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Using machine learning to predict 
protein–protein interactions 
between a zombie ant fungus 
and its carpenter ant host
Ian Will 1*, William C. Beckerson 1 & Charissa de Bekker 1,2*

Parasitic fungi produce proteins that modulate virulence, alter host physiology, and trigger host 
responses. These proteins, classified as a type of “effector,” often act via protein–protein interactions 
(PPIs). The fungal parasite Ophiocordyceps camponoti-floridani (zombie ant fungus) manipulates 
Camponotus floridanus (carpenter ant) behavior to promote transmission. The most striking aspect 
of this behavioral change is a summit disease phenotype where infected hosts ascend and attach 
to an elevated position. Plausibly, interspecific PPIs drive aspects of Ophiocordyceps infection and 
host manipulation. Machine learning PPI predictions offer high-throughput methods to produce 
mechanistic hypotheses on how this behavioral manipulation occurs. Using D-SCRIPT to predict host–
parasite PPIs, we found ca. 6000 interactions involving 2083 host proteins and 129 parasite proteins, 
which are encoded by genes upregulated during manipulated behavior. We identified multiple 
overrepresentations of functional annotations among these proteins. The strongest signals in the host 
highlighted neuromodulatory G-protein coupled receptors and oxidation–reduction processes. We also 
detected Camponotus structural and gene-regulatory proteins. In the parasite, we found enrichment 
of Ophiocordyceps proteases and frequent involvement of novel small secreted proteins with unknown 
functions. From these results, we provide new hypotheses on potential parasite effectors and host 
targets underlying zombie ant behavioral manipulation.

Fungal parasites employ a diverse array of secreted molecules to defend themselves, promote infection, and 
modify their hosts. In certain cases, infection can even lead to parasitic manipulation of host behavior. Often 
termed “effectors,” secreted fungal molecules play a critical role in host–parasite dynamics that include both 
widely shared and highly specific  mechanisms1–4. Parasite effectors have been suggested to play key roles during 
the infection of insects by entomopathogenic fungi through their interactions with host nucleic acids, carbohy-
drates, lipids, small metabolites, and  proteins3,5–7. Bioinformatic exploration of effector protein biology offers a 
high-throughput method to develop mechanistic hypotheses of how some parasites can modify the behavior of 
their hosts. Here, we use such approaches to investigate the behavior-manipulating fungus Ophiocordyceps cam-
ponoti-floridani (Florida zombie ant fungus) and its insect host Camponotus floridanus (Florida carpenter ant).

Myrmecophilous Ophiocordyceps fungi are typically species-specific parasites that have co-evolved with their 
ant hosts over millions of  years8. This close relationship has resulted in fungus-ant interactions that alter host 
behaviors in ways that are adaptive for the parasite. Manipulated host ants succumb to a summit disease, affixing 
themselves to elevated positions and dying at locations that promote fungal growth and  transmission9–13. Behav-
ioral changes preceding this final summit could include host-adaptive responses, parasite-adaptive manipula-
tions, or general symptoms of disease that span hyperactivity, uncoordinated foraging, decreased nestmate com-
munication, and  convulsions9,14–17. While these modified ant behaviors have been observed in nature for some 
 time18, explorations of the fungal effectors involved are relatively more recent  endeavors14,19–25. These multiple 
“-omics” studies have provided hypotheses about the parasite and host molecules that play a role in establishing 
the behavioral phenotypes observed, but leave their potential interactions open to interpretation.

A large number of fungal molecules and ant pathways may be involved in Ophiocordyceps behavioral manipu-
lation, including neuro-modulators and -protectants, insect hormones, feeding, locomotion, circadian rhythms 
and light-sensing, and muscular  hyperactivity14,17,19,21,22,25–29. Fungal proteins such as bacterial-like enterotoxins, 
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protein tyrosine phosphatases, peptidases (e.g., S8 subtilisin-like serine proteases), and undescribed small 
secreted proteins (uSSPs) have been proposed as mechanisms of manipulation that presumably function by 
PPIs. These hypotheses are supported by strong gene upregulation of these candidates during active manipulation 
of the ant and genomic comparisons among the Ophiocordyceps14,19,24. Numerous other such proteins are sup-
ported as plausible effectors as well. Testing them in vivo will be a costly and laborious process in an emerging, 
non-traditional model organism such as O. camponoti-floridani. New evidence linking previously hypothesized 
candidate proteins and pathways to host–parasite protein–protein interactions (PPIs) would give strong support 
to select top predictions for functional validation.

Leveraging big-data and computational methods to explore host–parasite biology is a continuing and mul-
tifaceted effort. Yet, examples of using these assets in PPI prediction remain  limited30,31. Proteome-scale bio-
informatic prediction of PPIs has largely been employed to describe protein interaction networks within a 
single organism, as was done for the host species, C. floridanus32. However, PPI predictions in some interspe-
cific host–parasite relationships have been made, including animal or plant hosts and bacterial, viral, or fungal 
 parasites33–36. Predicting PPIs is typically done using either an interolog or machine learning method. Interologs 
are orthologous interactions conserved across species; each protein in one PPI has orthologs in the second 
 PPI37. While a useful prediction tool, detecting an interolog in a new system requires established reference PPIs 
from other systems. This constraint by available data would result in a very limited number of predictions when 
analyzing interactions between non-model organisms. Machine-learning methods offer a more flexible alterna-
tive. In particular, neural network deep learning tools for PPI prediction have become increasingly available in 
recent years and continue to be an active field of  development38–41. Here, predicted PPIs are still informed by a 
known set of PPIs used for training data. However, once trained, the program is able to predict novel interactions 
outside the original  dataset35,42. The deep learning tool D-SCRIPT has shown an uncommon flexibility in cross-
species PPI predictions when trained on one organism but tested on a different  species35. Protein embeddings 
that encode putative structural information are used to train D-SCRIPT models, which have produced predicted 
protein–protein contact maps that largely agree with experimentally measured docked  proteins35,36,43. Although 
other machine learning methods can outperform D-SCRIPT in same-species contexts, the cross-species gen-
eralizability of D-SCRIPT’s predictive power is an important step for research on non-model or multi-species 
 systems35,38. Notably, Ophiocordyceps and other fungi secrete a range of taxonomically distinct uSSPs that are 
often thought to be effectors in host–parasite  interactions14,19,24,44–46. Therefore, bioinformatic techniques that 
hinge upon well described protein annotations or are subject to strong species-specific biases can only have 
limited success in assigning uSSPs to PPIs.

For our analyses between O. camponoti-floridani and C. floridanus proteins, we anchor our reporting on 
group-level functional enrichments of predicted positive PPIs. We chose this approach in consideration of the 
reported D-SCRIPT default model error rates on insect (Drosophila) and fungal (Saccharomyces) species. In 
these tests, predicted positive PPIs contained 71–79% true-positives (precision rate) and captured 22–36% of all 
true-positives (recall rate)35, which indicate this tool is strongest in broad characterizations rather than validat-
ing specific, previously hypothesized PPIs. Similarly, we benchmarked D-SCRIPT on experimentally supported 
fungus-animal interspecific PPIs and found comparable low true-positive recall coupled with higher precision. 
The authors of D-SCRIPT have also suggested that this tool can outperform an earlier deep learning method in 
reproducing gene ontology (GO) term enrichments of experimentally identified virus-human  PPIs35.

We used D-SCRIPT to predict possible O. camponoti-floridani and C. floridanus PPIs involved in behavioral 
manipulation. We filtered these predictions into subsets we considered most likely to include relevant interac-
tions. As such, our study focuses on PPIs involving putatively secreted O. camponoti-floridani proteins encoded 
by genes that were previously found to be upregulated during manipulated  summiting19. These fungal proteins are 
plausibly exported to the host environment during manipulation, providing support for hypotheses implicating 
such proteins in manipulation of host behavior.

We highlight aspects of functional enrichments after filtering out Camponotus protein interactions with 
fungi that do not naturally infect or manipulate this host (“aspecific” fungi). These aspecific fungi cover different 
lifestyles and phylogenetic relationships to Ophiocordyceps: (i) Cordyceps bassiana (i.e., Beauveria bassiana), a 
generalist entomopathogen in the order Hypocreales (which includes Ophiocordyceps), (ii) Trichoderma reesei, 
a plant-degrading saprophyte in the order Hypocreales (although the genus also includes entomopathogens), 
and (iii) Saccharomyces cerevisiae, a phylogenetically distant saprophytic yeast in the order Saccharomycetales 
with a smaller secretome. This approach brought the unique Ophiocordyceps PPIs to the forefront but does not 
discount the aspecific predictions. Rather, it brings additional attention to a narrower set of specific PPIs that 
could include co-evolved adaptations underlying Ophiocordyceps-manipulated Camponotus behavior.

Materials and methods
Fungus-animal PPI benchmarking. The Host–Pathogen Interaction Database (v 3.0) provided experi-
mentally supported PPIs between 5 fungal and 12 animal species. We used this data to benchmark D-SCRIPT 
in predicting interspecific PPIs. The types of experimental support we selected included direct interactions and 
reactions (e.g., “phosphorylation reaction”) but excluded associations, colocalizations, and genetic effects (e.g., 
“additive genetic interaction”). We only included PPIs with proteins ≤ 2000 amino acids, for computational rea-
sons. We further limited similar PPIs to include only one representative interaction by clustering all proteins in 
the dataset by 40% similarity using MMseqs2 (v. 9-d36de) (single step easy-clustering with minimum sequence 
identity 0.4)47. For any PPIs that connected the same two homologous protein clusters, we selected one of those 
PPIs at random and removed the others. In total, this produced 567 experimentally verified fungus-animal PPIs.

In addition to these verified, positive fungus-animal PPIs, we constructed a set of negative interactions to use 
in evaluating D-SCRIPT. Previously, D-SCRIPT evaluation datasets have used randomly paired proteins from 
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the tested organism as negative PPI  examples35. In this vein, we created artificial interspecific fungus-animal PPIs 
using random yeast (S. cerevisiae) and fly (Drosophila melanogaster) proteins collected from the STRING database 
(v. 11.0)48. Rather than randomly pairing proteins from all organisms in the fungus-animal dataset, we chose 
these two organisms because they both: (i) were represented in the positive PPIs, (ii) had robust PPI data available 
for removing known positive interactions from the random pairings, (iii) were used in the original D-SCRIPT 
evaluations, and (iv) match Ophiocordyceps and Camponotus as a fungus-insect  pair35. Using the aforementioned 
40% clustering method, we filtered out any random yeast-fly PPIs that were similar to positive fungus-animal 
interactions. We also removed any that were similar to known, high-confidence, experimentally-supported fly 
or yeast PPIs listed in the STRING database (“experiments score” > 0 and “combined score” ≥ 700)48. Then, we 
kept only one representative of PPIs that were similar to each other. After filtering, we selected 5670 random PPIs 
(tenfold the number of positive cases) to use as negative examples in the evaluation dataset.

We used D-SCRIPT (v 0.1.5) with the default human-protein pretrained model and settings in evaluation 
mode with this fungus-animal dataset (567 positive and 5670 negative PPIs)35. D-SCRIPT assigns each tested 
protein interaction an edge value (i.e., a confidence score to rank possible PPIs) with a default threshold for 
positive prediction of ≥ 0.5, on a scale of zero to one. These parameters have been previously used to predict 
PPIs within fly and  yeast35.

Protein sequences and initial selection. To predict PPIs between O. camponoti-floridani secreted pro-
teins and C. floridanus proteins, we retrieved sequence information for both organisms from high-quality genome 
assemblies integrating long-read technology (GenBank accessions GCA_012980515.1 and GCA_003227725.1, 
respectively)19,49. For Camponotus proteins, we used the sequence represented by the single longest isoform 
(n = 12,512). We predicted Ophiocordyceps proteins to have a localization outside of the cell by combining eight 
annotation tools (SignalP v6.0, TMHMM, Phobius, Prosite, PredGPI, NucPred, and TargetP v2.0)50–56 fol-
lowing the relatively conservative approaches outlined in Beckerson et al.1. We focused on secreted proteins 
(n = 586) and excluded transmembrane proteins (n = 1301) in our downstream analyses, as we considered these 
to most plausibly constitute effectors. Moreover, our preliminary findings showed that transmembrane proteins 
were generally less specific in their binding (Supplementary Discussion S1). All remaining non-secreted, non-
transmembrane proteins were considered intracellular (n = 5568). We annotated secreted proteins as uSSPs if 
they were under 300 amino acids in length and lacked any BLAST description, GO term, or PFAM domain 
(n = 154)19. We used proteins ≤ 2000 amino acids due to computational constraints. Limiting the length of input 
proteins removed 63 (1.1%) intracellular Ophiocordyceps proteins and 299 Camponotus proteins (2.4%).

PPI predictions. We used D-SCRIPT (v 0.1.5) in prediction mode with the default human-protein pre-
trained model and settings to predict PPIs (as above for fungus-animal benchmarking)35. We tested every PPI 
combination between secreted O. camponoti-floridani proteins and the entire C. floridanus proteome (Fig. 1 step 
1).

To identify self-interacting Ophiocordyceps PPIs, we tested secreted Ophiocordyceps proteins against intracel-
lular Ophiocordyceps proteins (Fig. 1 step 2). We then identified reciprocal homologs (putative orthologs) between 
Ophiocordyceps and Camponotus proteins using Proteinortho (v 5.0) with default  settings57. We filtered out PPIs 
that contained a fungal secreted protein predicted to bind both one of Ophiocordyceps’ own intracellular proteins 
and a Camponotus protein that was orthologous to that fungal intracellular protein (Fig. 1 step 3). We reasoned 
that an interspecific PPI would more likely indicate an interaction related to infection or manipulation when the 
Ophiocordyceps protein was predicted to only bind a Camponotus protein, without also binding a fungal ortholog 
to that ant protein. We considered this to be a favorable tradeoff with possibly overlooking parasite effectors that 
may target well-conserved biological processes.

We narrowed the remaining PPIs to those involving secreted fungal proteins encoded by differentially 
expressed genes (DEGs) (Fig. 1 step 4). These genes were upregulated during manipulated summiting behavior 
in C. floridanus ants experimentally infected with O. camponoti-floridani, as compared to their expression in 
 culture19. By incorporating empirical gene expression data, we anchored our computational analyses in predic-
tions that are most biologically relevant during manipulation. Although the chance exists that some parasite 
effectors act during manipulation without increased gene transcription, we presumed that in most cases, gene 
expression would be informative.

Hypergeometric enrichment analyses. We performed hypergeometric enrichment analyses on pro-
teins from PPIs with secreted, upregulated Ophiocordyceps proteins that only had predicted interactions with the 
host. For enrichment analyses of the fungal proteins in these PPIs, we used the O. camponoti-floridani secretome 
as the background. For enrichment analyses of the ant proteins in these PPIs, we used the C. floridanus proteome 
as the background (Fig. 1, step 5).

We examined annotated GO terms (biological processes and molecular functions combined)58, PFAM 
 domains59, and weighted gene co-expression network analysis (WGCNA)60 module memberships reported in 
the transcriptomics study from which we also obtained the above-mentioned  DEGs19. These WGCNA modules 
correlated expression of gene-networks to sample types in that study, i.e., (i) healthy ant controls, (ii) in vitro 
fungus controls, (iii) active fungus-manipulated ants, and (iv) dying fungus-manipulated ants. These modules 
were additionally correlated directly between Ophiocordyceps gene modules and Camponotus gene  modules19. 
We referenced their previously assigned names following the convention of ant-module-1 (A1) and fungus-
module-1 (F1) as used in that  study19. For Camponotus proteins, we also tested for enrichments of DEG class 
(i.e., upregulated or downregulated gene expression from healthy controls to active manipulated ants)19. For 
Ophiocordyceps proteins, we additionally tested for enrichment of uSSP annotations.
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We performed the hypergeometric enrichment analyses with the R package timecourseRNAseq (v 0.0.9000) 
using default settings (significant enrichment at FDR ≤ 0.05) in R studio (v 2021.09.2) with R (v 4.1)61–63. We 
plotted GO terms in semantic space to cluster related terms based on R code generated from REVIGO but did 
not remove any GO terms (R package ggplot2, v 3.3.5)64,65.

Aspecific fungus-Camponotus PPI combinations. For more selective analyses of species-specific 
Ophiocordyceps-Camponotus PPIs, we produced aspecific PPIs from the secretomes of other fungi tested against 
the C. floridanus proteome. Removal of more common PPIs, leaving only those potentially unique to Ophio-
cordyceps, provided a view that was easier to interpret in the context of specialized parasite-host interactions, 
such as behavioral manipulation. However, a PPI need not be unique to a certain interspecific interaction to 
be  relevant1. Additionally, computationally predicted protein binding does not indicate that all such interac-
tions occur in dynamic physiological environments. In and around the cell, protein localization, transcriptional 
control, post-translational modification, competing PPIs, and biochemical conditions (e.g., pH) could affect 
the likelihood of a predicted PPI to occur. The cellular environments within fungal cells and insect cells could 
plausibly differ in many ways, shaping protein activity. Therefore, we used the removal of aspecific interactions to 
help us focus on some of the, likely, more important PPIs involved in establishing Ophiocordyceps manipulation 
of ant behavior, but still anchored our analyses and discussion on the larger dataset.

Figure 1.  Conceptual framework for PPI testing, selection, and analysis. Step 1) We tested every secreted O. 
camponoti-floridani protein (secretome) with every C. floridanus host protein (proteome). Steps 2, 3) If an 
interspecific PPI and an Ophiocordyceps self-interaction PPI shared a common fungal protein paired with a 
protein homologous between both species, we removed that PPI from our predictions. Step 4) Subsequently, we 
filtered predicted PPIs to focus on those that involved fungal proteins encoded by genes that were upregulated 
during manipulation. Step 5) We analyzed host and parasite proteins from these PPIs with hypergeometric 
enrichment analyses. For enrichment analyses, the background protein set was either the parasite secretome 
(Ophiocordyceps) or host proteome (Camponotus). Step 6) We also performed enrichment analyses after 
removing PPIs or host proteins that were predicted in interactions between aspecific fungi and C. floridanus. 
Fungal proteins are shown as circles and ant proteins as squares. Proteins are color-coded, with Ophiocordyceps 
upregulated, secreted proteins in interspecific PPIs indicated in red and their interacting Camponotus proteins in 
bright blue. Shades of orange represent other secreted fungal protein categories while blue-gray indicates other 
host proteins in PPIs. All other proteins are shown in gray. Proteins “A” are Ophiocordyceps and Camponotus 
homologs, and protein “B” is a single fungal protein.
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We chose three fungi based on lifestyle, phylogeny, and availability of well-annotated genomes to gen-
erate aspecific PPIs: C. bassiana (GenBank accession GCA_000280675.1), T. reesei (GenBank accession 
GCA_000167675.2), and S. cerevisiae (GenBank accession GCF_000146045.2)7,66,67. As for Ophiocordyceps (see 
above), we predicted each fungal secretome and removed secreted proteins over 2000 amino acids long, which 
only removed one T. reesei protein (0.002%). The secretomes of C. bassiana, T. reesei, and S. cerevisiae fungi 
included 833, 505, and 153 proteins, respectively. These proteins were then paired with the Camponotus proteome 
for D-SCRIPT predictions (see above).

To find orthologous proteins between Ophiocordyceps and each of the aspecific fungi we used Proteinortho 
(v 6.0) with default settings while enforcing blastp + and single-best reciprocal hits (i.e., -sim = 1)57. Using this 
information, we identified shared PPIs between Ophiocordyceps and Camponotus, and aspecific fungi and Cam-
ponotus; i.e., interactions between orthologous fungal proteins and the same ant protein (Supplementary Fig. S1). 
More stringently, we also applied a filter that eliminated shared host proteins with aspecific fungal interactions, 
regardless of orthology. This resulted in a set of Ophiocordyceps PPIs where the Camponotus protein was never 
predicted in any aspecific PPI (Supplementary Fig. S1). After removing either shared PPIs or shared host pro-
teins, we again performed enrichment analyses (see above) to investigate overrepresented annotations among 
the Ophiocordyceps-specific PPIs (Fig. 1 step 6). To visualize changes in PPI connectivity and abundance that 
resulted from these aspecific filters, we used Cytoscape (v 3.8.2) to produce networks of host proteins and their 
respective Ophiocordyceps binding  partners68.

Results
Fungus-animal benchmarking PPIs. To evaluate D-SCRIPT’s performance on predicting interspecific 
PPIs between fungi and animals, we used experimentally supported interactions from the Host–Pathogen Inter-
action  Database69. Our evaluation dataset included 567 of these verified, positive interactions from a diversity 
of fungal and animal species. We combined these with a tenfold negative background (5670 PPIs) constructed 
by randomly pairing fungal (S. cerevisiae) and insect (D. melanogaster) proteins. For this evaluation with a 1 
positive:10 negative ratio test data, the model performance metric, area under precision-recall curve (AUPR), 
has a baseline of 0.091. D-SCRIPT produces results well above this level for fly-only35, yeast-only35, and these 
fungus-animal data (AUPR 0.552, 0.405, and 0.373, respectively) (Table 1). Although interspecific interactions 
indeed appear to be challenging to predict, our benchmarking data (Table 1) suggest D-SCRIPT still provides 
meaningful insights in interspecific contexts.

Ophiocordyceps-Camponotus PPIs. We tested a total of 7,156,818 potential interspecific PPIs between 
the parasite secretome and host proteome (Fig. 1 step 1). Of these possible protein–protein combinations, 0.33% 
were positively predicted as PPIs (n = 23,629 PPIs) (Table 2, Supplementary Fig. S2). This result is in line with 
a previous 0.95% positive D-SCRIPT prediction rate from a single-species dataset testing 50 million potential 
 PPIs35.

Table 1.  Fungus-animal PPI D-SCRIPT benchmark. We evaluated D-SCRIPT on interspecific fungus-
animal PPIs using positive interactions from the Host–Pathogen Interaction Database (n = 567) and negative 
interactions from randomly paired yeast and fly proteins (n = 5670). For this dataset and those published 
with D-SCRIPT35 with 1 postive:10 negatives, the baseline AUPR is 0.091. Recall is the proportion of true 
positive examples in the dataset that the model correctly predicted to interact. Precision is the proportion of 
predicted positives that were indeed correct. Based on these benchmarking data, interspecific PPIs are more 
difficult for D-SCRIPT to predict, but, we suggest, they still can be detected at rates useful for initial biological 
investigation and characterization of group-level trends.

Evaluation dataset AUPR Precision Recall

Fly, as  published35 0.552 0.798 0.359

Yeast, as  published35 0.405 0.706 0.223

Fungus-animal 0.373 0.720 0.169

Table 2.  PPI sets overview. We tested 7,156,818 combinations of secreted O. camponoti-floridani (O.) proteins 
(n = 586) with every C. floridanus (C.) protein (n = 12,213). Predicted PPIs were combinations returned with 
an edge value of ≥ 0.5. We then created PPI subsets based on homologous interaction between secreted and 
intracellular fungal proteins and fungal gene upregulation during manipulation.

PPI set
Predicted PPIs (% of protein 
combinations tested)

Ophiocordyceps 
proteins in PPIs

Camponotus 
proteins in 
PPIs

All secreted O. & C 23,629 (0.33%) 402 3289

No homologous fungal-self PPIs 20,779 (0.29%) 399 3143

No homologous fungal-self PPIs & O. upregu-
lated 6,011 (0.08%) 129 2083
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From these positively predicted interspecific interactions, we removed 2850 PPIs that were homologous to 
within-Ophiocordyceps interactions (Fig. 1 step 2 and 3, Table 2). We then selected those involving Ophiocordyceps 
proteins encoded by upregulated DEGs during manipulation. This resulted in 6011 predicted PPIs. We used this 
set of putative effector-host PPIs, containing 129 unique Ophiocordyceps proteins and 2083 unique Camponotus 
proteins, for further analyses (Fig. 1 step 4, Table 2, Supplementary File S1).

PPIs between aspecific fungi and Camponotus in comparison to Ophiocordyceps. The propor-
tions of positive PPI predictions between aspecific fungi and C. floridanus (range 0.26–0.28%) and secreted pro-
teins predicted to be in at least one PPI (range 68–76%) were similar to the values observed for Ophiocordyceps 
(0.33% and 69%, respectively) (Table 2, Supplementary Table S1). Eliminating orthologous PPIs between Ophio-
cordyceps and any of the aspecific fungi (i.e., shared PPIs) removed 1776 of the 6011 (30%) Ophiocordyceps-Cam-
ponotus PPIs (Table 3, Supplementary Fig. S1). Eliminating PPIs involving host proteins that were also predicted 
to be bound by aspecific fungi, regardless of orthology of the fungal binding partner (i.e., shared host proteins), 
removed 1936 of 2083 (93%) host proteins, leaving only 157 Ophiocordyceps-Camponotus PPIs (3%) (Table 3, 
Supplementary Fig.  S1). In line with secretome size, phylogeny, and entomopathogenic lifestyle, C. bassiana 
shared the most overlap with Ophiocordyceps predictions (Supplementary Fig. S1). As expected, removing PPIs 
involving shared host proteins led to major changes in enrichment results while removing shared PPIs led to 
more modest changes (Table 3, Supplementary File S2). We primarily report the results based on all three fungi 
that we included in this study. However, those based on C. bassiana alone were largely similar (Supplementary 
Fig. S1, Supplementary File S2). While these filters assisted us in ordering and emphasizing results (i.e., signals 
maintained through the strictest filters are being prioritized), we did not use this approach to wholly select PPIs 
of interest. Results presented below only use aspecific filters where stated.

Ophiocordyceps enrichment signals. We found that Ophiocordyceps proteins in PPIs with Camponotus proteins 
were enriched for one PFAM domain and three WGCNA modules (Fig. 2, Table 3).

S8 serine peptidases. The enriched PFAM domain was a “peptidase S8 domain,” indicating an overrep-
resentation of fungal serine proteases that could cleave host proteins. The five fungal peptidase S8 proteins in 
this enrichment were predicted to interact with 34 host proteins across 39 PPIs (Supplementary File S1). Among 
these host proteins, there were seven kinesin-like proteins (motor proteins), five nuclear pore proteins, and a 
(pro-)resilin that is an insect cuticle and connective tissue  protein70. Even after removing PPIs that were shared 
with aspecific fungi, the enrichment signal for S8 peptidases was retained. However, the much more stringent 
removal of shared host targets eliminated the S8 peptidase enrichment result (Fig. 1 step 6, Table 3).

Fungal manipulation WGCNA modules. We found fungal WGCNA modules F1, F2, and F3 to be 
enriched (Fig. 2). We previously reported modules F1 and F2 to have significant positive correlations to manipu-
lation. This means that most of the fungal genes in those modules were upregulated, in a similar co-expressed 
manner, during manipulated summiting behavior. As such, these modules contained multiple genes hypoth-
esized to mediate infection or manipulation processes (“uSSPs and hypothesized effectors” modules) (Fig. 2). 
With fungal gene expression clearly negatively correlated with control cultures, module F3 was modestly posi-
tively correlated to fungi in both manipulated hosts and dying hosts. This module largely contained genes related 
to “core cell processes” in the fungus (e.g., DNA packaging) (Fig. 2). All three fungal modules also had significant 
direct correlations to ant WGCNA modules, with F1 being negatively correlated to ant modules A14 and A15—
both associated with host neuronal processes (Fig. 2). Core cell processes module F3 was positively correlated 
with neuronal process module  A1519. The overrepresentations of all three fungal WGCNA modules was retained 

Table 3.  Annotation enrichments of PPI proteins. We performed enrichment analyses on interspecific PPIs 
without homology to Ophiocordyceps self-interactions and involving upregulated, secreted Ophiocordyceps 
proteins and any Camponotus proteins (Fig. 1 step 5) with or without additional filtering based on shared 
aspecific fungal interactions (Fig. 1 step 6). We found no enrichment signal for uSSPs in the fungus. Only in 
the unfiltered analysis were Camponotus DEGs overrepresented—for both upregulated and downregulated 
genes. The number of gene co-expression modules enriched are given under column WGCNA. While typically 
more stringent filtering reduced the number of enrichments detected, it increased the number of enriched GO 
terms for Ophiocordyceps. These enrichments included oxidation–reduction terms and various general binding 
terms (e.g., “binding,” “catalytic activity,” “cofactor binding,” or “ion binding”).

Test proteins (n) GO PFAM WGCNA

Ophiocordyceps (129) 0 1 3

 After shared PPIs removed (125) 1 1 3

 After shared host proteins removed (26) 11 0 2

Camponotus (2083) 50 74 9

 After shared PPIs removed (1901) 44 64 9

 After shared host proteins removed (147) 12 3 2
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after eliminating shared PPIs, but uSSP and effectors module F1 was lost after removing shared host proteins 
(Table 3).

Camponotus enrichment signals. We found that Camponotus PPI proteins were enriched for 50 GO terms, 74 
PFAM domains, and nine WGCNA modules (Table 3). As GO term and PFAM domain enrichments often indi-
cated similar functions, we present results largely from the GO term perspective. We highlight PFAM domains 
for emphasis or to discuss biologically interesting results not well captured by GO terms alone.

G protein-coupled receptor signaling. We detected GO term enrichments for “G protein-coupled 
receptor (GPCR) activity” and “GPCR signaling pathway” (Fig. 3). These enrichments resulted from 71 GPCR-
related PPIs with 16 unique Ophiocordyceps proteins (Supplementary File S1). All but two receptor proteins in 
these PPIs carried the PFAM domain “7 transmembrane receptor (rhodopsin family).” We found 33 unique 
GPCR-related protein genes (of 128 possible with these GO terms), with a range of putative ligands: 11 neuro-
peptides (n = 12 receptors), four biogenic monoamines (dopamine, serotonin, octopamine, tyramine) (n = 11 
receptors), acetylcholine (n = 2 receptors), a spider venom toxin protein (alpha-latrotoxin) (n = 1 receptor), and 
opsin blue- and ultraviolet-sensitive receptors (n = 2 receptors). Fourteen of these 33 Camponotus receptors (or 
receptor subunits) belonged in ant-neuronal processes WGCNA modules A14 and A15, which showed overall 
reduced expression during manipulation compared to healthy ants (i.e., the modules were negatively correlated 
to manipulation)19. Host GPCR-related PPI proteins were predicted to bind 16 fungal proteins that included five 
uSSPs, a carboxylesterase, a glycosyl hydrolase, a CAP cysteine-rich secretory protein, and a protein tyrosine 
phosphatase. Most of these fungal proteins were previously assigned to fungal uSSPs and effectors module F2 
(n = 9) but included some in modules F1-4 (Supplementary File S1), which all were also correlated to infection 
and manipulation of hosts.

The enrichment signals for GPCRs were retained after we removed both PPIs and host proteins shared with 
aspecific fungi (Fig. 4). Twenty-eight of the 33 GPCR host proteins remained after removing shared PPIs. How-
ever, only seven remained after filtering out shared host proteins. These host proteins, predicted to be uniquely 
bound by Ophiocordyceps during manipulation, were a putative dopamine receptor 2, Oamb octopamine recep-
tor, methuselah-like 10 receptor, orexin receptor, trissin receptor, cAMP-dependent protein kinase subunit, 
and receptor without an informative BLAST description (“uncharacterized protein”). The four Ophiocordyceps 
proteins binding these host receptors were predicted in many PPIs (range = 101 to 458). The dopamine receptor 
2, Oamb octopamine receptor, and uncharacterized receptor shared the same fungal uSSP partner. The orexin 
and trissin receptors also shared an unannotated secreted fungal protein (larger than an uSSP).

Oxidation–reduction. We also found the enrichment of oxidation–reduction functions among Campono-
tus proteins in PPIs (six supporting GO terms) (Fig. 3, Supplementary File S1). Altogether, 159 host proteins had 
oxidation–reduction annotations, forming 321 PPIs with 48 parasite proteins. A plurality of the host proteins 
were encoded by cytochrome P450 genes (70 unique genes, 15 putative subtypes). This abundance of cytochrome 
P450, a hemoprotein, also contributed to the enrichment of “heme-binding” and “iron ion binding” GO terms 
(Fig. 3) and the PFAM domain “cytochrome P450” (Supplementary File S1). These Camponotus cytochrome 

Figure 2.  Enriched WGCNA modules and their correlations to manipulation and each other. Module 
membership, correlations, and functional summary of modules were based on previous work 19. Each module 
is a mutually exclusive network of genes that are coexpressed across control, manipulated ant, and dying ant 
conditions. Here, we only depict modules enriched among PPIs and only their correlations to the manipulated 
state or between host–parasite modules directly. Core cell processes module F3 was clearly negatively correlated 
to control conditions, with modest positive correlations divided between both live manipulation and dying ants 
19, as indicated by “ + ” here. While module F1 and F3 were also notably correlated to neuronal process module 
A15, this ant module is not depicted here as it was not enriched among the PPIs detected in this study.
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Figure 3.  Enrichments for C. floridanus proteins in PPIs with upregulated secreted fungal proteins. GO terms 
are plotted in semantic space, which lacks any inherent unit or value other than to cluster terms by functional 
similarity. Some labels were omitted for readability and when not relevant to our discussion of the results.

Figure 4.  PPI network with host proteins contributing to selected GO term enrichments. Host proteins (blue 
square nodes) are clustered and labeled by their general GO term functional category and connected (gray line 
edges) to their fungal PPI partners that are either secreted proteins (small pink circle nodes) or uSSPs (large 
red triangle nodes) that were found to be upregulated during Ophiocordyceps manipulation of Camponotus 
behavior. Proteins may have PPI connections outside of those depicted here. (a) PPI network without aspecific 
PPI filtering. (b) Network of remaining PPIs after removing shared PPIs with aspecific fungi. Although nearly 
30% of PPIs (edges) were removed, most proteins (nodes) and enrichment results were kept. (c) Network of 
remaining PPIs after removing PPIs with all host proteins that also interacted with aspecific fungi, regardless of 
orthology of the fungal binding partner. GO terms related to G-protein coupled receptor signaling and some 
oxidation–reduction enrichments persisted after this filter. Enrichment signals for transcription and DNA-
binding were lost, but some individual proteins remained.
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P450 proteins paired with 10 unique Ophiocordyceps genes, consisting of uSSPs and fungal cytochrome P450s. 
Other notable contributors to the host enrichment of oxidation reduction related functions were peroxiredox-
ins, laccases, dehydrogenases, and a vat-1 synaptic vesicle membrane-like protein (Supplementary File S1). The 
48 fungal proteins included cytochrome P450s, oxidases and oxidoreductases, amidases, peptidases, and an 
enterotoxin.

Enrichment signals for four of the six oxidation–reduction GO terms were retained after we removed PPIs 
that were shared with the aspecific fungi. Only two remained after we applied the more stringent shared host 
protein filter (Supplementary File S2). Additionally, indicators of cytochromes, heme and iron binding GO terms 
and the “cytochrome P450” PFAM domain, continued to be enriched after either filter (Supplementary File S2). 
Most host proteins passed the shared PPI filter (140 of 159), but only 19 remained after removing shared host 
proteins (Fig. 4). Cytochrome P450 proteins shifted from a plurality to a dominant majority after shared host 
protein filtering (17 of 19 proteins), with eight cytochrome P450 subtypes: 3A19, 315a1, 4C1, 49a1, 6a13, 6a14, 
6k1, and 9e2.

Transcription and DNA-binding. Multiple enrichments that can be associated to gene transcription and 
regulation were enriched. We found 204 host proteins annotated for any of “DNA binding,” “DNA-binding 
transcription factor activity,” “sequence-specific DNA binding,” “DNA helicase activity,” “regulation of transcrip-
tion, DNA-templated,” and “mRNA binding” GO terms (Fig. 3). These proteins similarly contributed to the high 
enrichment of PFAM domains such as “helix-loop-helix DNA-binding domain,” “zinc Finger C4 type,” “‘paired 
box’ domain,” and “bZIP transcription factor” (Supplementary File S1). These 204 host proteins interacted with 
43 fungal proteins to generate 922 PPIs. Among the 204 host proteins, we found transcription factors and regula-
tors with many functions, which included examples associated with insect behavior and neuronal function such 
as Mushroom body large type Kenyon specific protein 1 (e.g., elevated in worker bees, foraging behavior), Goose-
berry (e.g., neuromuscular junction function), Hairy (e.g., juvenile hormone mediated gene repression), photo-
receptor specific nuclear receptor (light sensing), CLOCK (circadian clocks), and steroid and ecdysone nuclear 
receptors and induced  proteins71–75. Other proteins, most clearly understood from the neuronal development 
perspective thus far, produce atypical behavioral or locomotor phenotypes when dysregulated and include Jim 
Lovell, Dead ringer, Hairy/enhancer-of-split related, Achaete-scute complex proteins, and  Forkhead76–81. These 
34 proteins taken as biologically relevant examples account for 186 of the 922 gene regulation PPIs, interacting 
with 20 Ophiocordyceps proteins covering a similar breadth of protein types as the 43 parasite proteins overall 
(Supplementary File S1). The 43 fungal proteins included five uSSPs that were also found in the PPIs reported 
above (Fig. 4A), three that were not, and various hydrolases, oxidoreductases, peptidases, and carboxylesterases.

All of the aforementioned GO terms and PFAM domains continued to be enriched after removing shared 
PPIs (191 of 204 host proteins retained), but none of these annotations continued to be enriched after removing 
shared aspecific host proteins (five host proteins retained) (Fig. 4, Supplementary File S2).

Cuticular proteins. We found 28 ant proteins that shared the enriched GO term “structural constituent of 
cuticle” (Fig. 3) and PFAM domain “insect cuticle protein” (Supplementary File S1). We predicted these ant pro-
teins interacted with 22 fungal proteins to form 138 PPIs (Fig. 4A). These host proteins included (pro-)resilin, 
endocuticle structural proteins, and a range of “cuticle proteins” (e.g., “cuticle protein 7”). The fungal proteins 
included a CAP protein and a carboxylesterase also predicted to bind GPCRs (see above). Four fungal uSSPs 
were shared with the transcription and DNA-binding host proteins. We additionally identified a glycosyl hydro-
lase, a disintegrin/reprolysin-like peptidase, a S8 subtilisin-like serine peptidase, M43 peptidases, an uSSP, and 
an unannotated secreted protein (larger than an uSSP). These enrichments were only kept under the aspecific 
shared PPI filter (with all 28 original cuticular proteins) and lost with the shared host protein filter (none of the 
28 proteins were uniquely bound by Ophiocordyceps) (Fig. 4, Supplementary File S2).

Ant DEGs and WGCNA modules. Camponotus genes that were previously determined to be differentially 
expressed during manipulation, as well as host gene modules correlated to manipulation, were enriched among 
PPI proteins (Supplementary File S1). Both up- and downregulated host DEGs were enriched. The upregu-
lated host DEGs were enriched for gene/DNA regulatory functions and the downregulated DEGs for oxidation–
reduction (Supplementary File S1). Three ant WGCNA modules were enriched that had significant correlations 
to manipulation, with an additional six that did not (of 22 possible modules total). “Neuronal processes” module 
A14 was negatively correlated to manipulation and fungal uSSP and effectors module F1 (Fig. 2). This host mod-
ule included many genes putatively associated with neuronal function, including GPCRs reported  above19. The 
other host neuronal processes module, A15, was not enriched for PPIs. Module A10 was positively correlated 
to manipulation and contained enrichment signals for GO terms indicating “signal transduction and transcrip-
tion”19 (Fig. 2). Module A4 had a positive correlation to manipulation and contained enrichment signals for 
“proteasomes and odor detection”19 (Fig. 2). All three of these host modules passed the shared PPI filter but did 
not persist after removing shared host targets with aspecific fungi.

Discussion
The interspecific molecular interactions during manipulation of C. floridanus by O. camponoti-floridani are 
likely mediated by parasite effector proteins that target host proteins. To predict such PPIs, we used the machine 
learning tool D-SCRIPT, which infers structural relationships between proteins without relying on protein-wide 
sequence homology to known interactions. This flexibility allows D-SCRIPT models to extend predictions across 
organisms and beyond previously documented PPIs. We benchmarked D-SCRIPT against a dataset including 
experimentally supported fungus-animal PPIs. This evaluation indicated D-SCRIPT can produce meaningful 
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predictions on interspecific PPIs, although it performs better on single-species data. D-SCRIPT predicted several 
thousand PPIs between Camponotus host proteins and upregulated, secreted Ophiocordyceps parasite proteins. 
Even with low recall (identification of true PPIs) functional enrichments and trends at the group level can plau-
sibly be detected. Correct PPIs predictions reflect a true biological signal while, most likely, incorrect-prediction 
noise would not frequently produce coherent enrichments signals.

Due to the unfamiliar terrain of leveraging this approach between non-model species, we sought to propose 
hypotheses balancing biological plausibility and the possibility of novel interactions. On the one hand, we con-
sidered PPI predictions in the light of previous knowledge of protein and cellular function. However, since the 
molecular aspects of parasitic manipulation are still largely to be uncovered, we also considered that undescribed 
or unusual mechanisms may underlie these interactions. Often, we found that single proteins, especially from 
Ophiocordyceps, were in multiple host–parasite PPIs. Although in some cases these could be errant predictions, 
Ophiocordyceps effectors may indeed bind many host proteins across different pathways. This is a commonly 
observed phenomenon in microbe-plant interactions, and is possibly even the  norm2,4. Moreover, we found that 
only the S8 peptidase annotation term was enriched among Ophiocordyceps secreted, upregulated proteins that 
were in PPIs with Camponotus proteins. This finding indicates that the PPI proteins are not a sharply distinct 
subset from the fungal secretome (i.e., background proteins of the enrichment analysis), which is functionally 
enriched for pathogenesis and proteolytic activity  overall19. In contrast, we detected many enriched annotations 
for the host side of the interactions.

Ophiocordyceps proteolysis of core intracellular host proteins. Fungal PPI proteins were enriched 
for S8 peptidase domains, indicating that a significant number of these proteins had proteolytic functions with 
possibly diverse  targets82. Cuticular host proteins are a canonical target for such effectors as we discuss below. 
Additionally, multiple host kinesin motor proteins were in PPIs with these Ophiocordyceps proteases. Kinesins 
play a role in mitotic and intracellular transport processes—with key functions in vesicle transport towards the 
periphery of  neurons83. Defects in kinesin activity can lead to dysregulated neurotransmitter release at syn-
apses, thereby contributing to impaired neurological functions and  development83,84. From these predicted S8 
peptidase-kinesin interactions, we infer that the fungus may be dysregulating core host cell processes. The effects 
of which possibly impair neuronal signaling and neurotransmitter release to contribute to modified behavioral 
phenotypes. We also predicted these peptidases to interact with multiple Camponotus nuclear pore proteins. 
Although some components of the nuclear pore undergo proteolytic post-translational modification to remove 
 SUMOylation85,86, those peptidases are in a different family than S8 peptidases. If the predicted S8 peptidase-
nucleopore proteins interactions are genuine, this could mean the parasite alters transport of molecules in and 
out of the host nucleus. Speculatively, this could facilitate entry of the fungal proteins that bind host transcription 
factors.

Camponotus G protein-coupled receptors as targets to modify behavior. We detected over 30 
ant GPCRs or GPCR subunits in PPIs with fungal proteins. Most GPCRs were from the rhodopsin/A fam-
ily and included receptors related to biogenic monoamines, acetylcholine, and neuropeptides. These recep-
tors offer a wide range of hypothetical connections to manipulated ant behavior. Commonly, these receptors 
and their ligands have been linked to locomotion, feeding, and circadian rhythms—processes that have been 
previously highlighted in hypotheses of Ophiocordyceps and other fungus-insect summit-disease behavioral 
 manipulations10,14,19,87,88.

The monoamine neurotransmitters dopamine, serotonin, octopamine (analogous to vertebrate norepineph-
rine), and tyramine have been implicated in modulating locomotor, foraging, learning, social, reproductive, 
and aggressive behaviors in many insects, with experimental evidence in social insects, including  ants89–94. 
Compared to the aspecific fungi tested, both a C. floridanus dopamine and octopamine receptor were uniquely 
bound by Ophiocordyceps upregulated secreted proteins. This interaction hypothetically implicates these host 
receptors in specific Ophiocordyceps interactions such as behavioral manipulation. We additionally detected 
two muscarinic acetylcholine receptors associated with sensory and motor neurons in non-insect  animals95–97. 
In bees, excessive activation of acetylcholine receptors can cause changes in locomotor, navigational, foraging, 
and social  behaviors98. Changes in such behaviors have also been observed in C. floridanus ants infected with O. 
camponoti-floridani. Locomotor behavior is enhanced in these ants, while social behaviors are diminished, daily 
timed foraging activities become arrhythmic and navigation capabilities appear less  effective17.

The neuropeptide GPCRs in PPIs had a range of putative ligands linking parasite interference with behavior-
regulating processes such as circadian rhythm, nutritional signaling, insect hormones, and odor reception. These 
GPCRs included a host trissin receptor and an allatotropin receptor (annotated as an “orexin” receptor, but likely 
an allatotropin receptor in insects), which, compared to the aspecific fungi, only Ophiocordyceps was predicted to 
bind. Between these two receptors, dysregulation of feeding and circadian control of locomotor activity, juvenile 
hormone production, immune activation, and muscle stimulation are possible  effects99–105. Circadian rhythm is 
related to ant foraging behavior (and, perhaps indirectly, feeding) and is affected by Ophiocordyceps  infection17. 
The synchronized time-of-day summiting and biting behaviors further suggests a role for circadian control of 
 activity15,19,23. Interlaced with feeding and foraging processes in ants, juvenile hormone mediates insulin/feeding 
related signaling and social caste identity (e.g., foraging workers)28,106–108. Among the host neuropeptide GPCR 
targets shared with the aspecific fungi, we predicted binding of receptors also associated with locomotion and 
activity levels, feeding, aggression, muscle control, juvenile hormone, reproductive behavior, or pheromones 
that included those activated by: allatostatin-A109–112, adipokinetic hormone or corazonin (i.e., a “gondaotropin-
releasing hormone” receptor)113, cholecystokinin-like  peptides114, CCHamide-2115, and pyrokinin, pheromone 
biosynthesis activating neuropeptide (PBAN), and/or capa type  neuropeptides116–118. Odor and pheromone 
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detection are key elements of ant communication, behavioral regulation, and social  interactions119–121. GPCRs 
typically involved in odorant response may become dysregulated by fungal effectors to dampen nestmate inter-
action and/or induce aberrant behavior without normal cues. Taken together, we found multiple PPIs involving 
ant GPCRs putatively involved in signaling systems that could control which and when certain behaviors are 
performed by manipulated ants.

We also predicted PPIs involving a putative host cAMP-dependent protein kinase catalytic subunit, found only 
between Ophiocordyceps and Camponotus, and a host G-protein subunit alpha, both of which serve important 
roles as components of GPCRs. This alpha subunit was also found previously to be downregulated in manipulated 
Camponotus19. Ophiocordyceps interference with host GPCR signaling has been previously hypothesized to be 
mediated, at least in part, by enterotoxins and other fungal protein toxins that interfere with cAMP levels and 
signal  transduction14,19,24,25.

Given the signal for GPCR interference, with both our broadest and narrowest analyses, and that many 
of these receptors/ligands overlap in their behavioral associations, we suggest that this provides evidence for 
host–parasite GPCR PPIs as one mechanism of behavioral manipulation used by Ophiocordyceps. The fungal 
counterparts in these host GPCR-parasite effector PPIs were often predicted in many interactions. These fungal 
proteins included five uSSPs upregulated during manipulation and correlated to manipulation in WGCNA 
 modules19. Given that these fungal proteins lack annotations, we cannot yet determine if they might be agonists 
or antagonists, nor whether they bind the ligand-site or elsewhere on the receptor. As these uSSPs were not 
predicted to bind only these host proteins, their interaction with the receptors may be less likely mediated by 
specific receptor-ligand binding sites than more generic contact sites elsewhere on the host protein.

Host–pathogen interactions involving oxidation–reduction. We predicted over 300 PPIs that 
contributed to an enrichment of oxidation–reduction processes among the host proteins. Oxidation–reduc-
tion processes can be involved in a range of metabolic, developmental, and host–parasite interaction pathways 
that have been previously hypothesized to play a role in Ophiocordyceps  infections14,19,122,123. Approximately 
half of the host proteins were putative cytochrome P450s, with enrichment signals for cytochrome P450s 
maintained after aspecific fungi filtering. In insects, cytochrome P450 proteins are often involved in hormone 
metabolism (e.g. ecdysone and juvenile hormone), stress response, xenobiotic detoxification processes, and 
cuticular  development124–130. For example, we found multiple cytochrome p450 proteins bound uniquely by 
Ophiocordyceps of the 4C1 subtype that has been implicated in stress response (e.g., social isolation, temperature, 
UV, or starvation) and insecticide/xenobiotic detoxification, and is regulated by hormones including juvenile 
 hormone126,131–134. In turn, D-SCRIPT predicted that many of those host cytochrome P450s interacted with fun-
gal cytochrome P450s. Although cytochrome P450 proteins often act independently, homo- and hetero-dimer 
formation of cytochrome P450 proteins can modulate protein function in positive, negative, and substrate-spe-
cific  manners135. Oxidation–reduction related PPIs might most strongly represent the physiological stress and 
antagonistic cellular processes between host and parasite. However, fungal interference with these pathways may 
also be critical elements of creating a host susceptible to manipulation.

Alteration of Camponotus gene regulation. We found signs that suggest Ophiocordyceps could inter-
fere with Camponotus gene regulation via proteins that bind host transcription factors and DNA- or mRNA-
binding proteins. Using the host’s own cells to dysregulate behavioral pathways could be metabolically favorable 
for the parasite. Some of the fungal proteins in these PPIs were uSSPs and we, therefore, cannot predict the 
functional result of those PPIs. However, several parasite proteins were hydrolases. We suggest that these hydro-
lases most plausibly cleave host proteins or their post-translational modifications. Depending on the role of the 
protein and specific bond broken, parasite hydrolase activity could increase or decrease transcription of host 
genes. Among the ca. 200 host proteins in the nucleotide-binding category, we found many tied to behavioral 
activity via changes in locomotion, feeding/foraging, gravitaxis, light perception, circadian clocks, development 
and social caste related hormones, and neuronal maintenance. Covering a similar breadth of processes as the 
host GPCRs in PPIs, transcriptional interference may be a complementary parasite strategy to modify their 
hosts. However, very few of these putative targets passed the strictest shared aspecific host protein filter. As such, 
specific hypotheses about individual transcription factors are difficult to parse. However, as a broader functional 
category, many of these host proteins intersect with processes that appear relevant to manipulated ant behavior.

Destruction of Camponotus structural proteins. During manipulation, the fungus also secretes pro-
teins predicted to bind host cuticle and connective tissue proteins. Being an endoparasite, Ophiocordyceps has 
direct access to internal host connective tissues, the endocuticle layer (once the epidermis is breached), and 
the cuticular lining of the gut and trachea, which include tissues that contain  chitin70,136. However, the fungal 
cell wall also contains chitin. As such, we cannot fully discount that some of these secreted fungal proteins may 
simply be cell wall modifying proteins that have falsely been predicted to bind chitin-associated ant proteins. 
Nevertheless, the fungus could be degrading cuticular proteins for nutrition, detaching muscles, or in prepara-
tion for emerging hyphae to later grow out of the host cadaver. Corroborating evidence for the disruption of the 
musculature stems from detailed microscopy work on Ophiocordyceps-infected ants at the time of manipulated 
summiting and biting behavior. These reports describe visual signs of fungal invasion, tissue degradation, and 
atrophy of manipulated ant mandible  muscles15,22,29,137.

The predicted fungal interactors with host structural proteins included multiple proteases such as a M43-like 
metalloprotease and S8 subtilisin-like serine peptidase. S8 peptidases can degrade insect cuticle and are found 
in many  fungi138,139. We also detected unannotated secreted proteins in cuticular protein PPIs that could have 
similar or different functions. The aspecific fungi included a generalist entomopathogen capable of degrading a 
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wide variety of insect tissue (C. bassiana); consistent with this, we found no Ophiocordyceps-specific cuticular-
protein host targets.

Gene networks and expression broadly implicate PPIs in manipulation. Ophiocordyceps PPI 
proteins were enriched for WGCNA modules transcriptionally associated with manipulation and containing 
uSSPs and other previously hypothesized effectors (F1 and F2)19. In Camponotus, gene modules associated with 
neuronal processes and GPCRs (A14) and signaling and transcription (A10) further support the involvement 
of these processes with  manipulation19. Assuming “guilt-by-association,” in some cases this could indicate these 
PPIs are related to infection and manipulation processes even if we yet lack clear mechanistic hypotheses of how 
(e.g., PPIs with uSSPs)140–142. Additionally, both upregulated and downregulated host  DEGs19 were enriched in 
predicted PPIs, possibly indicating homeostatic responses to fungal modulation of functional protein levels. As 
such, the proteome-level predictions that we made in this study are well in line with previous transcriptomics 
work. Therefore, this work serves as an additional line of evidence for certain host processes and narrows the 
pool of well-supported effector candidates involved with behavioral manipulation.

Conclusion
Faced with the challenge of uncovering how a parasitism with two non-model species may operate at the molecu-
lar level, we combined multiple datatypes and tools to predict host–parasite PPIs. These approaches are feasible 
in many study systems, even for those that may lack the tools for sophisticated functional testing. We employed a 
structurally aware machine learning program, D-SCRIPT, to predict PPIs beyond well-documented interactions. 
By combining genomic and transcriptomic data we selected PPIs of interest with multiple bioinformatic tools 
to: (i) annotate secreted fungal proteins, (ii) filter interactions predicted across different species, and (iii) select 
proteins linked to increased gene expression during infection. Using the resulting PPIs, we performed enrichment 
analyses to identify functional categories that should be robust to computational error rates at the individual 
PPI level. Taken together, we produced multiple hypotheses connecting host–parasite interspecific PPIs to pro-
cesses related to infection and manipulation of Camponotus by Ophiocordyceps. We highlighted evidence for 
PPIs involving fungal S8 proteases and PPIs involving host oxidation–reduction processes, cuticular proteins, 
gene regulation, and GPCRs. Especially, with analytically robust results and direct biological links to behavior, 
we emphasize parasitic dysregulation of GPCR signaling as a mechanism of parasitic behavioral manipulation.

Data availability
The genome assemblies used for this study are available on NCBI: O. camponoti-floridani (GCA_012980515.1), C. 
floridanus (GCA_003227725.1), C. bassiana (GCA_000280675.1), T. reesei (GCA_000167675.2), and S. cerevisiae 
(GCF_000146045.2)7,19,49,66,67. Transcriptomic sequence data for O. camponoti-floridani and C. floridanus are also 
hosted on NCBI (BioProject PRJNA600972)19. Analyzed transcriptomic data used here are available on figshare, 
as supplemental information associated with their original publication (https:// doi. org/ 10. 25387/ g3. 12121 659)19. 
Prediction and enrichment results are available in Supplementary Files S1 and S2 published with this article.

Received: 6 January 2023; Accepted: 16 August 2023

References
 1. Beckerson, W. C. et al. Cause and effectors: Whole-genome comparisons reveal shared but rapidly evolving effector sets among 

host-specific plant-castrating fungi. MBio 10, (2019).
 2. Hogenhout, S. A., Van Der Hoorn, R. A. L., Terauchi, R. & Kamoun, S. Emerging concepts in effector biology of plant-associated 

organisms. Mol. Plant-Microbe Interact. 22, 115–122 (2009).
 3. Wang, H., Peng, H., Li, W., Cheng, P. & Gong, M. The toxins of Beauveria bassiana and the strategies to improve their virulence 

to insects. Front. Microbiol. 12, 2375 (2021).
 4. Win, J. et al. Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb. Symp. Quant. Biol. 

77, 235–247 (2012).
 5. Cen, K., Li, B., Lu, Y., Zhang, S. & Wang, C. Divergent LysM effectors contribute to the virulence of Beauveria bassiana by eva-

sion of insect immune defenses. PLOS Pathog. 13, e1006604 (2017).
 6. Wang, C. & Wang, S. Insect pathogenic fungi: Genomics, molecular interactions, and genetic improvements. Annu. Rev. Entomol. 

62, 73–90 (2017).
 7. Xiao, G. et al. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci. Rep. 2, 483 

(2012).
 8. Araújo, J. P. M. & Hughes, D. P. Zombie-ant fungi emerged from non-manipulating, beetle-infecting ancestors. Curr. Biol. 29, 

1–4 (2019).
 9. Andersen, S. B. et al. The life of a dead ant: The expression of an adaptive extended phenotype. Am. Nat. 174, 424–433 (2009).
 10. de Bekker, C., Beckerson, W. C. & Elya, C. Mechanisms behind the madness: How do zombie-making fungal entomopathogens 

affect host behavior to increase transmission? MBio 12, (2021).
 11. Lovett, B., St. Leger, R. J. & de Fine Licht, H. H. Going gentle into that pathogen-induced goodnight. J. Invertebr. Pathol. 174, 

107398 (2020).
 12. Andriolli, F. S. et al. Do zombie ant fungi turn their hosts into light seekers?. Behav. Ecol. 30, 609–616 (2019).
 13. Will, I., Linehan, S., Jenkins, D. G. & de Bekker, C. Natural history and ecological effects on the establishment and fate of Florida 

carpenter ant cadavers infected by the parasitic manipulator Ophiocordyceps camponoti-floridani. Funct. Ecol. 00, 1–14 (2022).
 14. de Bekker, C. et al. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic 

behavioral manipulation. BMC Genom. 16, 620 (2015).
 15. Hughes, D. P. et al. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC 

Ecol. 11, 13 (2011).
 16. Pontoppidan, M. B., Himaman, W., Hywel-Jones, N. L., Boomsma, J. J. & Hughes, D. P. Graveyards on the move: The spatio-

temporal distribution of dead Ophiocordyceps-infected ants. PLoS ONE 4, e4835 (2009).

https://doi.org/10.25387/g3.12121659


13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13821  | https://doi.org/10.1038/s41598-023-40764-8

www.nature.com/scientificreports/

 17. Trinh, T., Ouellette, R. & de Bekker, C. Getting lost: The fungal hijacking of ant foraging behaviour in space and time. Anim. 
Behav. 181, 165–184 (2021).

 18. Evans, H. C. Entomogenous fungi in tropical forest ecosystems: an appraisal. Ecol. Entomol. 7–60 (1982).
 19. Will, I. et al. Genetic Underpinnings of host manipulation by Ophiocordyceps as revealed by comparative transcriptomics. G3 

(Bethesda). 10, 2275–2296 (2020).
 20. Beckerson, W. C., Krider, C., Mohammad, U. A. & Bekker, C. de. 28 minutes later: Investigating the role of aflatrem-like com-

pounds in Ophiocordyceps parasite manipulation of zombie ants. bioRxiv (2023). https:// doi. org/ 10. 1101/ 2022. 09. 08. 507134.
 21. Loreto, R. G. & Hughes, D. P. The metabolic alteration and apparent preservation of the zombie ant brain. J. Insect Physiol. 118, 

103918 (2019).
 22. Zheng, S. et al. Specialist and generalist fungal parasites induce distinct biochemical changes in the mandible muscles of their 

host. Int. J. Mol. Sci. 20, (2019).
 23. de Bekker, C. et al. Species-specific ant brain manipulation by a specialized fungal parasite. BMC Evol. Biol. 14, 166 (2014).
 24. de Bekker, C., Ohm, R. A., Evans, H. C., Brachmann, A. & Hughes, D. P. Ant-infecting Ophiocordyceps genomes reveal a high 

diversity of potential behavioral manipulation genes and a possible major role for enterotoxins. Sci. Rep. 7, 12508 (2017).
 25. Kobmoo, N. et al. A genome scan of diversifying selection in Ophiocordyceps zombie-ant fungi suggests a role for enterotoxins 

in co-evolution and host specificity. Mol. Ecol. 27, 3582–3598 (2018).
 26. de Bekker, C. Ophiocordyceps–ant interactions as an integrative model to understand the molecular basis of parasitic behavioral 

manipulation. Curr. Opin. Insect Sci. 33, 19–24 (2019).
 27. de Bekker, C., Merrow, M. & Hughes, D. P. From behavior to mechanisms: An integrative approach to the manipulation by a 

parasitic fungus (Ophiocordyceps unilateralis s.l.) of its host ants (Camponotus spp.). Integr. Comp. Biol. 52, 166–176 (2014).
 28. de Bekker, C. & Das, B. Hijacking time: How Ophiocordyceps fungi could be using ant host clocks to manipulate behavior. 

Parasite Immunol. 44, e12909 (2022).
 29. Mangold, C. A., Ishler, M. J., Loreto, R. G., Hazen, M. L. & Hughes, D. P. Zombie ant death grip due to hypercontracted man-

dibular muscles. J. Exp. Biol. 222, jeb200683 (2019).
 30. Agany, D. D. M. M., Pietri, J. E. & Gnimpieba, E. Z. Assessment of vector-host-pathogen relationships using data mining and 

machine learning. Comput. Struct. Biotechnol. J. 18, 1704 (2020).
 31. Soyemi, J., Isewon, I., Oyelade, J. & Adebiyi, E. Inter-species/host–parasite protein interaction predictions reviewed. Curr. 

Bioinform. 13, 396 (2018).
 32. Gupta, S. K., Srivastava, M., Osmanoglu, Ö. & Dandekar, T. Genome-wide inference of the Camponotus floridanus protein–

protein interaction network using homologous mapping and interacting domain profile pairs. Sci. Rep. 10, 2334 (2020).
 33. Loaiza, C. D., Duhan, N., Lister, M. & Kaundal, R. In silico prediction of host–pathogen protein interactions in melioidosis 

pathogen Burkholderia pseudomallei and human reveals novel virulence factors and their targets. Brief. Bioinform. 22, 1–18 
(2021).

 34. Ma, S. et al. Prediction of protein–protein interactions between fungus (Magnaporthe grisea) and rice (Oryza sativa L.). Brief. 
Bioinform. 20, 448–456 (2019).

 35. Sledzieski, S., Singh, R., Cowen, L. & Berger, B. D-SCRIPT translates genome to phenome with sequence-based, structure-aware, 
genome-scale predictions of protein–protein interactions. Cell Syst. 12, 969-982.e6 (2021).

 36. Chen, H. et al. Systematic evaluation of machine learning methods for identifying human–pathogen protein–protein interac-
tions. Brief. Bioinform. 22, 1–21 (2021).

 37. Walhout, A. J. M. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science (80-. 
). 287, 116–122 (2000).

 38. Hu, X., Feng, C., Ling, T. & Chen, M. Deep learning frameworks for protein–protein interaction prediction. Comput. Struct. 
Biotechnol. J. 20, (2022).

 39. Song, B. et al. Learning spatial structures of proteins improves protein–protein interaction prediction. Brief. Bioinform. 23, 1–11 
(2022).

 40. Singh, R., Devkota, K., Sledzieski, S., Berger, B. & Cowen, L. Topsy-Turvy: Integrating a global view into sequence-based PPI 
prediction. Bioinformatics 38, i264–i272 (2022).

 41. Yang, S., Feng, D., Cheng, P., Liu, Y. & Wang, S. Exploring the knowledge of an outstanding protein to protein interaction 
transformer. bioRxiv (2023). https:// doi. org/ 10. 1101/ 2023. 02. 09. 527848.

 42. Chen, M. et al. Multifaceted protein–protein interaction prediction based on Siamese residual RCNN. Bioinformatics 35, i305–
i314 (2019).

 43. Hwang, H., Vreven, T., Janin, J. & Weng, Z. Protein–protein docking benchmark version 4.0. Proteins Struct. Funct. Bioinforma. 
78, 3111–3114 (2010).

 44. Cheng, Q. et al. Discovery of a novel small secreted protein family with conserved N-terminal IGY motif in Dikarya fungi. BMC 
Genom. 15, 1–12 (2014).

 45. Feldman, D., Yarden, O. & Hadar, Y. Seeking the roles for fungal small-secreted proteins in affecting saprophytic lifestyles. Front. 
Microbiol. 11, 455 (2020).

 46. Fischer, R. & Requena, N. Small-secreted proteins as virulence factors in nematode-trapping fungi. Trends Microbiol. https:// 
doi. org/ 10. 1016/J. TIM. 2022. 03. 005 (2022).

 47. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. 
Biotechnol. 2017 3511 35, 1026–1028 (2017).

 48. Szklarczyk, D. et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses 
for any sequenced genome of interest. Nucleic Acids Res. 51, D638 (2023).

 49. Shields, E. J., Sheng, L., Weiner, A. K., Garcia, B. A. & Bonasio, R. High-quality genome assemblies reveal long non-coding RNAs 
expressed in ant brains. Cell Rep. 23, 3078–3090 (2018).

 50. Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 2022 407 40, 
1023–1025 (2022).

 51. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden markov 
model: Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

 52. Käll, L., Krogh, A. & Sonnhammer, E. L. L. A combined transmembrane topology and signal peptide prediction method. J. Mol. 
Biol. 338, 1027–1036 (2004).

 53. Sigrist, C. J. A. et al. PROSITE: A documented database using patterns and profiles as motif descriptors. Brief. Bioinform. 3, 
265–274 (2002).

 54. Pierleoni, A., Martelli, P. & Casadio, R. PredGPI: A GPI-anchor predictor. BMC Bioinf. 9, 1–11 (2008).
 55. Brameier, M., Krings, A. & MacCallum, R. M. NucPred—Predicting nuclear localization of proteins. Bioinformatics 23, 1159–

1160 (2007).
 56. Emanuelsson, O., Nielsen, H., Brunak, S. & Von Heijne, G. Predicting subcellular localization of proteins based on their N-ter-

minal amino acid sequence. J. Mol. Biol. 300, 1005–1016 (2000).
 57. Lechner, M. et al. Proteinortho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinf. 12, 1–9 (2011).
 58. Ashburner, M. et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
 59. Finn, R. D. et al. Pfam: The protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

https://doi.org/10.1101/2022.09.08.507134
https://doi.org/10.1101/2023.02.09.527848
https://doi.org/10.1016/J.TIM.2022.03.005
https://doi.org/10.1016/J.TIM.2022.03.005


14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13821  | https://doi.org/10.1038/s41598-023-40764-8

www.nature.com/scientificreports/

 60. Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinf. 9, 559 (2008).
 61. Das, B. timecourseRnaseq: Analyses and visualisation of timecourse RNASeq data. at https:// github. com/ bipla bendu/ timec 

ourse Rnaseq (2022).
 62. R Core Team. R: A language and environment for statistical computing. at https:// www.r- proje ct. org/ (2021).
 63. RStudio Team. RStudio: Integrated development for R. at http:// www. rstud io. com/ (2015).
 64. Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 

6, e21800 (2011).
 65. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).
 66. Engel, S. R. et al. New data and collaborations at the Saccharomyces Genome Database: Updated reference genome, alleles, and 

the Alliance of Genome Resources. Genetics 220, (2022).
 67. Martinez, D. et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea 

jecorina). Nat. Biotechnol. 2008 265 26, 553–560 (2008).
 68. Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 

13, 2498–2504 (2003).
 69. Ammari, M. G., Gresham, C. R., McCarthy, F. M. & Nanduri, B. HPIDB 2.0: a curated database for host–pathogen interactions. 

Database 2016, 103 (2016).
 70. Burrows, M. & Sutton, G. P. Locusts use a composite of resilin and hard cuticle as an energy store for jumping and kicking. J. 

Exp. Biol. 215, 3501–3512 (2012).
 71. Guo, Z., Qin, J., Zhou, X. & Zhang, Y. Insect transcription factors: a landscape of their structures and biological functions in 

Drosophila and beyond. Int. J. Mol. Sci. 19, (2018).
 72. Liu, F. et al. Mblk-1 regulates sugar responsiveness in honey bee (Apis mellifera) foragers. Insect Sci. 29, 683–690 (2022).
 73. Marie, B., Pym, E., Bergquist, S. & Davis, G. W. Synaptic homeostasis is consolidated by the cell fate gene gooseberry, a Drosophila 

pax3/7 homolog. J. Neurosci. 30, 8071–8082 (2010).
 74. Saha, T. T. et al. Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression. 

Proc. Natl. Acad. Sci. USA 113, E735–E743 (2016).
 75. Velarde, R. A., Robinson, G. E. & Fahrbach, S. E. Nuclear receptors of the honey bee: Annotation and expression in the adult 

brain. Insect Mol. Biol. 15, 583–595 (2006).
 76. Bjorum, S. M. et al. The Drosophila BTB domain protein jim lovell has roles in multiple larval and adult behaviors. PLoS ONE 

8, 61270 (2013).
 77. Cheng, Y. C. et al. The transcription factor hairy/E(spl)-related 2 induces proliferation of neural progenitors and regulates 

neurogenesis and gliogenesis. Dev. Biol. 397, 116–128 (2015).
 78. García-Bellido, A. & De Celis, J. F. The complex tale of the achaete–scute complex: A paradigmatic case in the analysis of gene 

organization and function during development. Genetics 182, 631 (2009).
 79. Häcker, U. et al. The Drosophila fork head domain protein crocodile is required for the establishment of head structures. EMBO 

J. 14, 5306 (1995).
 80. Shandala, T., Takizawa, K. & Saint, R. The dead ringer/retained transcriptional regulatory gene is required for positioning of 

the longitudinal glia in the Drosophila embryonic CNS. Development 130, 1505–1513 (2003).
 81. Tang, B. et al. Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: Implications for tran-

scriptional dysregulation in Huntington disease. Hum. Mol. Genet. 21, 3097 (2012).
 82. Muszewska, A. et al. Fungal lifestyle reflected in serine protease repertoire. Sci. Rep. 2017 71 7, 1–12 (2017).
 83. Klinman, E. & Holzbaur, E. L. F. Walking forward with kinesin. Trends Neurosci. 41, 555–556 (2018).
 84. Liu, L., Downs, M., Guidry, J. & Wojcik, E. J. Inter-organelle interactions between the ER and mitotic spindle facilitates Zika 

protease cleavage of human Kinesin-5 and results in mitotic defects. iScience 24, 102385 (2021).
 85. Hang, J. & Dasso, M. Association of the human SUMO-1 Protease SENP2 with the nuclear pore. J. Biol. Chem. 277, 19961–19966 

(2002).
 86. Zhang, H., Saitoh, H. & Matunis, M. J. Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore 

complex. Mol. Cell. Biol. 22, 6498–6508 (2002).
 87. de Bekker, C., Will, I., Hughes, D. P., Brachmann, A. & Merrow, M. Daily rhythms and enrichment patterns in the transcriptome 

of the behavior-manipulating parasite Ophiocordyceps kimflemingiae. PLoS ONE 12, (2017).
 88. Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. Elife 7, 

1–34 (2018).
 89. Adamo, S. A. Norepinephrine and octopamine: Linking stress and immune function across phyla. ISJ 5, 12–19 (2008).
 90. Adamo, S. A., Linn, C. E. & Beckage, N. E. Parasites: Evolution’s neurobiologists. J. Exp. Biol. 216, 3–10 (2013).
 91. Aonuma, H. & Watanabe, T. Changes in the content of brain biogenic amine associated with early colony establishment in the 

Queen of the ant, Formica japonica. PLoS ONE 7, e43377–e43377 (2012).
 92. Finetti, L., Roeder, T., Calò, G. & Bernacchia, G. The insect type 1 tyramine receptors: From structure to behavior. Insects 12, 

315 (2021).
 93. Kamhi, J. F., Arganda, S., Moreau, C. S. & Traniello, J. F. A. Origins of aminergic regulation of behavior in complex insect social 

systems. Front. Syst. Neurosci. 11, 74 (2017).
 94. Verlinden, H. Dopamine signalling in locusts and other insects. Insect Biochem. Mol. Biol. 97, 40–52 (2018).
 95. Lee, Y. S. et al. Characterization of GAR-2, a novel G protein-linked acetylcholine receptor from Caenorhabditis elegans. J. 

Neurochem. 75, 1800–1809 (2000).
 96. Stankiewicz, M. et al. Effects of a centipede venom fraction on insect nervous system, a native Xenopus oocyte receptor and on 

an expressed Drosophila muscarinic receptor. Toxicon 37, 1431–1445 (1999).
 97. Tsentsevitsky, A. N., Kovyazina, I. V., Nurullin, L. F. & Nikolsky, E. E. Muscarinic cholinoreceptors (M1-, M2-, M3- and M4-type) 

modulate the acetylcholine secretion in the frog neuromuscular junction. Neurosci. Lett. 649, 62–69 (2017).
 98. Grünewald, B. & Siefert, P. Acetylcholine and Its Receptors in Honeybees: Involvement in Development and Impairments by 

Neonicotinoids. Insects 10, (2019).
 99. Hernaândez-Martõânez, S. et al. Allatotropin: A pleiotropic neuropeptide that elicits mosquito immune responses. PLoS ONE 

12, e0175759 (2017).
 100. Lismont, E. et al. Molecular cloning and characterization of the allatotropin precursor and receptor in the desert locust, Schis-

tocerca gregaria. Front. Neurosci. 9, 84 (2015).
 101. Nagata, S., Matsumoto, S., Mizoguchi, A. & Nagasawa, H. Identification of cDNAs encoding allatotropin and allatotropin-like 

peptides from the silkworm, Bombyx mori. Peptides 34, 98–105 (2012).
 102. Nässel, D. R. & Zandawala, M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. 

Prog. Neurobiol. 179, 101607 (2019).
 103. Petri, B., Homberg, U., Loesel, R. & Stengl, M. Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the 

circadian clock of the cockroach Leucophaea maderae. J. Exp. Biol. 205, 1459–1469 (2002).
 104. Abruzzi, K. C. et al. RNA-seq analysis of Drosophila clock and non-clock neurons reveals neuron-specific cycling and novel 

candidate neuropeptides. PLOS Genet. 13, e1006613 (2017).

https://github.com/biplabendu/timecourseRnaseq
https://github.com/biplabendu/timecourseRnaseq
https://www.r-project.org/
http://www.rstudio.com/


15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13821  | https://doi.org/10.1038/s41598-023-40764-8

www.nature.com/scientificreports/

 105. Roller, L. et al. Molecular cloning, expression and identification of the promoter regulatory region for the neuropeptide trissin 
in the nervous system of the silkmoth Bombyx mori. Cell Tissue Res. 364, 499–512 (2016).

 106. Schwinghammer, M. A., Zhou, X., Kambhampati, S., Bennett, G. W. & Scharf, M. E. A novel gene from the takeout family 
involved in termite trail-following behavior. Gene 474, 12–21 (2011).

 107. Ament, S. A., Corona, M., Pollock, H. S. & Robinson, G. E. Insulin signaling is involved in the regulation of worker division of 
labor in honey bee colonies. Proc. Natl. Acad. Sci. USA 105, 4226–4231 (2008).

 108. Chandra, V. et al. Social regulation of insulin signaling and the evolution of eusociality in ants. Science (80-. ). 361, 398–402 
(2018).

 109. Aguilar, R. et al. Allatostatin gene expression in brain and midgut, and activity of synthetic allatostatins on feeding-related 
processes in the cockroach Blattella germanica. Regul. Pept. 115, 171–177 (2003).

 110. Chen, J. et al. Allatostatin A signalling in drosophila regulates feeding and sleep and is modulated by PDF. PLOS Genet. 12, 
e1006346 (2016).

 111. Hergarden, A. C., Tayler, T. D. & Anderson, D. J. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc. Natl. 
Acad. Sci. USA 109, 3967–3972 (2012).

 112. Tsao, C. H., Chen, C. C., Lin, C. H., Yang, H. Y. & Lin, S. Drosophila mushroom bodies integrate hunger and satiety signals to 
control innate food-seeking behavior. Elife 7, (2018).

 113. Sakai, T. et al. Invertebrate gonadotropin-releasing hormone-related peptides and their receptors: An update. Front. Endocrinol. 
(Lausanne). 8, (2017).

 114. Nässel, D. R. & Williams, M. J. Cholecystokinin-like peptide (DSK) in Drosophila, not only for satiety signaling. Front. Endo-
crinol. (Lausanne). 5, (2014).

 115. Ren, G. R. et al. CCHamide-2 Is an orexigenic brain-gut peptide in Drosophila. PLoS ONE 10, e0133017 (2015).
 116. Choi, M.-Y., Vander Meer, R. K., Coy, M. & Scharf, M. E. Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis 

invicta, and a moth, Helicoverpa zea. J. Insect Physiol. 58, 1159–1165 (2012).
 117. Jurenka, R. & Nusawardani, T. The pyrokinin/ pheromone biosynthesis-activating neuropeptide (PBAN) family of peptides and 

their receptors in Insecta: Evolutionary trace indicates potential receptor ligand-binding domains. Insect Mol. Biol. 20, 323–334 
(2011).

 118. Ragionieri, L. et al. Identification of mature peptides from pban and capa genes of the moths Heliothis peltigera and Spodoptera 
littoralis. Peptides 94, 1–9 (2017).

 119. Chang, H. et al. Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppres-
salis. Sci. Rep. 5, 13093 (2015).

 120. Ferguson, S. T., Park, K. Y., Ruff, A. A., Bakis, I. & Zwiebel, L. J. Odor coding of nestmate recognition in the eusocial ant Cam-
ponotus floridanus. J. Exp. Biol. 223, (2020).

 121. Gotzek, D., Shoemaker, D. D. & Ross, K. G. Molecular variation at a candidate gene implicated in the regulation of fire ant social 
behavior. PLoS ONE 2, e1088 (2007).

 122. Dubovskii, I. M. et al. Generation of reactive oxygen species and activity of antioxidants in hemolymph of the moth larvae Gal-
leria mellonella (L.) (Lepidoptera: Piralidae) at development of the process of encapsulation. J. Evol. Biochem. Physiol. 2010 461 
46, 35–43 (2010).

 123. Iwanicki, N. S. A., Delalibera, I., Eilenberg, J. & de Fine Licht, H. H. Comparative RNAseq analysis of the insect-pathogenic 
fungus Metarhizium anisopliae reveals specific transcriptome signatures of filamentous and yeast-like development. G3 
Genes|Genomes|Genetics 10, 2141–2157 (2020).

 124. Iga, M. & Kataoka, H. Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biol. 
Pharm. Bull. 35, 838–843 (2012).

 125. Scott, J. G. & Wen, Z. Cytochromes P450 of insects: The tip of the iceberg. Pest Manag. Sci. 57, 958–967 (2001).
 126. Su, L., Yang, C., Meng, J., Zhou, L. & Zhang, C. Comparative transcriptome and metabolome analysis of Ostrinia furnacalis 

female adults under UV-A exposure. Sci. Rep. 11, 6797 (2021).
 127. Sztal, T. et al. A cytochrome P450 conserved in insects is involved in cuticle formation. PLoS ONE 7, e36544 (2012).
 128. Wang, H. et al. CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and 

insecticides. Nat. Commun. 2018 91 9, 1–8 (2018).
 129. Xing, X. et al. Cytochrome P450s are essential for insecticide tolerance in the endoparasitoid Wasp Meteorus pulchricornis 

(Hymenoptera: Braconidae). (2021). https:// doi. org/ 10. 3390/ insec ts.
 130. Zhang, B. zhong et al. Insecticide induction of O-demethylase activity and expression of cytochrome P450 genes in the red 

imported fire ant (Solenopsis invicta Buren). J. Integr. Agric. 15, 135–144 (2016).
 131. Kim Lien, N. T. et al. Transcriptome sequencing and analysis of changes associated with insecticide resistance in the Dengue 

Mosquito (Aedes aegypti) in Vietnam. Am. J. Trop. Med. Hyg. 100, 1240 (2019).
 132. Lu, K.-H.H., Bradfield, J. Y. & Keeley, L. L. Juvenile hormone inhibition of gene expression for cytochrome P4504C1 in adult 

females of the cockroach, Blaberus discoidalis. Insect Biochem. Mol. Biol. 29, 667–673 (1999).
 133. Scharf, I. et al. Social isolation causes downregulation of immune and stress response genes and behavioural changes in a social 

insect. Mol. Ecol. 30, 2378–2389 (2021).
 134. Shen, X., Liu, W., Wan, F., Lv, Z. & Guo, J. The role of cytochrome P450 4C1 and carbonic anhydrase 3 in response to temperature 

stress in Bemisia tabaci. Insects 12, (2021).
 135. Kandel, S. E. & Lampe, J. N. Role of protein-protein interactions in cytochrome P450-mediated drug metabolism and toxicity. 

Chem. Res. Toxicol. 27, 1474 (2014).
 136. Davies, R. G. Insect structure and function. in Outlines of Entomology 7–96 (Springer, Dordrecht, 1988). https:// doi. org/ 10. 1007/ 

978- 94- 009- 1189-5_2.
 137. Fredericksen, M. A. et al. Three-dimensional visualization and a deep-learning model reveal complex fungal parasite networks 

in behaviorally manipulated ants. Proc. Natl. Acad. Sci. 114, 201711673 (2017).
 138. Arnesen, J. A. et al. Early Diverging insect-pathogenic fungi of the order Entomophthorales possess diverse and unique subtilisin-

like serine proteases. G3 8, 3311–3319 (2018).
 139. St Leger, R., Joshi, L., Bidochka, M. J. & Roberts, D. W. Construction of an improved mycoinsecticide overexpressing a toxic 

protease. Proc. Natl. Acad. Sci. USA 93, 6349–54 (1996).
 140. Carlson, M. R. J. et al. Gene connectivity, function, and sequence conservation: Predictions from modular yeast co-expression 

networks. BMC Genomics 7, 1–15 (2006).
 141. Gillis, J. & Pavlidis, P. “Guilt by Association” is the exception rather than the rule in gene networks. PLOS Comput. Biol. 8, 

e1002444 (2012).
 142. Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression network for global discovery of conserved genetic modules. 

Science (80-. ). 302, 249–255 (2003).

Acknowledgements
We would like to thank Biplabendu Das, who was involved in discussions of project goals and approaches, and 
Anna Savage, who provided constructive comments on a draft of this manuscript.

https://doi.org/10.3390/insects
https://doi.org/10.1007/978-94-009-1189-5_2
https://doi.org/10.1007/978-94-009-1189-5_2


16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13821  | https://doi.org/10.1038/s41598-023-40764-8

www.nature.com/scientificreports/

Author contributions
I.W., W.C.B., and C.dB. conceived the project and wrote the manuscript. W.C.B. performed the secretome anno-
tation. I.W. performed PPI predictions, enrichment analyses, and visualization. This work was supported by the 
National Science Foundation (CAREER IOS-1941546 to C.dB).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 40764-8.

Correspondence and requests for materials should be addressed to I.W. or C.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-40764-8
https://doi.org/10.1038/s41598-023-40764-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Using machine learning to predict protein–protein interactions between a zombie ant fungus and its carpenter ant host
	Materials and methods
	Fungus-animal PPI benchmarking. 
	Protein sequences and initial selection. 
	PPI predictions. 
	Hypergeometric enrichment analyses. 
	Aspecific fungus-Camponotus PPI combinations. 

	Results
	Fungus-animal benchmarking PPIs. 
	Ophiocordyceps-Camponotus PPIs. 
	PPIs between aspecific fungi and Camponotus in comparison to Ophiocordyceps. 
	Ophiocordyceps enrichment signals. 

	S8 serine peptidases. 
	Fungal manipulation WGCNA modules. 
	Camponotus enrichment signals. 

	G protein-coupled receptor signaling. 
	Oxidation–reduction. 
	Transcription and DNA-binding. 
	Cuticular proteins. 
	Ant DEGs and WGCNA modules. 

	Discussion
	Ophiocordyceps proteolysis of core intracellular host proteins. 
	Camponotus G protein-coupled receptors as targets to modify behavior. 
	Host–pathogen interactions involving oxidation–reduction. 
	Alteration of Camponotus gene regulation. 
	Destruction of Camponotus structural proteins. 
	Gene networks and expression broadly implicate PPIs in manipulation. 

	Conclusion
	References
	Acknowledgements


