emotion was modeled by mapping from scalp sensors to brain sources 
using a Bernoulli–Laplace-based Bayesian model.

ER using connectivity feature.  EEG connectivity feature is mainly based on connections in brain regions. 
It is widely accepted that the brain’s regions are connected by a network, and the interactions between the net-
work’s nodes can be used to interpret brain activity. Thus, emotion analysis seems beneficial in measuring the 
relationship between several brain areas, and several existing ER studies have revealed the effectiveness of CFM 
with connectivity features. Existing ER methods using CFMs are mostly considered connectivity features in 2D 
form. A 2D CFM may be an n× n feature matrix, where n is the number of EEG channels. Gao et al.7 used two 
connectivity features named Granger Causality (GC) and TE with three classifiers (i.e., SVM, RF, and decision 
tree) to classify emotional states. GC and TE features were firstly represented in 2D CFMs individually with dif-
ferent sizes, and then applying the histogram of the oriented gradient method, 1D feature vectors were created 
from the 2D CFMs.

Chen et al.6 used three connectivity methods named PCC, PLV, and MI for emotional states classification 
based on Valence and Arousal scales by SVM. Wang et al.24 also used SVM for emotion classification, where 
Normalized MI (NMI) was used for connectivity feature extraction. Khosrowabadi et al.45 used Phase Slope 
Index, Directed Transfer Function (DTF), and Generalized Partial Direct Coherence for connectivity features 
and considered KNN and SVM as classifiers. Petrantonakis and Hadjileontiadis46 used higher order crossings 
and XCOR to extract features and SVM as a classifier. Arnau-González et al.26 combined the MI feature with 
spectral power, used a feature selection approach combining Welch’s t-test with principal component analysis 
(PCA), and classified emotions using NB and SVM.
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Many existing studies considered CNN and other DL methods to classify ER from CFMs. Bagherzadeh 
et al.47,48 used PDC and dDTF to extract connectivity features and classify emotions using pre-trained CNN 
models. Chao et al.49 used maximal information coefficient (MIC) for CFM construction, employed a PCA net-
work (PCANet) based DL model for deep feature extraction from constructed CFMs, and used SVM and CNN 
to classify emotions. Islam et al.16 generated 2D CFMs using PCC, developed a different CFM in reduced size by 
rearranging the values of the CFMs of the upper triangle, and used CNN for emotion classification from both 
of the CFMs individually. Jin et al.50 also used PCC for feature extraction, represented in 1D, and Long Short-
Term Memory (LSTM) + NN was employed for emotion classification. Chen et al.20 used PCC, PLV, and TE to 
extract connectivity features and employed domain adaptive residual CNN for emotion classification from CFMs.

A few studies considered PCC with other methods and represented connectivity features in 3D maps. Moon 
et al.21 used PCC, PLV, and PLI to construct CFMs from ten frequency bands and considered SVM and CNN clas-
sifiers. The three types of features were represented in a 3D map individually whose size was n× n× 10, where n 
is the number of EEG channels, and 10 is the number of frequency bands. Liu et al.19 used PCC for feature extrac-
tion from four frequency bands for n× n× 4 sized CFM, and then they used a combined CNN + SAE + DNN 
model to classify emotions. The studies19,21 revealed that the connectivity features improve the performance over 
the individual channel feature.

EEG‑based emotion recognition through information enhancement in CFM
It is closely observed from the existing methods that CFM, by a particular connectivity method, is mainly a sym-
metric 2D matrix having replicate feature values in upper and lower triangles. Such 2D CFM is suitable to place 
as input of CNN as inherited convolutional operation with the 2D kernel of CNN is its most powerful feature. 
Therefore, most of the existing studies (such as14,19–21) used to train CNN with produced 2D CFM with redun-
dant feature values. According to our knowledge, the study16 considered only the upper triangle of 2D CFM that 
minimizes redundancy, but they reformed the triangle values to 2D matrix form to make it suitable for CNN. 
Redundant feature values are ineffective in improving the performance of any ML/DL model (e.g., CNN), and 
more variant but relative information is suitable to improve the model’s performance. As CNN prefers 2D-sized 
CFM, the information enhancement in 2D CFM is a key issue for better performance by CNN which has been 
explored and managed through an innovative technique in this study.

The construction of improved CFM (called fused CFM) for harmonizing relatively more extensive connec-
tivity feature values from EEG signals is the primary issue of the study to develop a well-performed EEG-based 
ER. CNN is adopted to classify emotion from the fused CFMs. Considering preprocessing of EEG data as a 
standard step of ER, Fig. 1 demonstrates the proposed ER system. There are four major steps: preprocessing the 
EEG signals, two CFMs (called base CFMs) construction using two different connectivity methods, fused CFM 
construction from these two base CFMs, and classification of emotions from the fused CFMs by CNN. The fol-
lowing subsections describe these steps of ER system briefly.

Benchmark dataset and preprocessing.  Database for Emotion Analysis using Physiological Signals 
(DEAP)51, one of the largest EEG datasets for ER, was considered to evaluate the performance of the proposed 
ER system. It includes EEG and peripheral physiological signals of 32 subjects (16 males and 16 females), where 
40 emotional music videos were used as stimuli. Additionally, the database has subjective scores that character-
ize the emotional states brought on by seeing the movies in terms of their levels of Valence, Arousal, Liking, 
and Dominance. The DEAP database uses the BioSemi ActiveTwo system to record data. The EEG electrodes 
are placed according to the 10/20 international standard. This study employed preprocessed EEG signals from 
the database, which was downsampled to 128 Hz, EOG artifacts were removed, and a band-pass frequency filter 

Figure 1.   The framework of the proposed emotion recognition system from EEG.
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with a range of 4.0–45.0 Hz was used. There were 40 channels total, of which 32 were for EEG signals and the 
remaining channels for peripheral physiological inputs.

In the DEAP dataset, the length of the signal was 63 s: the first 3 s of data were the pre-trial baseline, which was 
removed, and the last 60 s of data were processed for this study. To increase samples for training, the EEG signals 
were segmented. An ideal segmentation time window size is 3–12 and 3–10 s, which preserves the key informa-
tion of Valence and Arousal levels, respectively, as demonstrated by Candra et al.52. For this experiment, EEG 
signals were segmented using an 8 s sliding time window with an overlap of 4 s. Thus, 14 segments were obtained 
from a 60 s trial, and the total segments for 32 participants were 14 × 32 (participants) × 40 (trial) = 17,920; those 
are the samples to construct CFM. It is reported that emotion is highly related to Gamma and Beta sub-bands16. 
Only the Gamma sub-band was considered in this study for final evaluation. EEGLAB53, an open-source tool-
box, was used to extract sub-bands from the EEG signal. Among the four quality levels available in the dataset, 
Valence and Arousal are the two well-studied scales which were chosen for ER in this study. In the dataset, each 
of the Valence and Arousal values ranges from 1 (low) to 9 (high). The scales were divided into two parts for ER 
task as binary classification. Similar to the work in16, Valence or Arousal is considered as high for values above 
4.5 and low for less than or equal to 4.5. At a glance, Valence and Arousal classifications must be performed 
through two independent binary classification tasks. By combining Valence and Arousal, human emotions (e.g., 
Angry, Happy, Sad) can be expressed; often, these are visualized using Russell’s circumplex model of emotions54.

Connectivity feature map (CFM) construction and fusing CFM.  The  feature extraction tech-
nique transforms inputs to new dimensions, which are different (linear, nonlinear, directed, etc.) combinations 
of the inputs. The strength of connectivity between two electrodes reflects an interaction between two cortical 
areas during one experiment. This interaction could be a direct correlation or inverse correlation, synchroniza-
tion, or asynchronization, depending on what aspects are investigated. Relationships vary depending on the 
connectivity types as well. Four diverse connectivity methods are chosen for this study: PCC, PLV, MI, and 
TE. Among the selected methods, PCC is a linear functional connectivity method, PLV and MI are nonlinear 
functional connectivity methods, and TE is a nonlinear effective connectivity method. Following subsections 
briefly describe CFM construction using the four methods and improved CFM construction fusing base CFMs.

CFM construction using individual methods.  Pearson correlation coefficient (PCC) measures the linear correla-
tion between two signals X and Y  , which can be calculated as

where n is the sample size, Xi , Yi are the individual sample points indexed with i . The value of PCC ranges from 
− 1 to 1. (− 1): complete linear inverse correlation between the two signals, (0): no linear interdependence, (1): 
complete linear direct correlation between the two signals.

Phase-locking value (PLV) describes the phase synchronization between two signals, which is calculated by 
averaging the absolute phase differences as follows-

Here, ϕt is the phase of the signal at time t, X and Y  denote two electrodes, T is the time length of the signal. The 
value of PLV ranges from 0 to 1, indicating that the two signals are either perfectly independent or perfectly 
synchronized, respectively.

Mutual Information (MI) is an information theoretic approach to measuring shared information between two 
variables. The amount of information about one random variable that may be learned from observing another is 
measured as MI. The following is the definition of MI between two random variables, X and Y :

In this case, H stands for Shannon entropy55. For calculating the probability that is required to calculate Entropy, 
the fixed bin histogram approach was followed. The number of bins selected for all the calculations is 10. The 
marginal entropies of the two variables X and Y  are H(X) and H(Y) , respectively, and their combined Entropy is 
H(X,Y) . MI is symmetric and nonnegative. The range of MI’s value is: 0 ≤ MI(X,Y) < ∞ . If MI(X,Y) is equal 
to 0, then X and Y  are independent. If MI(X,Y) is greater than 0, then X and Y  are dependent.

The transfer entropy (TE) measures the directed flow of information from a time series or signal Y  to another 
signal X . In other words, it describes the gain obtained by knowing Y  for the prediction of X.

If w is the future of X, i.e.,Xt+h , transfer Entropy TY→X can be computed as a combination of entropies:

The ranges of TE value are 0≤ TEY→X < ∞ . If the TE value is equal to 0, then there is no causal relationship 
between the time series. TE value greater than 0 indicates that a causal relationship exists between them.
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In the case of CFM, the variables are signals from individual EEG channels. The connectivity features were 
calculated for every pair (X,Y) of EEG channels. Therefore, if there are N  channels, the number of obtained 
features is N(N − 1)/2 for undirected connectivity (e.g., PCC) and N(N − 1) for directed connectivity (e.g., 
TE). The connectivity features for all channel pairs can be represented in a matrix, and Fig. 2 shows the heatmap 
representation of sample CFMs constructed with individual methods. The element of the matrix at the position 
(X,Y) indicates the connectivity between the EEG signals obtained from the X th and Y  th channels. The values 
of location (X,X) or (Y ,Y) were set to zero, as these are not information between two different channels. If 
there are N channels, then every feature map has N rows and N columns. As there are 32 channels in the DEAP 
dataset, thus every feature map has 32 rows and 32 columns. Figure 2a shows a sample CFM constructed with 
PCC, which indicates the correlation between signals collected from two EEG channels. More specifically (as an 
example), the higher value of the matrix at position (2, 4) indicates that the signals collected from channel 2 and 
channel 4 are highly correlated, while the lower value of the matrix at position (2, 3) indicates that the signals 
collected from channel 2 and channel 3 are inversely correlated. Similarly, phase synchronization, dependency, 
and causal relationship between two signals are indicated by Fig. 2b,c,d respectively. It is observed from Fig. 2 
that the elements of a matrix at position (X,Y) and (Y ,X) are the same (i.e., CFMs are symmetric) for functional 
connectivity methods PCC, PLV, and MI. However, these are not the same (i.e., asymmetric CFM) for effective 
connectivity method TE. Another important observation from the figure is that value ranges are different in 
different CFMs due to the inherited properties of individual connectivity methods. Among the four individual 
methods, CFM using PCC holds a large variation in their values, and it is -0.99 to 0.98 in the sample presented 

Figure 2.   Heatmap representation of sample connectivity feature maps (CFMs) constructed with individual 
methods. Seaborn library of Python (https://​seabo​rn.​pydata.​org/) is used to generate heatmap.

https://seaborn.pydata.org/


7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13804  | https://doi.org/10.1038/s41598-023-40786-2

www.nature.com/scientificreports/

in Fig. 2a. The values in CFMs by PLV and MI vary from 0.0 to 0.82 (for PLV) or more than 1(for MI). At the 
same time, the values for TE vary from 0.0 to 0.27.

Improved CFM construction fusing base CFMs.  Improved CFM Construction fusing CFMs constructed by 
individual methods is the central significance of the present study. Six new CFMs can be constructed by com-
bining (i.e., fusing) every two of the four individual CFMs depicted in Fig. 3 as heatmaps. As an example, Fig. 3a 

Figure 3.   Heatmap representation of sample fused connectivity feature maps (CFMs) constructed with every 
two different methods. Seaborn library of Python (https://​seabo​rn.​pydata.​org/) is used to generate heatmap.

https://seaborn.pydata.org/
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shows a sample CFM constructed with PCC + PLV where the upper triangular portion (elements of the matrix 
at position (X,Y) for X < Y  ) contain features extracted with PLV, and the lower triangular (for X > Y  ) portion 
holds PCC features. Similarly, CFMs constructed with PCC + MI, PCC + TE, PLV + MI, PLV + TE, and MI + TE 
are shown in Fig. 3b,c,d,e,f, respectively. It is already discussed that CFM constructed with TE is asymmetric; 
therefore, it is a matter of choice to select between upper triangular or lower triangular to fuse with the other 
three methods (i.e., PCC, PLV, and MI). Since the variation between upper and lower triangular TE CFM is not 
much, only one is considered to combine with the other and is shown in Fig. 3.

The information enhancement without enlarging size is the main significance in CFM fusion in Fig. 3 over 
the CFMs with individual methods of Fig. 2. The CFMs in Fig. 2 hold redundant information completely or 
partially. CFMs with PCC, PLV, and MI are symmetric and provide complete redundancy of individual values, 
whereas CFM with TE also holds similar values in upper and lower portions and hold partial redundancy. While 
redundant information only increases the computation burden in ML without any benefit in decision making, 
fusing CFM is beneficial for ML as its upper and lower portions were managed from two different connectivity 
methods and enhanced information in CFM. While the sizes of fused CFMs (in Fig. 3) are the same as those of 
individual methods (in Fig. 2), fusing CFM is a cost-effective as well as efficient information enhancement for ML.

Differences in value ranges (i.e., the difference between the highest and the lowest range) in CFMs by indi-
vidual methods (e.g., PCC, PLV) expose diversity in CFMs constructed by combing individual methods. It is 
already observed from CFMs of individual methods (in Fig. 2) that values for PCC hold large variations, then 
PLV and MI, and variation for TE is the lowest. Therefore, when PCC combines with another method, resulted 
CFM shows a large variation in the value ranges. Among the six fused CFMs, PCC + MI shows the highest 
values variability, and PLV + TE shows the lowest variability as the CFMs presented in Fig. 3. It is notable that 
the CFM figures are colorized with relative values (i.e., the lowest one is blue, and the highest one is red) the 
colors for values for individual methods (in Fig. 2) are changed in the combing cases (in Fig. 3). Finally, CFMs 
with combing two individual methods enhanced the data value variation at a glance, which is also an element 
to enhance the performance of ML.

Emotion classification using convolutional neural network (CNN).  Among different DL meth-
ods, CNN is the most successful classifier for two-dimensional (2D) data and can implicitly extract relevant 
features56,57. Since the constructed CFMs are in 2D, CNN was chosen as a suitable classifier. In general, a CNN 
architecture consists of an input layer, several convolutional-subsampling layers, a flatten layer, a fully connected 
layer, and an output layer. The first operation of a CNN is convolution performed on the input (matrix, image, or 
map) with its kernel, which generates a new convolved matrix. Preceding subsampling operation will downsize 
the convolved matrix with important features. After one or more convolutional-subsampling operations through 
a fully connected dense layer, the output layer categorizes the given 2D matrix as input of the CNN. The general 
description of CNN and its operations are available in existing studies, where CNN and its architectural issues 
are the primary concern56,58.

Figure 4 shows the CNN architecture to classify emotions from 2D CFMs; such architecture has been used in 
recent EEG-based studies9. Three convolutional layers, two max-pooling layers, flatten layer, a dense layer, and an 
output layer make up the CNN architecture employed in this study. In the figure, the size of generated 2D shape 
and the number of shapes are marked for each convolutional and pooling layer. Every convolution layer used 
kernels of size 3 × 3, and the stride was set to 1. Rectified linear unit (ReLU) was used as an activation function. 
The numbers of filters were 32, 64, and 128 for the 1st, 2nd, and 3rd convolution layers, respectively. The same 
convolution (padding = 1) is used for all the convolution layers to preserve the information from the pixels of 
a corner of the input feature map. Two max-pooling layers are used, one is after the first convolution layer, and 
another is after the third convolution layer. The 2 × 2 sized kernels with stride 2 were used in every pooling layer. 
After each max-poling layer, batch normalization was used to accelerate the model training. After convolution 
and pooling operations, the feature maps were flattened to a single-column vector of 8192 (= 8 × 8 × 128) and fed 
to the dense layer. The dense layer and output layer’s respective neuron counts were set at 128 and 2, respectively, 
and the dense layer is accompanied by a 25% dropout. In the output layer, the "Sigmoid" activation function was 
applied. Table 1 shows the shape and hyperparameter of the CNN model.

Figure 4.   CNN architecture (with dimension of individual layers) to classify emotions from CFMs.
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Experimental studies
This section presents experimental results and analyses of ER systems with CFMs created by different methods 
(i.e., MI, NMI, and PMI) individually and fused CFMs on the DEAP EEG dataset. The efficacy of the method 
was assessed based on the test set recognition accuracies. Finally, the outcomes of the study were compared with 
the state-of-the-art methods. However, the experimental setup and evaluation metric are described briefly first.

Experimental setup and evaluation metric.  Keras and TensorFlow frameworks of Python were used 
for implementing the CNN models. The CNN was trained by the Adam algorithm59, and binary cross-entropy 
was used as the loss function. The learning rate, batch size, and epochs for the CNN were set to 0.00001, 32, and 
500, respectively. A fivefold cross validation (CV) was applied where 20% of the available data were reserved as a 
test set by turn, while 80% of the data was used to train the model. Moreover, the performance was also evaluated 
for fixed training and test sets in several cases. The P100 GPU in the Kaggle platform was used for training the 
model, and MATLAB R2021a was used for feature extraction through the device of configuration: CPU: Intel(R) 
Core(TM) i5-4200 CPU @ 2.50 GHz, RAM: 4.00 GB, 64-bit windows operating system.

The performance of the implemented model was evaluated using the three most widely used evaluation 
metrics (i.e., sensitivity, specificity, and accuracy), which can be expressed as:

Here TP or true positive means the samples were originally labeled as high, and the model also predicted those as 
high, TN or true negative means the samples were originally labeled as low, and the model also predicted those 
as low, FP or false positive means the samples were originally labeled as low, but the model predicts those as 
high, FN or false negative means the samples were originally labeled as high but the model predicts those as low. 
Sensitivity is the percentage of true detected high-labeled samples to total high-labeled samples, and specificity 
is the percentage of true detected low-labeled samples to total low-labeled samples. An excellent classifier should 
have high sensitivity and specificity at the same time. Notably, performance on the test set is more desirable, 
representing the generalization ability of an ML/DL system.

Experimental results and analyses.  Model’s loss and accuracy curves for Valence and Arousal clas-
sification for a sample run are analyzed first, and then the classification results are presented for both fivefold 
CV and training-test split mode. The performance of different sub-bands (i.e., Alpha, Beta, and Gamma) and 
full frequency band have been evaluated with individual connectivity feature maps (CFMs) for a more reason-
able comparison. Since the notion of training loss and accuracy are found to be similar for all the sub-bands, 
graphical illustrations of varying training epochs are presented for the Gamma band only in Fig. 5. Figure 5 
shows the model’s training loss and accuracy curves on both training and test sets for Valence classification for a 
sample run where CFMs are constructed using the individual connectivity method. In ML, the performance of 
the training set indicates the learning or the memorization of the patterns used in training a model. At the same 
time, performance on the test set indicates the generalization ability (i.e., performance well behind the training 
data) of a model. According to Fig. 5a, the loss convergence for TE is faster than any other method, and simi-
larly, the accuracy improvement in Fig. 5b. In the test set’s accuracy, TE shows the worst performance, whereas 
MI achieved the highest accuracy, as seen in Fig. 5c. The test set accuracies of PCC and PLV are competitive. 
The test set accuracy is inferior to the training set score for the model. The scenario is acceptable because the 
test set was reserved for checking the performance of unseen data (i.e., not used in the training process), and 
lower performance on the test set than the training set is common in the ML domain. Test set performance (i.e., 
generalization ability) is the key performance measure element of a model and is used to compare with other 
related models.

Figure 6 compares test set classification accuracies with CFMs by the individual connectivity methods for 
Alpha, Beta, Gamma and full frequency bands. As mentioned earlier, it is reported in the literature that the 

(6)Specificity = TN/(TN + FP)

(7)Sensitivity = TP/(TP + FN)

(8)Accuracy = (TP + TN)/(TP + TN + FP + FN)

Table 1.   Shape and hyperparameter of CNN model.

Layer and type Input shape Kernel size, count Pooling size Stride Output shape

Conv2D 32 × 32 (CFM) 3 × 3, 32 – 1 × 1 32 × 32 @ 32

MaxPooling2D 32 × 32 @ 32 – 2 × 2 2 × 2 16 × 16 @ 32

Conv2D 16 × 16 @ 32 3 × 3, 64 – 1 × 1 16 × 16 @ 64

Conv2D 16 × 16 @ 64 3 × 3, 128 – 1 × 1 16 × 16 @ 128

MaxPooling2D 16 × 16 @ 128 – 2 × 2 2 × 2 8 × 8 @ 128

Flatten 8 × 8 @ 128 – – – 8192

Dense (Hidden) 8192 – – – 128

Dense (Output) 128 – – – 2 (Emotion Category)
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sub-bands may yield more accurate information about constituent neuronal activities15, and emotion is highly 
related to the Beta and Gamma sub-bands than the Alpha sub-band. The experimental results presented in Fig. 6 
also justify the matter of frequency band compatibility for emotion recognition. According to the figure, the 
recognition accuracy is generally higher in sub-bands than full EEG frequency band for any CFM construction 
method. Again, accuracies for the Gamma sub-band are better than the Alpha and Beta sub-bands for both 
Valence and Arousal classifications. Recent studies also demonstrated such observation9. Therefore, owing to 
achieving better accuracy, further experimental outcomes have been observed for the Gamma band only for 
simplicity in keeping the paper concise.

Figure 7 shows the model’s loss and accuracy curves on both training and test sets for Valence classification 
for a sample run with fused CFMs where CFMs are constructed using a combination of every two connectivity 
methods. As the two CFMs constructed with two angular portions of TE showed similar characteristics, and one 
of them is displayed here. According to Fig. 7a, the loss convergence for the methods where PCC is combined 
with any other methods (i.e., PCC + PLV, PCC + MI, PCC + TE) is slower than any other methods, and similarly, 

Figure 5.   Model loss and accuracy for Valence classification using CFMs with individual connectivity method.

Figure 6.   Valence and Arousal classification accuracies with individual connectivity methods in different 
frequency sub-bands and full frequency band.

Figure 7.   Model loss and accuracy for Valence classification using fused CFMs with two connectivity methods.
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the accuracy improvement in Fig. 7b. TE combined methods show lower test sets’ accuracy where PLV + MI 
achieved the highest accuracy, as seen in Fig. 7c. The accuracies of PCC + MI and PCC + PLV are competitive.

Interestingly, test set accuracy with MI is better than others, as found in Fig. 5c, and the MI combined method 
PLV + MI is better than others, as found in Fig. 7c. Similar characteristics can also be observed for TE, which 
obtained the lowest test set accuracy in Fig. 5c, and the TE combined method PLV + TE obtained the lowest test 
set accuracy among the combined methods, as found in Fig. 7c. At a glance, PLV + MI achieved better accura-
cies than any other individual or combined CFM method. Figure 8 summarizes the test set accuracies in the 
training-test split mode for six fused CFMs in Valence and Arousal scales. According to the achieved classification 
accuracies presented in the figure, the PLV + MI method achieves the highest Valence and Arousal classification 
accuracies, which are 91.29% and 91.66%, respectively. On the other hand, the worst achieved accuracy was 
with PLV + TE.

Table 2 demonstrates test set classification performance in different evaluation metrics for Valence and 
Arousal with different CFMs for fivefold CV and training-test split modes. The training-test split may consider 
as one individual case among the five cases of fivefold CV mode, and similar performance is also observed 
among the different CFMs cases. The best performance for a particular evaluation metric and mode is placed in 
boldface. As an example, for Valence and Arousal classification, MI achieved the best specificity, sensitivity, and 
accuracy in both modes. The lowest results were achieved with the TE feature in both modes. The performances 
of PCC and PLV are competitive. At a glance, MI shows superior performance over other connectivity methods.

Table 3 presents the classification comparison using different combined connectivity feature map methods. 
From the table, it can be observed that PCC + PLV has achieved the highest specificity for Valence classification 
in fivefold CV mode. For Arousal classification, PCC + MI has achieved the highest specificity in the fivefold CV 
mode. PLV + MI has obtained the highest specificity for both Valence and Arousal classification in training-test 
split mode. In the case of sensitivity and accuracy, PLV + MI has shown the best performance for both Valence 
and Arousal classification in both fivefold CV and training-test split modes.

While the proposed method has been found effective in the experiments conducted by shuffling samples for 
all 32 subjects, it is also interesting to know how it performs individual subject basis (i.e., subject-dependent) 
and cross-subject basis (i.e., subject-independent). Different experiments have been conducted to evaluate the 
proposed method for subject-dependent and subject-independent issues. In subject-dependent cases, for a par-
ticular subject, the available 560 samples (= 14 segments × 40 trials) were shuffled, 448 samples (i.e., 80%) were 
used to train the CNN, and the rest 112 samples (i.e., 20%) have been reserved as the test set. Figure 9a shows 
Valance and Arousal test set classification accuracies for 32 subjects individually for fused CFM by PLV + MI as 
it has outperformed others. For Valance classification, 100% accuracy (i.e., truly classified all 112 test samples) 
has been observed for Subject 1 only, and the worst accuracy has been found to be 82% for Subject 12 and Subject 
25. In the case of Arousal classification, the method showed 100% accuracy for Subject 9 only, and the lowest 

Figure 8.   Test set accuracies for CFM with individual methods and fused CFMs in Valence and Arousal 
classification for Gamma sub-band.

Table 2.   Classification comparison using different individual CFM methods. Significant values are in bold.

Fivefold CV
Training-test sets split as 
80–20%

PCC PLV MI TE PCC PLV MI TE

Valence

Specificity (%) 82.26 81.37 85.27 55.28 83.28 79.42 85.91 46.10

Sensitivity (%) 90.45 91.31 92.74 83.70 90.80 92.97 93.01 89.96

Accuracy (%) 87.43 87.64 89.98 73.22 88.03 87.97 90.40 73.80

Arousal

Specificity (%) 81.04 81.63 84.06 54.66 83.07 83.07 85.68 44.41

Sensitivity (%) 92.30 91.97 93.60 84.45 92.60 92.38 93.30 91.37

Accuracy (%) 88.22 88.22 90.14 73.65 89.15 89.01 90.54 74.36
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Table 3.   Classification comparison using different fused CFM methods. Significant values are in [bold].

Five(5)-fold CV Training-test sets split as 80–20%

PCC + PLV PCC + MI PCC + TE PLV + MI PLV + TE MI + TE PCC + PLV PCC + MI PCC + TE PLV + MI PLV + TE MI + TE

Valence

Specificity 
(%) 85.32 84.32 79.01 85.27 79.05 83.39 84.19 85.01 77.45 86.00 79.03 83.20

Sensitivity 
(%) 92.75 92.85 90.33 93.89 89.38 91.94 93.58 93.68 92.13 94.38 90.80 92.79

Accuracy 
(%) 90.01 89.71 86.16 90.71 85.57 88.79 90.12 90.49 86.72 91.29 86.47 89.26

Arousal

Specificity 
(%) 84.80 85.16 76.84 85.12 78.01 81.26 84.60 85.84 77.75 86.15 79.13 82.21

Sensitivity 
(%) 92.97 93.42 91.88 94.29 90.30 93.21 94.13 93.25 91.90 94.78 90.02 93.39

Accuracy 
(%) 90.01 90.43 86.43 91.15 85.84 88.88 90.68 90.57 86.77 91.66 86.08 89.34

Figure 9.   Subject-dependent and subject-independent test set classification accuracies with fused CFM with 
PLV + MI.
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accuracy was 87% for Subject 22. The subject-dependent average accuracy for both Valance and Arousal cases is 
around 93%, better than all subjects shuffled together. Subject-dependent better performance is logical as samples 
were used to train the CNN for the same subject. At the same time, such performance justified the proficiency 
of the proposed method for emotion classification in individual subject cases.

Figure 9b shows Valance and Arousal classification accuracies for fused CFM by PLV + MI in the subject-
independent measure through leave-one-subject-out mode, where classification accuracies were measured for a 
particular subject (with 560 samples). At the same time, CNN training was performed with 17,360 (= 560 × 31) 
samples of the remaining 31 subjects. The Valance and Arousal accuracies for subject-independent cases are 
generally inferior to the subject-dependent case. However, higher than 80% accuracies for Valance classification 
in two subjects (i.e., 6 and 27) and Arousal classification in four subjects (i.e., 12, 13, 20, and 24) are promising 
outcomes. In addition, five other subjects (i.e., 3, 7, 16, 18, and 23) for Valance and six other subjects (i.e., 9, 17, 
21, 25, 27, and 32) for Arousal are shown accuracy higher than 70%. Better performance on several subject-
independent cases is achievable when similar patterns are available in training samples. On the other hand, when 
the test subject samples are largely different from the training subjects’ samples, it is common to get inferior 
accuracy. The inferior outcomes (say, accuracy below 70%) for a number of subject cases indicate that the corre-
sponding subjects’ samples are largely dissimilar from other subjects. At a glance, the average subject-independent 
classification accuracies are around 65% for both Valance and Arousal cases. The achieved subject-independent 
classification accuracy is better than or competitive with the reported accuracies in several studies such as28,60. 
However, it is a remaining challenging issue for the proposed method to achieve better subject-independent 
classification accuracy by analyzing CFM construction and employing different DL models.

Figure 10 presents the time required to train the CNN with four based CFMs (of four individual connectivity 
methods) and six fused CFMs. The legend of the figure indicates the required time to train with the name of the 
respective CFM. It can be observed from the figure that the time needed to train with different CFMs is almost 
the same (and they together seem like a single bold line). For example, PCC requires 814.73 s, and PCC + PLV 
requires 813.25 s to train the model up to 500 epochs. The figure revealed that using fused CFMs does not incur 
additional computational costs. The reason is apparent because the size of a fused CFM is the same as that of 
individual base CFMs, and the CFM size is always 32 × 32 matrix, as explained in Section “EEG-based emotion 
recognition through information enhancement in CFM”. For the same 32 × 32 sized input CFM and the same 
CNN architecture, CNN training times are expected for the base and fused CFMs to be unchanged. However, 
CFM fusion may look like an additional task in the proposed method over the training CFM-based methods, 
but the CFM fusing task is computationally negligible as fusion only replaces a portion of CFM with another 
CFM. Finally, the CFM fusion takes place before the training of CNN, and therefore, CNN training time remains 
the same.

Performance comparison with existing methods.  Table 4 compares the Valence and Arousal test set 
classification accuracies obtained in this study with other connectivity feature-based ER studies on the DEAP 
dataset. The existing methods are diverse in segmentation time and overlapping, classifier consideration, and 
validation methods (i.e., the mode of test sample reservation: fixed training—test sample split ratio or cross-
validation). Due to such variations, unbiased fair performance comparison based on a particular element is 
ponderous. However, classification accuracy variation with segmentation time and overlapping are more vis-
ible than other elements (e.g., classifier uses, validation method). Segmentation splits an original EEG sam-
ple into several individual samples depending on the time window and overlapping, and a larger overlapping 
produces more samples (i.e., CFM). With 3 s segment window with 0 s overlap (i.e., no overlap), there are 20 
samples for 60 s EEG signal in the study16; whereas, with 2.5 s overlap (= 2.5/3 = 83%), there are 100 + samples 
for the same 3 s segment window in the study21. For PCC, the best accuracy was achieved by the study21 having 

Figure 10.   CNN training time for the models with different CFMs.
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larger overlapping than others; the achieved Valance classification accuracy is 94.94% by CNN in fivefold CV 
mode. The study19 considered two segmentation time windows, 8 s and 12 s, with different overlapping 50% and 
66%, using CNN to classify emotion. The segmentation time window of the study is longer than other studies 
(e.g.,16,21), and it achieved accuracies higher than the study16 but lower than the study21. The study19 stated that 
with higher overlapping, the neighboring data segments become more similar, i.e., features could be learned 
better when similar information is included in each trial. The study19 also shows that a longer segmentation time 
window reduces accuracy. As a shorter segmentation produces large samples, it is beneficial to train an ML/DL 
model properly and give better performance. On the other hand, a single CFM was produced from an original 
EGG sample for no segmentation cases in studies6,24,26, and achieved performance was always worse regardless of 
the classifiers used and the validation methods considered. However, when the overlap is too high, the number 
of data segments is larger, which requires a longer time for the training time of the ML/DL model.

In this study, CFM samples have been produced with a length of 8 s segment with 4 s overlap, and the best 
test set accuracies by CNN have been achieved with the fused CFM with PLV + MI. On reserved 20% of test 
samples, the achieved accuracies are 91.29% for Valence and 91.66% for Arousal. Moreover, the accuracies in 
fivefold CV cases are 90.71% and 91.15% for Valence and Arousal, respectively. A fivefold CV may consider 
the average of five independent runs of 80–20% training-test split modes; therefore, performance variation is 
usual. The achieved performance of this study is better than the traditional ML-based studies of 6,24,26, regardless 
of the validation modes considered. While compared to the recent DL studies, the proposed method is better 
than19 and is competitive with20,32. In terms of segmentation, DL model, and validation mode, the present study 
is close to19; the study achieved accuracies for 8 s of segmentation by CNN are 78.80% and 82.25% for Valance 
and Arousal, respectively; the performance is inferior to our method even it considered high dimensional 3D 
CFM having size 32 × 32 × 4. On the other hand20,32 studies considered 3 s segmentation with 2.5 s overlap; thus, 
better performance over the proposed approach is justified. Moreover, the study20 considered a hybrid DL model 
and different validation modes; the study21 considered high-dimensional 3D CFM with and size of 32 × 32 × 10. 
Such complex DL model and heavy CFM might also be the reasons to get better performance with CFM by PLV.

It is observed from Table 4 that the existing methods are roughly in three categories based on CFM size and 
shape consideration: 32 × 32 sized 2D CFM, 3D CFM in different sizes and shapes, and 23 × 23 sized 2D CFM. 
As the DEAP dataset holds EEG signals of 32 channels, 32 × 32 sized 2D CFM construction is the basic approach 
by individual connectivity methods; several existing studies (i.e.,6,20,24,26) and the proposed method used of this 
study considered 32 × 32 sized 2D. Despite the same 32 × 32 size, CFM values of the proposed method are sig-
nificantly different with respect to the existing ones. Existing studies generally produced symmetric CFMs using 
a particular connectivity method (e.g., PCC, PLV, MI) that holds redundant connectivity values in upper and 
lower triangles in the CFM. On the other hand, the proposed method considered fused CFM where upper and 
lower triangles hold connectivity values from two different base CFMs produced by two individual methods, 
e.g., PLV and MI. Regardless of the segmentation and validation mode, the proposed method with 32 × 32 sized 
2D CFM outperformed the methods of6,24,26 and justified the effectiveness of the fused CFM consideration. The 
better performance by PLV in20 is also acceptable due to shorter segmentation and hybrid DL model considera-
tion, as already discussed. Similarly, high dimensional 32 × 32 × 10 sized 3D CFMs of PCC and PLV with 3 s 
segmentation in the study21 are shown better performance than the proposed method.

Table 4.   Performance comparison of the proposed method with other connectivity feature studies on DEAP 
dataset.

CFM method Work References CFM size
Segmentation time window 
(overlapping) Classifier Train-test split/cross validation

Test set accuracy 
(%)

Valence Arousal

PCC

6 32 × 32 No segmentation SVM Leave 01 trial out 72.91 72.34
16 23 × 23 3 s (0 s) CNN 90%–5%–5% (Sep. validation set) 78.22 74.92
21 32 × 32 × 10 3 s (2.5 s) CNN fivefold CV 94.44 –

19 32 × 32 × 4

8 s (4 s) CNN + SAE + DNN

80–20%

89.49 92.86

12 s (8 s)
CNN

75.13 76.12

8 s (4 s) 78.80 82.25

PLV

6 32 × 32 No segmentation SVM Leave 01 trial out 73.75 71.88
21 32 × 32 × 10 3 s (2.5 s) CNN fivefold CV 99.72 –

20 32 × 32 3 s (2.5 s) DARCNN
tenfold CV 95.15 94.84

Leave 01 subject out 88.28 87.60

MI
6 32 × 32 No segmentation SVM

Leave 01 trial out
76.17 73.59

26 32 × 32 No segmentation SVM 60.10 63.50

NMI 24 32 × 32 No segmentation SVM 80–20% 75.16 74.41

TE 20 32 × 32 3 s (2.5 s) DARCNN
tenfold CV 89.06 89.73

Leave 01 subject out 81.50 81.39

PLV + MI (Present study) 32 × 32 8 s (4 s) CNN
80–20% 91.29 91.66

fivefold CV 90.71 91.15
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The proposed method is close to the study regarding redundancy minimization of CFM values, but the 
proposed method seems more practical. Among the existing studies, only one study16 considered smaller 2D 
CFM. The 23 × 23-sized CFM is the reformed version of the upper triangle of 32 × 32-sized symmetric 2D CFM 
produced by PCC. Using an upper triangle minimizes the redundancy issue of the base CFM by PCC. Never-
theless, the performance by CNN on 5% of test samples, while trained by 90% (similar to tenfold CV), is not 
remarkable; the method achieved test set accuracies of 78.22% and 74.92% for Valance and Arousal classifica-
tion, respectively. The proposed fused CFM of this study also minimizes redundancy, and at the same time, it 
also enhances information, including connectivity values from a different CFM. The test set accuracies of the 
proposed method with fused CFM with PCC (i.e., PCC + PLV, PCC + MI, PCC + TE) are higher or around 90% 
for both Valance and Arousal cases, as reported in Table 3 of Section “Experimental results and analyses”. Such 
remarkable outperformance revealed the effectiveness of fused CFM consideration and identified the proposed 
method as a best-suited promising EEG-based ER method.

Conclusions
The connectivity feature map (CFM) of the EEG signal, comprising signals from pairs of channels, is an effective 
2D representation of the EEG signal for emotion recognition using DL. Existing connectivity methods construct 
mostly symmetric CFM having redundant values. As redundant feature values are not effective in improving the 
DL model’s performance, minimizing redundancy as well as information enhancement in CFM is investigated 
in this study for improved EEG-based emotion recognition. This study has proposed a fused CFM construc-
tion method integrating two different triangular sections from two CFMs produced by two different individual 
methods. Thus, the fused CFM holds more information than a traditional CFM. Specifically, four widely used 
connectivity methods (i.e., PCC, PLV, MI, and TE) have been used to produce four base CFMs, and then six 
fused CFMs (i.e., PCC + PLV, PCC + MI, PCC + TE, PLV + MI, PLV + TE, and MI + TE) have been constructed. 
Considering information-enhanced fused CFM as the main focus of the study, a generic CNN architecture is 
used for emotion classification from CFMs for simplicity and brevity.

The proposed method with six different fused CFMs has been evaluated on the DEAP benchmark EEG dataset 
and rigorously compared with four base CFMs based on emotion classification from CFMs by CNN. Due to the 
distinct properties of base CFMs, performance is found to be different from the fused CFMs. Among the base 
CFMs, TE was inferior to others; and the fused CFMs with TE (i.e., PCC + TE, PLV + MI, PLV + TE, and MI + TE) 
were not found so effective in improving performance. Base CFMs by PLV and MI are found to hold connectivity 
values more vibrant than others. Therefore, the fused CFM with PLV + MI is found to be the most promising in 
outperforming other individual or fused CFM methods. The outperformance or at least competitiveness of the 
proposed method to the state-of-the-art reveals the effectiveness of the information enhancement with CFM 
fusion. Interestingly, as demonstrated by experimental results, CFM fusion does not incur extra training time 
for CNN. However, the proposed method is found inferior to a few existing methods, which consider shorter 
segmentation and hybrid DL methods. On the other hand, the performance of the proposed method for cross-
subject cases is worse than subject-dependent cases; therefore, it is also a remaining challenging issue to achieve 
improved cross-subject classification performance with necessary techniques and modifications employment.

Several potential future research scopes appear from the present study. There are three emotional dimensions: 
Valence, Arousal, and Dominance. This study evaluates the proposed model only for Valence and Arousal dimen-
sions, which can be extended further by combining the Dominance emotional dimension. A CFM construction 
combing pairs of connectivity methods is found to be effective in this study over the CFMs with individual 
methods. A challenging but exciting extension of this study might be the different ways to integrate more features 
inside a fused CFM. A 3D CFM may be a possible extension combining multiple connectivity feature extraction 
methods (e.g., PCC + PLV + MI) with some innovative fusion techniques.

The innovative technique proposed in this study is expected to produce better outcomes in other EEG-based 
investigations. The proposed information-enhanced fused CFM is evaluated on the DEAP dataset for emo-
tion recognition in the present study. Specifically, treating CFM fusion as a general information enhancement 
approach may also be practical for obtaining better outcomes in seizure detection, autism detection, and other 
EGG-based machine learning studies.

Data availability
The data that support the findings of this study are available from DEAP Dataset (https://​www.​eecs.​qmul.​ac.​uk/​
mmv/​datas​ets/​deap/) but restrictions apply to the availability of these data, which were used under license for 
the current study, and so are not publicly available. Data are however available from the corresponding author 
(M. A. H. Akhand, Email: akhand@cse.kuet.ac.bd) upon reasonable request and with permission of DEAP 
Dataset authority.
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