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Exploring the clinical relevance 
of vital signs statistical calculations 
from a new‑generation clinical 
information system
Juan Ignacio Muñoz‑Bonet  1,2*, Vicente Posadas‑Blázquez 1, Laura González‑Galindo 2, 
Julia Sánchez‑Zahonero 1, José Luis Vázquez‑Martínez 3, Andrés Castillo 4 & Juan Brines 2

New information on the intensive care applications of new generation ‘high-density data clinical 
information systems’ (HDDCIS) is increasingly being published in the academic literature. HDDCIS 
avoid data loss from bedside equipment and some provide vital signs statistical calculations to 
promote quick and easy evaluation of patient information. Our objective was to study whether manual 
records of continuously monitored vital signs in the Paediatric Intensive Care Unit could be replaced 
by these statistical calculations. Here we conducted a prospective observational clinical study in 
paediatric patients with severe diabetic ketoacidosis, using a Medlinecare® HDDCIS, which collects 
information from bedside equipment (1 data point per parameter, every 3–5 s) and automatically 
provides hourly statistical calculations of the central trend and sample dispersion. These calculations 
were compared with manual hourly nursing records for patient heart and respiratory rates and oxygen 
saturation. The central tendency calculations showed identical or remarkably similar values and 
strong correlations with manual nursing records. The sample dispersion calculations differed from 
the manual references and showed weaker correlations. We concluded that vital signs calculations of 
central tendency can replace manual records, thereby reducing the bureaucratic burden of staff. The 
significant sample dispersion calculations variability revealed that automatic random measurements 
must be supervised by healthcare personnel, making them inefficient.

There is a broad consensus that future healthcare will require the intensive use of information technology to 
acquire, store, process, analyse, and use the information extracted from medical data1,2. The Anaesthesia and 
Critical Care specialities are the most technical and data-driven medical environments and so the development of 
new approaches for the integration and use of the data generated in these fields is almost mandatory1–7. However, 
the basic approach to data collection and management has remained largely unchanged over the past 40 years2. 
Indeed, it is now becoming especially difficult to integrate and take advantage of the information provided by 
patient bedside monitoring and treatment devices2. In critical patients, this information is traditionally registered 
by nursing staff, who collect the most representative values from each period, usually once an hour8. This chart 
is used as the baseline by which patient evolution is then assessed9.

Given that these patient monitoring charts are costly to prepare, some centres have replaced this type of 
record keeping with automatic random data collection by different clinical information systems (CIS)2,8. These 
CIS usually collect one data point per parameter every 15, 30, or 60 min8,10. This means that more than 99% of 
the information generated at the bedside is lost with no possibility reaping the benefits that its exploitation could 
mean for patients and the healthcare system2,4,11,12. In addition, CIS do not provide any processing or analysis 
of the information obtained2. Thus, although some of these systems provide access to up to 1 piece of data per 
minute, the volume of data makes its routine manual evaluation by healthcare personnel difficult13 and most 
of the information is still lost. Because of all the above, Intensive Care Unit (ICU) teams continue to express 
frustration with the current patient data representation by CIS14.
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Therefore, a new approach to the use of information generated at the bedside is required to prevent this data 
loss and to facilitate its clinical use4,8,11. The main objective of this new approach is to apply big-data principles 
(volume, velocity, variety, veracity, and data value) to the concept of personalised medicine. In this sense, infor-
mation has already been published about the application of high-density data CIS (HDDCIS) in intensive care 
contexts, both in development studies2,3,13,15–17 and as original research4,8,12,18–23. Although the use of HDDCIS is 
not yet common in ICUs, in the future they will help revolutionise the monitoring of vital signs as we currently 
know it. In this context, Matam et al. analysed the technical difficulties and feasibility of adapting HDDCIS to 
their Paediatric Intensive Care Unit (PICU) and created a machine learning system that predicts cardiac arrest 
in children15,24. In turn, Brossier et al. argued for the importance of these systems being able to indefinitely store 
all the monitoring data for ‘perpetual patients’ as well as their advantages for the development of clinical deci-
sion support systems (CDSS)4,25,26.

Furthermore, the development of artificial intelligence (AI) is likely to strongly impact intensive care medi-
cine. Indeed, one of the main lines of ongoing research for many groups working in this field involves the use 
of AI to give HDDCIS the ability to detect clinically important events. For example, in the field of mechanical 
ventilation, systems that predict accidental extubation27 or that protect the lungs by avoiding volutrauma28 are 
already available. The detection of events in the operating room during anaesthesia has also been analysed by 
leveraging the information contained in databases that integrate information from different clinical records 
such as electrocardiograms, oxygen saturation, heart rate, and bispectral index results29,30. Thus, the integration 
of vital signs records has already allowed the creation of machine learning systems capable of detecting, in real 
time, events such as acute hypotension31, responses to vasoactive drugs32, or the need for massive transfusion 
in the operating room33. In most cases, the AI technology used to detect events is based on the registration of 
vital signs data and leverages pre-defined scores. Among these indices, it is worth highlighting the Inadequate 
Oxygen Delivery Index (IDO2-Index) that warns of the risk of adverse events such as cardiorespiratory arrest, 
the development of enterocolitis, need for extracorporeal membrane oxygenation (ECMO), or renal replacement 
therapy in children undergoing cardiac surgery34.

In this line, our team has several years of clinical experience with the use of this technology35 and we have been 
able to verify the clinical usefulness of the hourly statistical calculations of vital signs provided by the HDDCIS6. 
However, the use of these calculations has not yet been validated. Thus, the objective of this current work was to 
study whether manual records of continuously monitored vital signs can be replaced by the statistical calcula-
tions of central tendency provided by an HDDCIS.

Materials and methods
This prospective observational clinical study was conducted in children with severe diabetic ketoacidosis con-
secutively admitted to the PICU at the University Clinical Hospital of Valencia (a 6-bed multivalent unit in a ter-
tiary hospital), between 2017 and 2020. The inclusion criteria were (1) blood glucose exceeding 11.1 mmol/L; (2) 
ketonemia greater than 1 mmol/L; (3) bicarbonate less than 8 mEq/L; and (4) base excess exceeding − 20 mEq/L. 
We selected these patients for their special clinical characteristics. Upon admission, they presented a serious 
metabolic alteration that affected their vital signs but without associated respiratory, cardiocirculatory, or other 
pathologies or confounding factors such as the requirement for mechanical ventilation, administration of ino-
tropic drugs, sedatives, or analgesics, among others9,22. Thus, with appropriate treatment, their vital signs returned 
to normal within hours, therefore making them good models to assess clinical evolutionary changes and to 
compare different study parameters.

This study was conducted in accordance with the amended Declaration of Helsinki and was approved by the 
Ethics Committee at the Biomedical Research Institute INCLIVA (grant number 2017/022). Informed consent 
was obtained from the families of the patients. We used the Medlinecare® HDDCIS (Medical Online Technol-
ogy S.L., Valencia, Spain) which receives and transmits information from bedside monitoring and treatment 
equipment at a rate of 1 data point per monitored parameter every 3–5 s, (720–1200 data points per hour), 
including equipment from multiple manufacturers. This allowed us to continuously monitor the clinical status 
of our patients in real time. In addition, the HDDCIS stores data and automatically calculates hourly statisti-
cal indicators of the sample central trends (mean, mode, and median) and dispersion as the maximum (99th 
percentile), and minimum (1st percentile) values. These calculations were performed in the first few minutes 
of each new hour.

The data collected during patient admissions to the PICU are shown in Table 1. The nursing staff did not 
have access to the information provided by the HDDCIS or knowledge of the objective of this current study. We 
used pulse oximetry technology from Masimo Corp. (Irvine, CA) and collected oxygen saturation (SpO2) and 
pulse oximetry heart rate (pHR) data using disposable fingertip probes. We also collected electrocardiography 
heart rate (eHR) and respiratory rate data measured by impedance (iRR) using Infinity Delta XL multiparameter 
monitors from Dräger Medical (Lübeck, Germany). To uncover whether the clinical evolution of the patients 
could affect the correlation study of the parameters, the data series were divided into two groups according to 
the level of bicarbonate present in the blood of the patients: the severe acidosis group versus the improvement 
group, with the bicarbonate cut-off point being ≥ 10 meq/L.

Statistical analysis.  SPSS software (v26.0 IBM Corp., Armonk, NY) was used to carry out the statisti-
cal analyses. The relationships between continuous variables were evaluated employing the Pearson or Spear-
man correlation coefficient, depending on the data distribution (after assessing the latter using the Kolmogo-
rov–Smirnov test). We also used Student t-tests for related samples, Lin’s concordance correlation coefficient 
(CCC) to assess the data agreement36, and Bland–Altman plots for multiple measurements per patient, as calcu-
lated with MedCalc software37. Analysis of variance (ANOVA) was used to study the relationship between the 
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continuous variables of each group. However, when statistically significant results failed to meet the ANOVA 
assumptions, we resorted to an alternative robust test (Welch’s test). The significance level threshold was set at 
an alpha of 0.05 in all cases.

Results
Thirty-two consecutive patients (21 boys and 11 girls) aged 9.1 ± 4.3 years were included in this study cohort. 
Around 2,761,000 measurements were used to obtain 1027 hourly statistical calculations for pHR, eHR, 
and SpO2, as well as 745 calculations of iRR. Simultaneous hourly nursing records (denoted with the ‘n’ pre-
fix) were also collected for the heart rate (nHR = 1025), respiratory rate (nRR = 716), and oxygen saturation 
(nSpO2 = 980). In addition, 212 periodic determinations of glycaemia, ketonemia, lactate, and acid–base bal-
ance were also collected. Upon admission, the patients presented the following blood analytical test data: 
blood glucose = 25.8 ± 7.6 mmol/L, ketonemia = 5.3 ± 1.7 mmol/L, lactate = 2.2 ± 0.9 mmol/L, pH = 7.05 ± 0.1, 
PCO2 = 19.6 ± 7.5 mmHg, bicarbonate = 5.6 ± 2.9 mEq/L, and base excess =  − 24.7 ± 4.7 mEq/L.

Table 1.   Data collected during patient admissions to the Paediatric Intensive Care Unit. PICU Paediatric 
Intensive Care Unit, n prefix records made manually by nurses.

1. PICU nursing hourly manual records of continuously monitored parameters

Heart rate (nHR) Respiratory rate (nRR) Oxygen saturation (nSpO2)

2. Automatic hourly statistics calculations provided by the HDDCIS

Heart rate
Measured by pulse oximetry (pHR)
Measured by electrocardiography (eHR)

Respiratory rate measured by 
impedance (iRR)

Oxygen saturation measured by pulse 
oximetry (SpO2)

3. Evolutionary biochemical analysis in venous blood

Glycaemia (mmol/L) Ketonemia (mmol/L) Lactacidemia (mmol/L)

4. Evolutionary acid–base balance in venous blood

pH Partial pressure of carbon dioxide 
(PCO2) (mmHg) Bicarbonate (mEq/L) Base excess (mmol/L)

60

80

100

120

140

160

180

200

60 80 100 120 140 160 180 200

pHRmedian

eH
R
m
ed

ia
n

Figure 1.   Scatter diagram of the automatic hourly calculation of the ‘median heart rate’ obtained by pulse 
oximetry (pHR-median) and electrocardiography (eHR-median). Note how the line of equality and the trend 
line (blue) are identical (locally weighted scatterplot smoothing span = 0%; concordance correlation coefficient 
[CCC] = 0.9983; Pearson p for precision = 0.9984; bias correction factor for accuracy = 1 [95% CI 0.9982–0.9986]; 
p < 0.0001). Similar results were obtained for the central tendency calculations for the ‘mean heart rate’ and 
‘modal heart rate’ (CCC > 0.99).
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The hourly calculations of the central tendency for pHR and eHR were identical and their CCC was almost 
perfect (Fig. 1). These calculations showed identical values, very strong correlations, and a substantial CCC with 
the nHR data (Table 2). Indeed, both the nHR and the central tendency calculations for pHR and eHR showed 
the same moderately significant correlations with the evolution of the acid–base balance. For example, for pH, 
r = − 0.51 for nHR and r = − 0.5 for pHR, for PCO2, r = − 0.53 and − 0.55, respectively, for bicarbonate r = − 0.55 
and − 0.55, respectively, and for base excess, r = − 0.56 and − 0.56, respectively.

The central tendency calculations for the iRR and SpO2 behaved in a similar way, with identical or remark-
ably similar values and strong correlations with the nursing staff references (except for the mean iRR, which 
showed a moderate correlation). The maximum and minimum hourly calculations differed from their nursing 
references and from the central tendency calculations in all the variables by showing weaker correlations. These 
differences were clinically significant for heart rate (HR) and respiratory rate (RR). The concordance study results 
are shown in Tables 2 and 3 and in Fig. 2.

Table 2.   Descriptive statistics, correlations, and concordances between the manual nursing records and 
automatic statistical calculations. nHR hourly heart rate recorded by nurses, pHR automatic hourly calculation 
of the heart rate through pulse oximetry, eHR automatic hourly calculation of the heart rate through 
electrocardiography, nRR hourly respiratory rate recorded by nurses, iRR automatic hourly calculation of the 
respiratory rate through impedance, nSpO2 hourly oxygen saturation recorded by nurses, SpO2 automatic 
hourly oxygen saturation calculation through pulse oximetry. The Student t-test results indicated that the best 
correlation with the nursing values was obtained with the median for heart rate and oxygen saturation and 
with the mode for the respiratory rate.

Mean SD Correlation

Concordance correlation coefficient

Paired student t-testCCC​ Precision Accuracy

nHR (N = 1025) 107 22.8 (Spearman) (Pearson) Bias correction factor

pHR-mode 106 23.3 0.982 0.981 0.981 0.999 p < 0.001

pHR-mean 107 23 0.980 0.981 0.981 1 p < 0.001

pHR-median 107 23.1 0.982 0.982 0.982 1 p = 0.964

pHR-maximum 122 24.9 0.928 0.765 0.921 0.84 p < 0.001

pHR-minimum 97 22.9 0.935 0.839 0.915 0.918 p < 0.001

eHR-mode 106 23.4 0.978 0.977 0.979 0.999 p < 0.001

eHR-mean 107 23.2 0.977 0.977 0.977 1 p = 0.01

eHR-median 106 23.2 0.980 0.98 0.98 1 P = 0.112

eHR-maximum 121 24.5 0.923 0.768 0.916 0.838 p < 0.001

eHR-minimum 97 23.7 0.967 0.891 0.961 0.927 p < 0.001

nRR (n = 716) 23 7.3 (Spearman) (Pearson)

iRR-mode 23 9.5 0.739 0.54 0.56 0.964 p = 0.055

iRR-mean 26 8.7 0.636 0.501 0.542 0.925 p < 0.001

iRR-median 24 8.9 0.706 0.543 0.558 0.972 p < 0.001

iRR-maximum 44 18.7 0.324 0.086 0.256 0.337 p < 0.001

iRR-minimum 17 5.6 0.644 0.404 0.632 0.639 p < 0.001

nSpO2 (n = 980) 98.8 1.3 (Spearman) (Pearson)

SpO2-mode 98.8 1.4 0.79 0.817 0.819 0.998 p = 0.004

SpO2-mean 98.6 1.3 0.759 0.784 0.789 0.994 p < 0.001

SpO2-median 98.8 1.4 0.775 0.816 0.817 0.999 p = 0.172

SpO2-maximum 99.7 0.7 0.6 0.418 0.659 0.633 p < 0.001

SpO2-minimum 96.2 3.9 0.523 0.081 0.181 0.447 p < 0.001
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Table 3.   The difference between the manual data recordings by nurses and by the automatic statistical 
calculations. nHR heart rate recorded by nurses, nRR respiratory rate recorded by nurses, nSpO2 oxygen 
saturation recorded by nurses, pHR hourly calculation of the pulse-based heart rate, iRR hourly calculation 
of the respiratory rate by impedance, SpO2 hourly calculation of the oxygen saturation. Data calculated using 
the Bland–Altman method. The differences between the nHR and electrical heart rate (eHR) are not provided 
because of their similarity to those of the pHR.

Difference nHR − pHR (n = 1025) Mode Mean Median Maximum Minimum

Mean 0.86 − 0.68 0.05 − 15.4 9.9

P (H0: mean = 0) < 0.001 < 0.001 0.964 < 0.001 < 0.001

Lower limit (95% CI) of agreement − 8 − 9.5 − 8.5 − 34.8 − 8.7

Upper limit (95% CI) of agreement 9.7 8.2 8.6 3.9 28.5

Difference nRR − iRR (n = 716) Mode Mean Median Maximum Minimum

Mean 0.63 − 2.9 − 1.1 − 20.1 6.3

P (H0: mean = 0) 0.055 < 0.001 0.003 < 0.001 < 0.001

Lower limit (95% CI) − 15.4 − 18.5 − 16.6 − 56.5 − 5.6

Upper limit (95% CI) 16.7 12.7 14.5 16.3 18.2

Difference nSpO2 − SpO2 (n = 983) Mode Mean Median Maximum Minimum

Mean − 0.12 0.09 − 0.07 − 0.88 2.52

P (H0: mean = 0) 0.004 < 0.001 0.172 < 0.001 < 0.001

Lower limit (95% CI) − 1.72 − 1.58 − 1.67 − 2.9 − 5.06

Upper limit (95% CI) 1.49 1.75 1.52 1.14 10.1

Figure 2.   Bland–Altman plot for multiple measurements per patient of the heart rate measured hourly by 
nursing staff (nHR) alongside the hourly automatic calculation of the median heart rate (pHR-median) and 
maximum heart rate (pHR-max). The sample size was N = 1025.
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In the comparison by groups (severe acidosis versus improvement), blood glucose, ketonemia, lactate, and 
acid–base balance measurements all improved, reaching levels of clinically and statistically significant differences 
(p < 0.001). HR and RR were also significantly improved for all variables from both the clinical and statistical 
perspective, except for the maximum iRR (Tables 4 and 5). In contrast, SpO2 decreased with improving acidosis, 
although these differences did not reach the level of clinical significance (Table 4).

Table 4.   Descriptive statistics and group comparisons for the heart rate and oxygen saturation. nHR heart rate 
recorded by nurses, pHR hourly calculation of the pulse-based heart rate, nSpO2 oxygen saturation recorded 
by nurses. There were statistically significant differences between the groups for all the monitored parameters 
(*) p < 0.001, (#) p = 0.001. Note how there was a significant intragroup oscillation in the HR (the maximum 
and minimum values differed by ≈ 25 bpm). The evolution of the electrical heart rate (eHR) by groups was not 
provided because it was identical to that of the pHR.

Heart rate parameters Mean SD SpO2 parameters Mean SD

Severe acidosis group (bicarbonate < 10 meq/L)

(n = 226) (n = 216)

 nHR 120* 20.6 nSpO2 99.3* 1.1

 pHR-mode 119* 21.5 SpO2 mode 99.6* 0.8

 pHR-mean 120* 20.8 SpO2 mean 99.4* 0.8

 pHR-median 120* 21.1 SpO2 median 99.5* 0.8

 pHR-maximum 135* 22.9 SpO2 maximum 99.9* 0.3

 pHR-minimum 111* 21.2 SpO2 minimum 97.1# 4.0

Clinical improvement group (bicarbonate ≥ 10 meq/L)

(n = 799) (n = 764)

 nHR 103* 21.9 nSpO2 98.6* 1.4

 pHR-mode 102* 22.5 SpO2 mode 98.6* 1.5

 pHR-mean 104* 22.3 SpO2 mean 98.5* 1.3

 pHR-median 103* 22.4 SpO2 median 98.6* 1.4

 pHR-maximum 118* 24.6 SpO2 maximum 99.6* 0.8

 pHR-minimum 93* 21.8 SpO2 minimum 96.0# 3.9

Table 5.   Descriptive statistics, concordances, and comparisons of the respiratory rate by groups. nRR 
hourly nursing record of respiratory rate, iRR automatic hourly calculation of respiratory rate measured by 
impedance. Note (1) the marked intragroup oscillation of the RR (≈ 25 bpm); (2) the asymmetry and kurtosis 
values were close to the normal distribution in the group of patients with severe acidosis. In contrast, in 
the improved group, the nRR and, especially, the central tendency calculations presented high asymmetries 
and kurtosis, showing a leptokurtic curve with a distribution tail stretching to the right for values above the 
mean (the true measurements of RR were grouped into the leptokurtic values, while the movement artifacts, 
which were more frequent in the improvement group, were grouped into the tail on the right); (3) the poorest 
correlation and concordance values were obtained for the iRR-maximum (which included motion artifacts); 
(4) as expected, the RR decreased as acidosis improved, with the differences between the groups being 
clinically and statistically significant for all the parameters, except for the iRR-maximum. (*) p < 0.001, (#) 
p = 0.001. Deviation error: (a) 0.18, (b) 0.1, (c) 0.36, (d) 0.21.

Parameters Mean SD

Concordance correlation coefficient

Asymmetry KurtosisCCC​ Precision Accuracy

Severe acidosis group (bicarbonate < 10 meq/L, n = 182)

 nRR 27* 8.6 (Pearson) Bias correction factor 0.64a 0.39c

 iRR-mode 25* 8.4 0.856 0.875 0.978 0.77a 0.07c

 iRR-mean 28# 8.4 0.829 0.836 0.991 0.47a − 0.4c

 iRR-median 26# 8.3 0.878 0.882 0.996 0.67a − 0.08c

 iRR-maximum 44 17.6 0.196 0.443 0.442 0.96a 0.85c

 iRR-minimum 20* 6.5 0.534 0.784 0.681 0.88a 0.46c

Improvement group (bicarbonate ≥ 10 meq/L, n = 534)

nRR 22* 6.3 (Pearson) Bias correction factor 1.05b 2.3d

iRR-mode 22* 9.5 0.393 0.429 0.917 3.7b 19.2d

iRR-mean 26# 8.7 0.353 0.409 0.863 2.15b 7.44d

iRR-median 24# 8.9 0.388 0.422 0.921 2.82b 12d

iRR-maximum 43 18.8 0.053 0.185 0.285 1.03b 0.26d

iRR-minimum 16* 4.7 0.272 0.473 0.576 1.25b 5.1d
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Discussion
The physiological basis and main characteristics of high‑density data clinical information sys‑
tems.  Drs. Horvat and Ogoe pointed out that “with the conventional approach, the patient data generated 
in the ICU are continually reduced to summary information, which has the risk of over-distilling the relevant 
and complex physiology of these patients”. Thus, these authors and others believe that the use of high-frequency 
data systems, “may further our understanding of intensive care physiology and eventually support the devel-
opment of more individualised therapeutic regimens”5,9. As described in the introduction, this technology is 
already being applied in hospitals all over the world. More specifically, four basic properties characterise HDD-
CIS (Fig. 3) as follows:

1.	 Sampling frequency. Although this can differ according to the parameters recorded, for vital signs and other 
fundamental parameters, this frequency must be less than 1 data point every 10 s. However, many current 
systems capture these values at intervals of minutes, which is insufficient to follow patient evolution in real 
time or to detect and evaluate clinical events.

2.	 Multidevice capacity. Anaesthesia and critical care environments are complex by nature and are home to 
countless medical devices for patient monitoring and treatment. Thus, to include any parameter of clinical 
interest, it must be possible to capture data, at a high sampling frequency, from different pieces of medical 
equipment. To do this, the problem of device synchronisation must be solved.

3.	 Information processing. This is important both in terms of real-time care functionality, as well as in the evalu-
ation of clinical evolution based on historical data6. As Sun et al. stated, “we must develop a data acquisition 
system that facilitates the access and review of historical data for medical personnel. Furthermore, acquired 
data should be […] presented to clinical staff in such a manner that supports clinical decision making”13. 
Thus, improving this information processing will directly enhance care provider wellbeing, patient outcomes, 
and quality of care14. Moreover, HDDCIS are of great educational utility and can also help improve quality of 
care because they can fully detect clinical episodes as they happen, at high resolution, and can also reproduce 
them for later analysis (see Supplementary Figs. S1–S3).

4.	 Ability to exploit information. These systems will provide medical staff with a powerful research tool which, 
by combining their clinical observations with supervised and unsupervised machine learning, can be used 
to develop and test CDSS and other AI functions4,38. However, the loss of information from the current CIS 
prevents the development of these functions. Moreover, it should be noted that, after the COVID-19 global 
pandemic, the development and use of AI has exponentially increased39,40 thanks to its freer availability and 
ability to integrate large amounts of information about an unknown disease and present it in a simple way 
to clinicians.

Our previous experience and justification of this study.  In a previous study in ventilator-dependent 
patients hospitalised at home, we observed the usefulness of the HDDCIS for telemedical real-time patient 
assessment. Furthermore, the statistical indicators it provides are of great clinical use because they allow the 
quick and complete analysis of all the information during the morning telemedical rounds6,35. However, we were 
previously unable to validate its use given that specialised healthcare personnel were not available to perform 
monitoring in domestic settings. In our experience, the application of this technology in the fields of anaesthe-
siology and intensive care is proving to be extremely useful, especially in the most serious clinical cases, because 
the resulting monitoring of these patients is more complete and produces fewer artifacts caused by movements, 
disconnections, or sensor misplacements.

Figure 3.   Record of information provided by patient bedside monitoring and treatment devices. (*) CIS clinical 
information systems, (**) AI artificial intelligence.
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A possible limitation of this study was related to the gold standard used for comparison, given that inaccuracy 
in the manual recording of vital signs in hospitalised patients has been previously reported41,42. However, unlike 
the random automatic vital sign data-point collections carried out by the current CIS or collected during patient 
visits by nursing staff in conventional hospitalisation wards41, the anaesthesiologist in the operating room and 
nursing staff in ICUs continuously follow-up and assess patients. Thus, this information is of immense value as 
it is the most representative of the period in question. Therefore, these registries have formed the basis used to 
assess the evolution of patients over the last 40 years, thereby facilitating clinical communication and working 
well in countless clinical studies9.

Discussion of our results.  In this current study the perfect correlation we found between the central ten-
dency indicators of both heart rate measurements supports the use of this technology for the purposes set out 
in this study (Fig. 1). Thus, the values we obtained for manual nursing heart rate measurements (nHR) and the 
automatic calculations of central tendency (pHR and eHR) were identical and showed very strong correlations 
and concordances (Tables 2, 3, 4). In addition, the identical correlation of these parameters with the evolution of 
the acid–base balance—the main pathophysiological alteration present in these patients—indicates that all the 
clinical value of the nursing records was also captured by the automatic calculations of central tendency. These 
results indicate that these calculations could replace manual records, thus reducing the bureaucratic burden this 
task places on staff. Moreover, they allow reliable monitoring measurements to be obtained in settings where 
staff are not available, as we have already seen in our previous work in home-based settings6,35.

In a similar vein, the hourly central tendency calculations for iRR and SpO2 were analogous to those for HR, 
with good (but in this case, not exceptional) correlations with their nursing references. This meant that when 
the more demanding CCC test (comprising two metrics, one for precision and the other of accuracy) was done, 
poor values (< 0.9) were obtained and, for reasons intrinsic to the test, these could not exceed their own measure 
of precision (the Pearson r coefficient). These results can be explained in a different way for each parameter. For 
the iRR, it was related to the movement artifacts that affect this measurement, as discussed below. For SpO2, it 
was related to the low variability of this parameter (especially in these patients without oxygenation problems), 
which determined the low Pearson correlation coefficient values, regardless of the accuracy and overall concord-
ance of these measurements43. Thus, the almost perfect values of its accuracy component (bias correction factor) 
indicate adequate concordance with the nursing reference values (Table 2).

The clinical evolution by group was as expected, with statistically significant data indicating patient pro-
gression towards clinical normality (Tables 4 and 5). Moreover, it was interesting to observe how the decrease 
in respiratory rate also conditioned a statistically significant decrease in SpO2, although this did not translate 
into clinical significance (Table 4). The logic of this observation is rooted in patient physiology; however, the 
accuracy of this evolution, reflected both by the nursing records and the hourly statistical calculations, was of 
far more relevance. Hence, taken together, these current findings also support the use of HDDCIS calculations.

The evolution of the RR was also interesting (Table 5). Movements in these patients, which were initially 
infrequent while they rested but later increased as they started to recover, likely caused artefacts to appear in 
the iRR measurements. This could explain the fact that the central tendency calculations initially showed strong 
Pearson correlations with the nursing reference data, which then became moderate correlations in the improve-
ment group. Thus, these inaccuracies were attributable to the measurement method, not to the data processing. 
Moreover, this processing ensured that the mode and median still maintained a certain level of clinical utility. 
Nonetheless, given the importance of this variable, as with HR, we can simultaneously monitor RR using cap-
nography and spirometry as well, thereby allowing us to isolate any discrepancies of this type. Thus, for example, 
increases only in RR measured by impedance are usually related to the patient’s movements.

Finally, we can say that at their highest degree of accuracy, the manual records should match the automatic 
calculations of central tendency. Therefore, in the absence of major measurement artifacts, we consider that 
these automatic central tendency calculations should be used as the gold standard for assessing patient evolution.

Like the central tendency parameters, the clinical evolutionary assessment of the minimum (1st percentile) 
and maximum (99th percentile) hourly calculations was simple for the care staff and was based on the patient 
age and their clinical situation. Interestingly, despite the selection of these percentiles and the haemodynamic 
and respiratory stability of these patients, there were significant clinical differences in the HR and RR minimum 
and maximum hourly calculations with their corresponding nursing references (Fig. 2 and Tables 2, 3, 4, 5). Of 
note, similar variations were also described for the HR8. These findings indicate that automatic random sampling 
to assess the evolution of these important parameters can differ significantly according to when the sampling is 
conducted. This could explain, in part, the so-called ‘smoothing effect’. In other words, the trend toward normal 
or average physiology in the nursing and anaesthesia records41,42. Hence, in the operating room and ICU, this 
smoothing phenomenon could indicate just the opposite: the inaccuracy of random samples and their impaired 
ability to reflect the true clinical situation of patients. This therefore highlights the need to monitor and modify 
automatic random registrations4,8,9. Thus, given all the above, and in line with these authors, we also believe that 
random vital sign measurements require supervision, thereby making them inefficient.

Conclusions
The current CIS discard most of the information generated at the bedside and so the benefits that its storage, pro-
cessing and exploitation could entail are lost. Furthermore, the random automatic data collection they perform 
must be supervised by healthcare personnel, making them inefficient. However, a new generation of HDDCIS 
now being used in anaesthesia and critical care medicine could overcome these limitations. These systems avoid 
data loss and improve data processing and integration to support the development of more personalised thera-
peutic regimens. Although more research is still needed to validate this potential for individualising therapeutics, 
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our findings indicate that automatic hourly vital signs calculations of central tendency could replace manual 
anaesthesia and critical care records, thereby freeing up highly qualified staff for other more demanding tasks.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author upon 
reasonable request.
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