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Segregation patterns in rotating 
cylinders determined by the size 
difference, density ratio, 
and cylinder diameter
Kurumi Kondo , Hiroyuki Ebata  & Shio Inagaki *

Granular materials often segregate under mechanical agitation, which differs from the expectation 
of mixing. It is well known that a bidisperse mixture of granular materials in a partially filled rotating 
cylinder exhibits alternating bands depending on the combination of the two species. The dynamic 
angle of repose, which is the angle that a steady avalanche makes with the horizontal, has been 
considered the dominant parameter that determines the segregated state. However, the previously 
known angle of repose condition was not always satisfied in different experimental cases. To clarify 
the experimental conditions, we conducted an exhaustive parameter search with three dimensionless 
parameters: the particle size difference normalized by the average particle size, the specific density 
ratio, and the ratio of the cylinder diameter to the average particle size. Additional experiments were 
conducted to explore the effect of the rotational speed of the cylinder. This systematic approach 
enabled us to predict the segregated state. Moreover, we discovered that the band width can be 
effectively scaled by combining these three parameters.

A mixture of granular particles tends to segregate spontaneously based on size or shape when put in motion by 
mechanical agitation, such as flow, vibration, or rotation. The dissipative interaction between the particles plays a 
critical role in preventing mixing, as is generally the case for liquids and gases. In the industrial sector, 75% of raw 
materials are made of granular  material1. In terms of environmental issues, demixing technologies are required 
to remove toxic substances and extract rare metals from urban mines. Thus, efficient mixing and separation 
technologies are urgently needed. Moreover, the underlying principles must be understood to meet this need.

An intriguing segregation phenomenon arises when a binary mixture of grains in a partially filled horizontal 
cylinder is agitated by  rotation2,3. Within a few revolutions, small particles become concentrated in a central 
core along the axis, and large particles surround this core, which is known as radial segregation. The particles 
then segregate further into alternating bands along the axis containing either small or large particles. This axial 
segregation is counterintuitive because inhomogeneous particle distributions are enhanced by rotation despite 
the uniform mechanical agitation in the axial direction. Since axial segregation was first reported by Oyama in 
 19394, it has been extensively studied through  experimental5–10,  theoretical11–14, and  numerical15–17 methods. Das 
Gupta et al. experimentally showed that axial segregation occurred when θl < θs , where θl and θs are the dynamic 
angles of repose of large and small particles,  respectively18. The dynamic angle of repose, which is the angle that 
a steady avalanche makes with the horizontal, has long been widely believed to be the dominant parameter 
predicting whether axial segregation  occurs18–22.

However, some recent studies have questioned the validity of the condition of the dynamic angle of repose, 
θl < θs , required for axial segregation to  occur23,24. When radial segregation transforms into axial segregation, 
if the radial core is completely covered with an outer layer, it is very unlikely that the axial segregation process is 
driven by a surface phenomenon such as the difference in the dynamic angles of repose. For example, Pohlman 
et al. experimentally showed a counterexample to this empirical  condition23. Although it cannot be a coinci-
dence that this condition has held in many previous studies, no study has quantitatively determined when this 
condition holds. Some previous studies have suggested that axial band formation might be caused by the bulg-
ing of the radial core of small  particles25–29. In the process of axial segregation, axial band formation should be 
considered in two stages: the transition from mixed to radial segregation and the transition from radial to axial 
segregation. We aim to clarify the necessary conditions for each stage and elucidate the segregation mechanism 
of granular materials.
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Results
In previous studies, various parameters have been investigated as potential important variables, but in most cases, 
only one or two parameters were changed, while the others were fixed during  experiments29–34. In our study, 
we conducted experiments by exhaustively changing four parameters that are often considered important: the 
particle size and specific density and the diameter and rotational speed of the cylinder. First, we show segregated 
patterns with two combinations of particles, both of which are inconsistent with the axial segregation condition 
of θl < θs . The first combination includes glass beads (diameter of the large particle, dl =2 mm) and zircon beads 
(diameter of the small particle, ds = 1.1 mm). The detailed method for measuring the dynamic angle of repose 
is presented in the “Methods” section. Here, the rotational speed � and the diameter of the cylinder D are fixed 
at � = 14 rpm and D = 74 mm, respectively. As shown in Fig. 1a, a mixture of glass beads and zircon beads does 
not show axial segregation, even though the condition of θl < θs is satisfied at all rotation rates in the measure-
ment range. Radial segregation can be observed from the side view (not shown). Although the cylinder was 
rotated for more than a week, axial segregation did not occur. The second combination includes alumina beads 
( dl =2 mm) and glass beads ( ds = 0.6 mm). This mixture shows clear axial segregation (Fig. 1b), even though 
there is no significant difference in the dynamic angles of repose. This result indicates that the condition θl < θs 
is not necessarily satisfied when axial segregation occurs.

Figure 1c highlights the contradiction in the dynamic angles of repose in the phase diagram of the segregated 
state. In this figure, we plot the specific density ratio, ρ∗ = ρl/ρs , against the difference in the dynamic angles of 
repose, θs − θl . Note that ρl and ρs represent the specific densities of the large and small particles, respectively. 
Experiments were conducted with different combinations of four types of particles: glass, alumina, zircon, and 
zirconia beads. The rotational speed and the diameter of the cylinder were fixed at � = 14 rpm and D = 74 mm, 
respectively, as in the earlier experiments. According to the heuristic condition for axial segregation, axial seg-
regation should occur in the upper half of the diagram. However, axial segregation appears primarily in the 
domain ρ∗ > 1 irrespective of θs − θl . Notably, the heuristic condition tends to hold along the dotted line ρ∗ = 1 , 
as observed in many previous studies. Although the underlying mechanism is not yet fully understood, θl < θs 
has long been believed to be the condition for axial segregation because previous studies confirming this condi-
tion have mainly employed particles with identical specific  densities18,19. Figure 1c also suggests that the specific 
density ratio is an important parameter that influences the segregation pattern. However, in the domain ρ∗ > 1 , 
all three states, namely, radial, mixed, and axial, appear. Thus, to accurately classify the segregation states, we 
need to consider additional parameters.

Next, we consider the effect of different particle sizes on the segregated states. The diameter of the denser 
particles, alumina beads, is fixed at 2 mm, while the diameter of the lighter particles, glass beads, is varied from 
0.4 to 4 mm. The diameters of the alumina and glass beads are denoted as dA and dG , respectively. Figure 2 depicts 
the top views of the cylinder after rotating for 10 min. In the case of dG > dA , the side view shows that radial 
segregation occurred, with the glass beads covering the core composed of the alumina beads. This segregated 
radial structure was maintained for more than three days of rotation. This corresponds to the region ρ∗ < 1 in 
Fig. 1c. In the case of dG = dA , the two species with nearly identical radii remained in the mixed state for more 
than 24 h of rotation. In the case of dG < dA , after rotating for a few minutes, radial segregation occurred, with 
the alumina beads covering the core composed of the glass beads. Then, the exterior layer of alumina beads split 
into alternating bands along the axis of the cylinder. As the size difference increased, the band width became 

Figure 1.  (a,b) Upper panels: Dynamic angle of repose of a single species as a function of the rotational speed 
( � ). The dashed line shows � at 14 rpm. Lower panels: Top views of the cylinder after 10 min of rotation ( � = 
14 rpm). (a) Glass beads ( dl = 2 mm, red circles) and zircon beads ( ds = 1.1 mm, blue squares). (b) Alumina 
beads ( dl = 2 mm, red circles) and glass beads ( ds = 0.6 mm, blue squares). (c) Difference in the dynamic angles 
of repose, θs − θl , vs. the specific density ratio, ρ∗ = ρl/ρs . Three segregated states: radial (blue squares), mixed 
(green filled triangle), and axial (red circles) states with various combinations of particles with specific densities 
and diameters. Combinations of spherical particles are chosen from 4 types of materials (glass, alumina, zircon, 
and zirconia), and the diameters range from 0.2 to 4.0 mm. ( � = 14 rpm and D = 74 mm.).



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13495  | https://doi.org/10.1038/s41598-023-40774-6

www.nature.com/scientificreports/

wider. The results indicate that the particle size difference should be considered as a controlling parameter that 
influences the segregated state.

Figure 3a demonstrates the effect of the specific density ratio ρ∗ and particle size difference on the segrega-
tion state. The particle size difference is nondimensionalized as �∗ = (dl − ds)/dav , where the average diameter 
of the large and small particles is defined as dav = (dl + ds)/2 . In the experiments for this phase diagram, the 
particle diameter and density, and the cylinder diameter, D, were varied while maintaining the rotational speed 
of � = 14 rpm. The axial segregation state and other states (mixed and radial segregation) are mostly separated 
except near the boundaries. When the particle size difference is zero, segregation does not occur, even for glass 
and zirconia beads ( ρ∗ = 2.44), the combination with the highest specific density ratio. When 0.3 < �∗ � 1.3 , 
radial segregation always occurs within a few minutes after the start of rotation. With a moderate size difference, 

Figure 2.  Segregated state after 10 min of rotation ( � = 14 rpm). The white alumina beads have a diameter 
of 2 mm. The diameters of the glass beads (gray) are varied from 0.4 to 4 mm. Left panels: Top views of the 
cylinder. Right panels: Side views of the cylinder.

Figure 3.  Phase diagrams of the segregated states: radial (blue squares), mixed ( �∗ > 0.5 , green filled triangle), 
mixed ( �∗ < 0.5 , green open triangle), and axial (red circles). Mixed states with �∗ < 0.5 and �∗ > 0.5 
are distinguished and marked differently, reflecting their distinct origins of mixing. (a) Phase diagram using 
�∗ = (dl − ds)/dav and ρ∗ = ρl/ρs . (b) 3D phase diagram using �∗ , ρ∗ , and 1/D∗ . The mesh planes indicate 
the separating planes. For visibility, the mixed state at �∗ < 0.5 is not plotted. (c) Phase diagram projected onto 
2D space, with �̂∗ and ρ̂∗ as axes, according to Eqs. (1) and (2). The dotted lines correspond to the boundaries 
of the segregated state, with γ1 and γ2 indicating the positions of the vertical dotted lines and ρ0 indicating the 
position of the horizontal dotted line. The combinations of the particle species are chosen from glass, alumina, 
zircon, and zirconia beads with sizes ranging from 0.2 to 4 mm. Three different inner cylinder diameters ( D ) are 
used: 36 mm, 54 mm, and 74 mm. Here, 184 parameter combinations are considered.
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the larger particles tend to float to the surface, facing obstruction from the smaller ones. As a result, the larger 
particles are more prevalent in the external layer as they flow down the surface, leading to radial segregation. 
When the external layer is composed of less dense larger particles ( ρ∗ < 1 ), the segregated state remains radial 
regardless of how long the cylinder is rotated. If ρ∗ ≧ 1 , radial segregation transforms into axial segregation. 
When �∗ � 1.3 and ρ∗ > 1 , the geometrical blockage posed by the small particles weakens, allowing the larger 
beads to sink into the interior of the granular bed. This leads to the occurrence of reverse radial segregation, 
where the core is composed of large particles with high  density36. In cases where the formation of the core of 
reverse radial segregation is not clear, they are considered to be in a mixed state. Figure 3a demonstrates that 
axial bands are formed only when the external layer is composed of larger particles with high density and the 
size difference is moderate.

A critical issue in the phase diagram in Fig. 3a is that the segregated states cannot be completely separated 
along the boundaries between the axial segregation domain and the other domains ( ρ∗ ∼ 1 or �∗ ∼ 1.3 ). When 
�∗ < 1.3 , the regions with axial and radial patterns can be mostly separated based on the density ratio. How-
ever, along the line of ρ∗ = 1 , both patterns appear with the same particle size difference. Alexander et al.29 
reported that axial segregation disappeared when the ratio of the cylinder diameter to the average particle size, 
D∗ = D/dav , was less than a certain threshold. This suggests that in our phase diagram, an axis related to D∗ 
should be added to accurately classify the segregated states.

Figure 3b depicts a three-dimensional phase diagram with �∗ , 1/D∗ , and ρ∗ . For visibility, the data points with 
small particle size differences ( �∗ < 0.5 ) are not plotted. The domains of axial segregation and the other states 
can be completely separated by two planes. The procedure to determine the planes is provided in the “Methods” 
section. To ensure that the boundaries between the different phases are clearly visible, we plot a two-dimensional 
phase diagram, as shown in Fig. 3c. First, the three-dimensional phase diagram is linearly transformed so that 
the two planes are orthogonal. Next, the rescaled two-dimensional phase diagram is drawn using the new axes 
�̂∗ and ρ̂∗ . These new axes are defined as

where the fitting parameters αi and βi were calculated based on the equation of the separating plane in Fig. 3b. The 
values of αi and βi are listed in Table 1. Then, we found that α1 ∼ α2 and β1 ∼ β2 . Note that the separating lines in 
Fig. 3c, ρ̂∗ = ρ0 ∼ 1 and �̂∗ = γ2 correspond to the separating planes in the original 3D phase diagram (Fig. 3b). 
The type of segregation depends mainly on the density ratio and the size difference, which are represented by 
the first terms on the right-hand sides of Eqs. (1) and (2). The remaining terms, which are on the order of 0.1 or 
even less, can be regarded as correction terms. Based on the dependence of the phase diagram on the rotational 
speed of the cylinder, qualitatively similar phase diagrams were obtained for different rotational speeds, as dem-
onstrated in Fig. S1 in the Supplemental Materials. The only apparent differences in the phase diagrams were the 
values of αi and βi , as shown in Table 1. Thus, we found that the final segregated state is determined primarily by 
�∗ and ρ∗ , while the correction terms and � play crucial roles only near the boundaries in the phase diagram.

The final segregated state is governed by three key parameters: D∗ , �∗ , and ρ∗ . These parameters dictate the 
extent to which the system transitions from its initially mixed state to radial segregation and further evolves into 
axial segregation. It is anticipated that these three parameters also exert an influence on the dynamics of band 
formation. Here, we explore the relationship between the initial band width and these three parameters. As shown 
in Fig. 4, the dimensionless initial wavelength of the bands, �∗ = �/ds , was found to be linearly proportional 
to the combination of the dimensionless values D∗�∗/ρ∗ (see the definition of � in the “Methods” section). 
Among the various combinations that were investigated, the most distinct linear trend was observed when the 
wavelength was scaled with the diameter of the small particles, ds . Figure 4a illustrates the linear dependence of 
the dimensionless initial wavelength on not only the dimensionless size difference, �∗ but also the ratio of the 
cylinder diameter to the average particle size, D∗ , and the inverse of the specific density ratio, 1/ρ∗ . This is consist-
ent with previous studies showing that the band width is proportional to the diameter of a cylinder with fixed �∗ 
and ρ∗ 31,35. We emphasize that even when we varied the rotational speed from 8 to 34 rpm, all of the data points 
appeared to fall on the same line. The changes in the rotational speed did not lead to any systematic trends with 
increasing or decreasing �∗ (Fig. 4b). Figure 5 demonstrates the segregated patterns resulting from two distinct 
particle combinations under different rotational speeds after 5 min of rotation. It is evident that the variations 
attributed to the particle combinations have a more significant impact compared to the variations associated with 
rotational speed. Therefore, in Fig. 4a, the dependence on rotational speed appears to fall within the range of 
data variability. Given that we investigated the very early stage of band formation, our findings indicate that the 
dimensionless initial wavelength is not significantly affected by the rotational speed in our experiments. However, 

(1)�̂∗ = �∗ + β1ρ
∗ + α1

D∗ ,

(2)ρ̂∗ = ρ∗ + β2�
∗ − α2

D∗

Table 1.  List of the coefficients used in Eqs. (1) and (2), αi ,βi , estimated using an SVM model.

�(rpm) α1 β1 α2 β2

8 14.6± 2.9 0.13± 0.02 19.3± 2.4 0.04± 0.01

14 8.0± 1.2 0.10± 0.01 16.6± 2.0 0.27± 0.03

27 0.0± 0.0 0.18± 0.05 13.4± 2.4 0.19± 0.06
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the dimensionless parameters D∗ , �∗ , and ρ∗ play dominant roles in determining the initial wavelength. The 
unscaled wavelength, � , was also plotted against the rotational speed, as shown in Fig. S2(a) in the Supplemen-
tal Materials. As the rotational speed increased, the wavelengths of certain parameter combinations increased, 
while others decreased. The variations in the initial wavelength due to D∗�∗/ρ∗ are more pronounced when the 
wavelength is scaled by ds compared to the variations when the initial wavelength depends on �.

Discussion
As reported in previous studies, radial segregation is considered an essential precursor of axial  segregation9,44. 
Some previous studies have suggested that the formation of axial bands could be attributed to the bulging of the 
radial core consisting of small  particles25–29. The conditions for axial segregation to occur should be considered 
in two stages: the transition from mixed to radial segregation and the transition from radial to axial segrega-
tion. The phase diagram projected onto a two-dimensional space in Fig. 3c revealed that the former condition 
corresponds to γ1 < �̂

∗
< γ2 , while the latter condition corresponds to ρ̂∗ > ρ0 . We emphasize that these 

inequalities are described not merely by a single parameter such as the size difference or the density ratio but by 
a linear combination of three parameters, D∗ , �∗ , and ρ∗ , as defined in Eqs. (1) and (2). It suggests that the size 
difference and the specific density ratio are in the mutual compensatory relationship in the segregation dynam-
ics. This interplay between �∗ and ρ∗ emerges as a pivotal factor to consider when delving into the dynamics of 
segregation in a rotating cylinder. In the transition from mixed to radial segregation, the size difference should 
exceed a certain threshold. However, if the size difference is too large, the larger particles form a core, which is 
sometimes called reverse  segregation36. Within the investigated parameter range, reverse radial segregation never 
transformed into axial segregation. Therefore, to initiate radial segregation as a precursor to axial segregation, 
the size difference, including the correction terms, must have both upper and lower limits. The transition from 
radial to axial segregation is primarily determined by the specific density ratio. Radial segregation with a core 

Figure 4.  (a) The normalized initial wavelength ( �∗ ) versus the dimensionless parameter ( D∗�∗/ρ∗ ) for 
different rotational speeds of 8 rpm (purple circles), 14 rpm (yellow stars), 20 rpm (green triangles), 27 rpm 
(blue squares), and 34 rpm (red inverted triangles). (b) The normalized initial wavelength ( �∗ ) versus the 
rotational speed ( �).

Figure 5.  Segregated patterns with different rotational speed after 5 min of rotation. (a) Glass beads ( ds 
=0.4 mm) and zirconia beads ( dl = 1.0 mm). (b) Glass beads ( ds = 0.2 mm) and glass beads ( dl = 1.0 mm). The 
diameter of the cylinder is fixed at D = 74 mm.
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consisting of small particles tends to transform into axial segregation, particularly when the large particles have 
a higher specific density than the small particles. Since there are correction terms in Eq. (2), the density ratio 
itself does not have to be greater than 1. A more precise lower limit for the specific density ratio is discussed later. 
It is expected that the axial segregation region will not manifest at extremely high density ratios. However, the 
upper limit of the specific density ratio for axial segregation was not determined within the range of parameters 
we tested. At the onset of axial segregation, the external layer consisting of large particles with higher specific 
density on top of the core of small particles with lower specific density destabilizes and splits into axial bands, 
which is similar to Rayleigh–Taylor instability. D’Ortona and Thomas recently demonstrated Rayleigh–Taylor 
instability between two dry granular materials of different  densities20. Alternating bands emerge as the super-
imposed layers continue to flow. It would be interesting to determine how the wavelength changes with �∗ , ρ∗ , 
and the system size in their experiments as a comparison with our results.

We next closely examine the conditions for axial segregation illustrated in Fig. 3c. The dotted lines delineating 
the boundaries between the axial segregation state and the other states suggests two conditions: γ1 < �̂∗ < γ2 
and ρ̂∗ > ρ0 . By transforming these inequalities, we derive the following simultaneous inequality:

Bielenberg et al.32 experimentally found that axial segregation occurred when D∗�∗ was larger than a certain 
threshold value. Equation (3) suggests that there also exists an upper threshold of D∗�∗ that leads to axial segre-
gation and that the upper and lower thresholds should depend on both ρ∗ and D∗ . They proposed that D∗�∗ can 
be considered as “effective Peclet number” which characterizes the competition between the axial transport and 
 diffusion32. However, the precise physical significance of D∗�∗ still requires further investigation. For Eq. (3) to 
be valid, the left-most side of the inequality must be smaller than the right-most side. This requirement places 
a necessary condition for axial segregation on D∗:

This lower limit of D∗ for axial segregation to occur is consistent with the lower limits obtained in previous 
studies based on combinations of different-sized glass beads ( ρ∗ = 1 ) under similar rotational  speeds29,31. The 
lower limit of D∗ is expected to depend on the density ratio. Equation (4) can be considered as an extension 
of the lower limit of D∗ , where axial segregation occurs, for an arbitrary combination of specific densities. As 
D∗ increases, the number of collisions within the flowing avalanche is expected to increase, leading to more 
significant inertia-dominated deformation of the core, as previously discussed in other  studies29. Equation (4) 
also provides the lower limit of the specific density ratio required for axial segregation. The denominator on the 
right-hand side of Eq. (4) must be positive. This leads to the condition that ρ∗ ≥ 0.5 for a rotational speed of 
14 rpm. Thus, axial segregation occurs when the large particles have a specific density at least 0.5 times that of 
the small particles at � = 14 rpm. As the rotational speed varies, αi and βi change, which affects the threshold 
for the density ratio required to initiate axial segregation.

The phase diagram shown in Fig. 3c offers new insights into the results of previous studies. Hill and Kakalios 
demonstrated reversible axial segregation by exploiting the different dependencies of the dynamic angles of 
repose on rotational speed for glass beads of different  sizes19. Since ρ∗ = 1 in their study, the parameters were 
located near the boundary between axial and radial segregation in their phase diagram. Reversible axial segrega-
tion can be interpreted as occurring when the boundary between axial and radial segregation shifts reversibly 
with the rotational speed. We obtained qualitatively similar phase diagrams for different rotational speeds, as 
shown in Fig. S1 in the Supplemental Materials, with the only apparent differences being the values of αi and βi . 
Thus, the rotational speed affects the segregated state only near the phase boundaries. A similar argument can be 
made for changing D∗ 29. As mentioned earlier, previous experimental results have shown that reducing D∗ with 
a fixed value of ρ∗ = 1 led to the transition from the axial to the radial segregation state. This can be attributed to 
the fact that the magnitude of the third term on the right-hand side of Eq. (2) increased, causing ρ̂∗ to cross the 
boundary from the axial to the radial segregation region in the phase diagram. As the third term is typically on 
the order of 0.1 or less, their parameters must have been near the boundary. Moreover, near the transition from 
axial to radial segregation upon reducing D∗ , they observed reversible axial segregation in response to rotational 
speed changes. This provides additional evidence to support our interpretation of the phase diagram. Thus, the 
transition between the axial and radial segregation states observed in previous studies can be understood in 
terms of a phase diagram including D∗ , �∗ , and ρ∗ . Furthermore, axial segregation should not disappear if ρ∗ is 
sufficiently large far from the boundary as D∗ and � change.

Although several previous studies have examined the relationship between the band width and rotational 
 speed33,35,37–40, there is no general agreement as to whether the band width increases or decreases with increasing 
rotational speed. Furthermore, to our knowledge, no experiments have been conducted to explore the relation-
ship between the band width and specific density ratio. Although this linear relation shown in Fig. 4a lacks a 
clear underlying mechanism, it enables us to predict the band width for any combination of spherical particles 
using D∗ , �∗ , and ρ∗ as long as the parameters remain in the axial segregation region in the phase diagram. 
The inverse proportionality between the wavelength and the specific density ratio is similar to Rayleigh–Taylor 
instability, which may elucidate the fundamental mechanism of band formation. According to linear stability 
analysis of pattern formation, when starting with an initially random (mixed) state, the most unstable wave-
length dominantly grows when the perturbation is sufficiently small. Thus, Fig. 4 suggests that the most unstable 
wavelength depends on D∗ , �∗ , and ρ∗.

The prominent linear trend that was observed when scaling � by ds may be elucidated by considering the 
process of axial segregation. Some previous  studies25–29 have suggested that following radial segregation, a radial 

(3)1
β2
{α2 + (ρ0 − ρ∗)D∗} < D

∗�∗ < (γ2 − β1ρ
∗)D∗ − α1.

(4)D
∗ >

α1β2+α2
γ2β2−ρ0+(1−β1β2)ρ∗

.
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core may protrude periodically along the axis, driven by shear from a surface avalanche. Subsequently, the 
external layer splits to form axial bands, with the initial wavelength corresponding to the length of one bulge. 
As the core is mainly composed of small particles, we suggest that the length of the bulge could be determined 
as an integer multiple of the diameter of a small particle, rather than the average diameter of the large and small 
particles. To validate our hypothesis, further experiments are needed, which would elucidate the underlying 
mechanisms of axial segregation.

Several previous studies have assessed the influence of end walls on axial band  formation24,41,42. Bands rich in 
large particles tend to initially form at the end walls of the cylinder. Pohlman et al. measured the surface velocity 
in a monodisperse system using particle tracking velocimetry and observed axial flow near the end  walls43. If 
the cylinder length is not sufficiently large relative to its diameter, the walls may have a significant effect on the 
results. However, Fiedor et al. showed experimentally that the number of bands per unit length is independent 
of the cylinder length when the cylinder length is varied while keeping the diameter  unchanged44. Therefore, we 
suggest that band formation is primarily caused by global factors, such as the bulging of the core, rather than 
localized effects, such as the presence of end walls.

In the present study, we focused on investigating several key parameters that may determine the axial/radial/
mixed states of a binary granular mixture in a rotating cylinder. To comprehensively explore this phenomenon, 
we systematically varied the following parameters: the diameter and specific density of the particles and the 
diameter and rotational speed of the cylinder. It is widely known that axial segregation occurs when the dynamic 
angle of repose of the large particles is less than that of the small particles. A thorough parameter search reveals 
that few particle combinations satisfy this condition. The size difference normalized by the average diameter, 
the specific density ratio, and the cylinder diameter normalized by the average particle diameter are proposed 
to determine the segregated state. An intriguing finding of our study is that the three-dimensional phase dia-
gram effectively categorizes the segregated states based on only the material properties of the particles and the 
system size at a fixed rotational speed. This discovery underscores the profound influence of these parameters 
on the emergent patterns, providing valuable insights into the underlying mechanisms governing segregation 
phenomena in rotating granular systems. Varying the rotational speed distorts the phase diagram, revealing the 
sensitivity of the segregation behavior to the rotational speed, especially near the boundaries. The parameters 
that are related to the dynamics, such as the dynamic angle of repose and fluidity, influence the parameters αi , 
βi , and γi , which determine the boundary. However, many parameters associated with segregation phenomena 
in rotating cylinders were not considered in the present study, such as the surface property of the  particles23, the 
fill  level39,45 and the fraction of large to small  particles40. Further experiments are needed to explore the influence 
of these parameters on the three-dimensional phase diagram of the segregated state discovered in this study.

Methods
Experimental setup. The particles were glass, alumina, zircon, or zirconia beads, whose specific densi-
ties are 2.5, 3.8, 4.4, and 6.1 g/cm3, respectively. The diameters of the particles were listed in Table 2. Acrylic 
transparent cylinders with three different inner diameters ( D ) were used: 36, 54, and 74 mm. The lengths of the 
cylinders ( L ) were fixed at 320 mm. Half the volume of the cylinder was filled with an equal-volume mixture 
of two types of particles. The cylinder was placed horizontally on two shafts parallel to its axis and rotated at a 
constant rotational speed � by driving one of the shafts with a brushless DC electric motor (Oriental Motors). 
Each experiment was started from its initially mixed state. The rotational speed was varied from 8 to 34 rpm. We 
performed experiments with 326 parameter combinations.

Measurement method of the dynamic angle of repose. The dynamic angle of repose of each species 
was measured using a half-filled rotating cylinder with a single species (upper panel of Fig. 1a,b). For the exam-
ined rotational speeds, the surface of the granular bed was nearly flat, as shown in Fig. S3 in the Supplemental 
Materials. Then, we imaged the avalanche from the side view and measured the slope of the surface. All the 
represented points were obtained by averaging over five independent measurements. The error bars correspond 
to the standard error of the mean.

Parameter estimation of the separating plane by using a support vector machine. The two 
planes in the �∗ − 1/D∗ − ρ∗ phase diagram were determined with the following procedure. Except for the 
mixed state at small �∗ , the axial segregation state and other states were roughly distinguished by the conditions 
�∗ ∼ 1.3 and ρ∗ ∼ 1 (Fig. 3b). To determine separating planes individually, we made two data groups. For group 
1, we selected the data points satisfying ρ∗ ≤ 1.2 and �∗ ≤ 1.4 to estimate the separating plane near ρ∗ ∼ 1 . For 
group 2, we collected the data satisfying ρ∗ > 1 and �∗ > 1.2 to determine the separating plane near �∗ ∼ 1.3 . 
Then, following procedure was performed for each group.

Table 2.  List of the diameters used in the experiments.

Diameters (mm)

Glass beads 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0

Alumina beads 0.3, 0.5, 1.0, 2.0, 3.0, 4.0

Zircon beads 0.5, 0.7, 1.1, 1.7, 1.9, 3.0

Zirconia beads 1.0, 2.0, 3.0, 4.0
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We calculated the separating planes using a support vector machine (SVM). The axial segregation state and 
other states were binary classified as 1 and 0, respectively. Then, the array of binary class labels was created. Cor-
responding to binary labels, we made the matrix of predictor data consisted of �∗ , ρ∗ , and 1/D∗ . By using the 
array of labels, predictor matrix, and binary classifier with a linear kernel function and infinitely large box con-
straint, the best separating hyperplane ai�∗ + biρ

∗ + ci/D
∗ + 1 = 0 (i = 1, 2) was obtained (MATLAB software).

To calculate the standard deviation of the coefficients ai , bi , and ci , random values were introduced to each 
coefficient obtained with the SVM, a′

i
= ai(1+ 0.5ξ) , b′

i
= bi(1+ 0.5ξ) , and c′

i
= ci(1+ 0.5ξ) . Here, ξ is uni-

form random numbers distributed from -0.5 to 0.5. Then, we collected the randomized a′
i
 , b′

i
 , and c′

i
 , when 

a
′
i
�∗ + b

′
i
ρ∗ + c

′
i
/D∗ + 1 = 0 can separate the axial segregation state and other states. Based on the sets of a′

i
 , 

b
′
i
 , and c′

i
 obtained from  105 trials, the averages and standard deviations of the coefficients were computed, as 

listed in Table 1.
Equation (1) is defined as �̂∗ = �∗ + β1ρ

∗ + α1/D
∗, with α1 = c1/a1, and β1 = b1/a1 . Equation Eq. (2) is 

defined as ρ̂∗ = ρ∗ + β2�
∗ − α2/D

∗ with α2 = −c2/b2, and β2 = a2/b2 . The threshold values were calculated 
as γ2 = −1/a1 and ρ0 = −1/b2 . While the precise estimation of γ1 was limited due to insufficient data, it was 
consistently calculated as approximately 0.6 for all tested rotation speeds. In Fig. 4c and Fig. S1 in the Supple-
mental Material, we assigned γ1 a fixed value of 0.6.

Definition of the wavelength of the axial bands. We counted the initial number of bands that appeared 
within the first 5 min of rotation. Trials in which bands took longer than 5 min to appear were excluded because 
merging may have occurred in some regions in the experiments under these conditions. Since the ends of the 
cylinder are usually occupied by the bands consisting of large particles, the initial wavelength ( � ) is defined as 
L/(N0 + 1/2) , where L is the length of the cylinder and N0 is the initial number of bands rich in small particles.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials. Additional data related to this paper may be requested from the authors.
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