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Optimization with artificial 
intelligence of the machinability 
of Hardox steel, which is exposed 
to different processes
Mehmet Altuğ 1* & Hasan Söyler 2

In this study, different process types were processed on Hardox 400 steel. These processes were 
carried out with five different samples as heat treatment, cold forging, plasma welding, mig-mag 
welding and commercial sample. The aim here is to determine the changes in properties such as 
microstructure, microhardness and conductivity that occur in the structure of hardox 400 steel when 
exposed to different processes. Then, the samples affected by these changes were processed in 
WEDM with the box-behnken experimental design. Ra, Kerf, MRR and WWR results were analyzed 
in Minitab 21 program. In the continuation of the study, using these data, a prediction models were 
created for Ra, Kerf, MRR and WWR with Deep Learning (DL) and Extreme Learning Machine (ELM). 
Anaconda program Python 3.9 version was used as a program in the optimization study. In addition, 
a linear regression models are presented to comparison the results. According to the results the 
lowest Ra values were obtained in heat-treated, cold forged, master sample, plasma welded and 
mig-mag welded processes, respectively. The best Ra (surface roughness) value of 1.92 µm was 
obtained in the heat treated sample and in the experiment with a time off of 250 µs. Model F value in 
ANOVA analysis for Ra is 86.04. Model for Ra  r2 value was obtained as 0.9534. The lowest kerf values 
were obtained in heat-treated, cold forged, master sample, plasma welded and mig-mag welded 
processes, respectively. The best kerf value of 200 µ was obtained in the heat treated sample and in 
the experiment with a time off of 200 µs. Model F value in ANOVA analysis for Kerf is 90.21. Model 
for Kerf  r2 value was obtained as 0.9555. Contrary to Ra and Kerf, it is desirable to have high MRR 
values. On average, the highest MRR values were obtained in mig-mag welded, plasma welded, cold 
forged, master sample and heat-treated processes, respectively. The best mrr value of 200 g  min−1 
was obtained in the mig-mag welded sample and in the experiment with a time off of 300 µs. Model 
for MRR  r2 value was obtained as 0.9563. The lowest WWR values were obtained in heat-treated, cold 
forged, master sample, plasma welded and mig-mag welded processes, respectively. The best wwr 
value of 0.098 g was obtained in the heat treated sample and in the experiment with a time off of 
200 µs. Model F value in ANOVA analysis for WWR is 92.12. Model for wwr  r2 value was obtained as 
0.09561. In the analysis made with artificial intelligence systems; The best test MSE value for Ra was 
obtained as 0.012 in DL and the r squared value 0.9274. The best test MSE value for kerf was obtained 
as 248.28 in ELM and r squared value 0.8676. The best MSE value for MRR was obtained as 0.000101 in 
DL and the r squared value 0.9444. The best MSE value for WWR was obtained as 0.000037 in DL and 
the r squared value 0.9184. As a result, it was concluded that different optimization methods can be 
applied according to different outputs (Ra, Kerf, MRR, WWR). It also shows that artificial intelligence-
based optimization methods give successful estimation results about Ra, Kerf, MRR, WWR values. 
According to these results, ideal DL and ELM models have been presented for future studies.

Abbreviations
AI  Artificial intelligence
DL  Deep learning
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ML  Machine learning
ANN  Artificial neural networks
ELM  Extreme learning machine
P-ELM  Pruned-ELM
OP-ELM  Optimum pruned-ELM
WEDM  Wire electrical discharge machining
Ra  Surface roughness
RSM  Response surface methodology
X-RD  X-ray diffraction
MSE  Mean squared error
MRR  Material removal rate
WWR   Wire wear rate
GRA   Grey relational analysis
SEM  Scanning electron microscope
HTS  Heat treated sample
IPC  Ignition pulse current
TBTP  Time between two pulses
SV  Servo reference voltage
De  Dielectric
WF  Wire feed
WT  Wire tension
σ  Conductivity
P  Resistivity

WEDM is an unconventional manufacturing process commonly used to process conductive high-strength mate-
rials. WEDM is adept at producing complex and complex  shapes1–3. The very important machining responses of 
the process are the ideal metal removal rate, ideal the roughness of the finished surfaces, and the effective cutting 
width, which is the notch. Kara examined the optimum results in the finishing milling of Hardox 400 using the 
Taguchi method in his  study4. Kerf is specified as the cutting width in WEDM activities. This depends on cut-
ting parameters such as gap time between two pulses, wire feed, servo voltage, dielectric fluid pressure and wire 
 tension1–3. Manoj et al.1 investigated changes in cutting speed, surface roughness, recast layer and microhard-
ness in wedm using genetic algorithm. Using Taguchi experimental design method, it was found that factors for 
instance discharge current, pulse time and dielectric rate and their interactions have a significant effect on rough 
cutting operations in order to maximize material removal rate and minimize Ra and cutting width. Nas et al.5 
investigated the effects of machining parameters on the experimental and statistical results using the electric 
discharge method in the machining of AISI D2 cold work tool steel. Nas and Kara investigated machinability 
tests on a corrosion resistant superalloy subjected to shallow (SCT) and deep cryogenic machining (DCT) with 
Electric erosion machining (EDM) and the effect of cryogenic treatment types applied to the material on EDM 
machining  performance6. Bayraktar and  Kara7 investigated the effect of deep cryogenic treatment on surface 
roughness parameters of Sleipner cold work tool steel using PVD coated carbide tools.

Ra estimation have been divided into three  classes8, Methods based on machining process theory. The surface 
morphology is modelled and simulated by the analytical model, and then the Ra is calculated from the simulated 
surface morphology. Methods based on interrupt signals. Inferences are made on acoustic emission, vibration, 
and shear force signals and the most relevant feature quantities are determined to examine existing artificial 
intelligence based Ra methods. With algorithms, the mathematical structure between cutting parameters or 
cutting signals and Ra is established and Ra is  estimated8–10.

Artificial intelligence (AI)-based approaches are suitable for existing data-driven production environments as 
they can integrate with production systems. For Ra prediction methods with artificial intelligence, Zhang et al. 
Built-in parallel convolution module to extract multidimensional feature information from Ra images. Then, Ra 
was evaluated with the deep learning model in the light of the extracted  information11. Li et al.12 suggested an 
improved fireworks algorithm to monitor grinding Ra with force signals. Guo et al.13 suggested Ra prediction 
with features extracted from vibration, grinding force and acoustic emission signals. Patel and  Gandhi14 studied 
the parameters affecting Ra in turning D2 steel. Tian et al.15 In their studies, Ra was estimated with fuzzy learning 
system together with process parameters and different signal properties. García Plaza et al.16 investigated how Ra 
would be affected by vibrational signals. Nguyen et al. developed a model for monitoring grinding wheel wear. It 
showed that the model could accurately predict Ra on the grinding surface with 98%  confidence17.

By using AI and ML methods, fuzzy logic, artificial neural network, genetic algorithm, ANFIS and other 
methods have been made easier to solve engineering problems. Additionally, swarm intelligence optimization 
algorithms were used to estimate Ra based on tool  wear10,18. With DL network structures, it is provided to 
improve tracking accuracy and learn multi-scale  features19,20. Guleria et al.21 created a Ra model with an extreme 
learning machine (ELM) using effective features selected from the vibration signal as input. Erkan et al. a GFRP 
composite material was milled to experimentally minimise the damages on the machined surfaces, using two, 
three and four flute end mills at different combinations of cutting parameters. Also, study, Artificial Neural 
Network (ANN) models with five learning algorithms were used in predicting the damage factor to reduce 
number of expensive and time-consuming  experiments22. Pimenov et al.23 adopted random forest to predict Ra 
according to tool wear and spindle power, but the prediction accuracy is not effective. Zhao et al.24 suggested a 
tuning method for Ra stabilization via the digital twin concept. Li et al.25 proposed a meta-learning model to 
predict tool wear. This model facilitated the interpretability of DL algorithms. Zhou et al.26 In order to optimize 
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the cutting parameters, a Ra prediction model was established with an artificial neural network. Yan et al.27 
introduces residual network with two-dimensional time–frequency domain signal for tool wear monitoring. 
Dedeakayoğulları et al.28 generated a Ra model through optimized neural network and cutting parameters.

Machine learning, deep learning, and other prediction solutions rely on data from the manufacturing process. 
The predictive view for quality allows product quality to be evaluated based on process data by removing repeti-
tive template from the data and linking them to quality measures. In this process, evaluations form the basis 
for making decisions about quality improvement measures, such as adjusting parameters to avoid losses. The 
general approach to quality forecasting has four stages: formulating a production process and a quality objec-
tive, selecting and collecting process and quality data, running a learning model, and using a scoring model as 
the basis for decision making (Fig. 1). In this sense, estimated quality essentially involves supervised machine 
learning  techniques29.

Researchers have effectively used methods such as ANN, ML and DL to increase efficiency. Ziletti et al.30 
proposed an ML-based approach towards not automatically classifying their work. Researchers used a machine 
learning prediction method for proposing to stimulate the design of medical parts Ti alloys with low  modul31. 
Cardoso Silva et al.32 specified that machine learning approximation was laid out as systems to help machine 
learning systems work, provide appropriate resources, and make decisions. Zhang et al.33 contemplated alloys 
with superior properties by iteratively designing composition by means of Bayesian optimization using the ML 
strategy.

Du et al.34 roughness, profile deviation and roundness deviation were studied on the lathe. It achieved high 
prediction accuracy with artificial neural network based machine learning application. Researchers used random 
forests (RF) machine learning to estimate the dimensional accuracy and surface quality of  holes35. Additionally 
recurrent neural networks methods for instance long short term memory and transformer networks, which 
represent the latest technology in natural language processing fields for instance speech recognition and machine 
 translation29.

There are also different studies on deep learning in the literature. Researchers studied the analysis of milled 
surfaces using an experimental and deep learning model. They revealed that the proposed CNN model has a 
sensitive and thin structure that replaces high-cost Ra measuring  devices36. Pan et al.37 used ultrasonic vibratory 
cutting technology for precision machining of W-tungsten alloy through deep learning method. More than 10% 
prediction accuracy has been achieved. Researchers worked on the model for machine speed prediction with 

Figure 1.  Predictive quality  approach29.
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deep learning. They worked on the model that included convolutional neural networks LSTM encoder-decoder 
 architecture38. Wang et al. examined the advantages of deep learning for the prediction of product quality in weld-
ing processes. In addition, they focused on the deep learning technique, conventional neural networks (CNNs) 
and recurrent neural networks (RNNs), which are suitable for image processing and sequential  modeling39.

The extreme learning machine has become a structure used in applications for instance 3D shape analysis 
and classification today. A single hidden layer feedforward neural network with N-hidden nodes is defined as in 
Eq. 140. Here, ai and bi are the learning parameters. Bi, i. is the weight of the hidden node. G(x) is the activation 
 function40,41.

Chen et al.41 proposed an unsupervised attribution selection-based extreme learning machine for clustering 
that integrates ELM with norm editing to remove hidden neurons and cluster data directly without creating an 
embedding. Akusok et al.40 presents a new perspective on ELM solution in relation to conventional linear alge-
braic performance of high performance extreme learning machines for big data; and has successfully achieved 
the latest software and hardware performance. Zhou et al.42, addresses issues by proposing a new TCM method 
that uses only a few suitable property parameters of signals in combination with a two-layer angular core extreme 
learning machine. Wu et al.43, The article explored a voice recognition based ELM pattern detection method to 
end product poorness caused by cutting tool breakage or wear in the machining process.

Looking at the studies published in WEDM; The determined change of machining parameters and machin-
ing performance outputs for instance Kerf, Ra, Mrr and metallurgical structure change was analyzed by various 
studies. The detailed literature review showed that the number of studies on the extent to which the workpiece 
changes its properties when exposed to different processes is limited and the limited number of published studies 
are not comprehensive. Experimental and artificial intelligence-based theoretical studies on this subject will make 
a great contribution to this field. Therefore, this study investigated the effects of conductivity, microhardness and 
microstructure of the specimens with WEDM parameters, and the results were predicted for Ra, kerf, MRR and 
WWR outputs with deep learning and extreme learning machine.

Material and methods
In the first phase of this study, different process types were processed on the samples. The aim here is to determine 
the changes in properties such as microstructure, microhardness and conductivity that occur in the structure of 
hardox 400 steel when exposed to different processes. Then, the samples affected by these changes were processed 
in WEDM and measurement results (Figs. 2, 3) with the box-behnken experimental design. The results were 
analyzed in the Minitab 21 program. In the second phase of the study, a prediction models were created with 

(1)fN (x) =

N∑

i=1

Bi ,G((ai , bi , x), xǫR, aiǫR)

Figure 2.  WEDM  process44.

Figure 3.  (a) Ra and (b) kerf images of this study.
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DL and ELM for the Ra, Kerf, MRR and WWR to be made using these data. Tensorflow was used for DL and 
hpelm was used for ELM in the study. A linear regression models are also presented to compare with the results.

Process type. Hardox steel was subjected to different processes (Table  1) to change its structure. These 
processes were carried out with five different samples as heat treatment, cold forging, plasma welding, mig-mag 
welding and commercial sample. In this context, it is expected that the microstructure, microhardness and elec-
trical conductivity of Hardox steel samples will vary.

Master sample. Hardox is a versatile wear resistant steels with hardness of 400 HV. The chemical composi-
tion of Hardox 400 is shown in Table 2 and its mechanical properties are shown in Table 3. It is well suited for 
additional wear applications requiring high toughness, excellent weldability and bendability. They are also wear 
resistant steels in the form of versatile and wear resistant round bars and the high toughness provides good 
weldability. It is commercially available quenched to high tensile strength and hardness values. Hardox round 
bars open up new possibilities for stronger product designs. In addition, these steels help optimize workshop 
processes such as machining and welding.

Heat treatment. Conductivity, microhardness and microstructures of samples of Hardox Steel exposed 
to heat treatments were examined in this study. The purpose of this study is to obtain a distinct change on the 
sample micro structures by applying heat treatment and to determine the effect of this changed microstructures 
on machinibility with WEDM. The heat treatment of the samples was carried out in the Protherm 442 furnace. 
The samples were prepared in accordance with the EN 10325 heat treatment standard. Table 1 shows the heat 
treatment parameters for the austenitizing and subsequent tempering of the samples. Heat treatments applied 
to Hardox Steel that Heating to 960 °C (15 min) holding and quenching and Heating to 240 °C and holding 3 h 
after air cooling.

Cold forging. Cold drawn steel, such as cold rolled steel, is machined at room temperature. With the cold 
drawing process, it is ensured that the hot rolled products are brought to more precise measurement tolerances, 
more durable and superior surface quality is obtained. The desired hardness can be achieved on the surface 
without heat treatment, but since the structure of the material is interfered with, problems may occur in the 
internal structure and surface of the material. As a result of cold drawing, yield and tensile stress and hardness 
increase, while ductility decreases. In this study, cold drawing process was applied 3 times in succession by 
reducing the diameter of 2% in each process. The samples were drawn in accordance with the EN 10278 cold 
drawing standard.

Plasma welding and mig-mag welding. Hardox steels were joined by different welding (Plasma and 
Mig-mag) methods, but at the same amperage and feed rate. The samples were prepared in accordance with the 
EN 17632 Mig-Mag welding standard. The changes of these parameters on weld zone, heat affected zone width, 
microstructure, microhardness, conductivity were investigated. The effects of these changes on machinability in 
WEDM were investigated. Ra, Kerf, MRR and WWR measurements in welded samples include the average of 
the measurements of the weld zone and the heat affected zone.

Table 1.  Process type.

Process Application

Master sample Commercial sample

Heat treatment Heating to 960 °C (15 min) holding and quenching + heating to 240 °C and holding 3 h after air cooling

Cold forging Cold drawing will be done 3 times in a row, reducing the diameter by 2% in each process

Plasma welding 180 Amper, 0.125 mm/min feed rate

Mig-mag welding 180 Amper, 0.125 mm/min feed rate

Table 2.  Chemical composition of Hardox 400 steel.

Element C Si Mn P S Cr Ni Mo B

(wt% max) 0.32 0.70 1.60 0.025 0.01 1.40 1.50 0.60 0.004

Table 3.  Mechanical properties of Hardox Steel.

Tensile strength (Mpa) Yield strength (Mpa) Impact energy KV (J) Hardness (HBW) Elongation (%)

1550 1300 30 430 8
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Design of experiment for WEDM. RSM shows an experimental setup that aims to obtain the highest 
number of dependent variables on the response surface with the least possible number of observable values. 
Experimental design is made to examine the relations of the variables with the objective or response functions. 
However, during the experimental design, one variable is changed at a time, as in the classical approach. However, 
this approach is difficult and time consuming, especially in multivariate systems. On the other hand, the statisti-
cal design of experiments, reduces the number of experiments to be performed, takes into account the interac-
tions between variables, and can be used for optimization of operating parameters in multivariate  systems45. In 
this study, Box–Behnken statistical experimental design was used to investigate the effects of six independent 
variables on response functions and to determine the conditions that maximize Ra, Kerf, MRR, WWR efficiency. 
The Box–Behnken statistical experiment design method offers an empirical relationship between the response 
function and the independent variables. The approximation is a first-order model if it gives a good result on the 
response surface of the system as a linear function of the independent variable Eq. 245;

If the response surface of the system has a curvature, a quadratic model may be more appropriate Eq. 31,45;

As a result of structure change, the machinability of WEDM was examined. Machinability parameters were 
determined according to the box-behnken surface response methodology. Parameters and their levels are shown 
in Table 4. The result of Ra, Kerf, MRR, WWR were analyzed and graphics were examined by using Minitab 21 
program. Experimental studies were performed on an ONA AF25 precision CNC WEDM. The following were 
used in the experimental setup; Ø 0.25 mm brass wire was used as the electrode and the dimensions of hardox 
400 samples were Ø 40 mm in all experiments. Experiments were carried out to determine the variability in input 
parameters and the cutting width, surface quality and material removal rates on the workpiece.

Optimization with artificial intelligence. Optimization is a mathematical discipline and an approach to 
determining the optimific in a quantitatively well-defined sense. The math optimization of processes controlled 
by differential equations has shown significant advances in recent years. This has been applied to a large spec-
trum of disciplines for instance mathematics, engineering, economics. Optimization theory covers algorithms 
for solving optimization problems and their analysis. An optimization problem specifies an objective function to 
be maximized or minimized with constraints.

The prediction models were created with DL and ELM for the modeling studies to be made using these data. 
Before the analysis, the independent variables were normalized between [0,1], and the dependent variables were 
not normalized. Python 3.9 was used in the study. The normalization process was applied for all three methods 
(DL, ELM and regression). Rmsprop and adam methods as optimization algorithms were tried. sigmoid, relu, 
tanh and linear as activation functions were applied. In the experiments, the number of hidden layers was 
determined as 1, 2 and 3. The number of neurons in each hidden layer will vary from 6 to 150. 90% of the data 
were determined for training and 10% for testing (207 were used as training data and 23 were used as test data). 
Epochs were determined as 1000 (Table 5). Linear regression models is also introduced to compare with the 
efficiency of the results.

Results and discussion
Response surface metodology. The Ra, Kerf, MRR, WWR values obtained from the box behnken design 
of the parameters and subsequent 230 experiments in WEDM are shown in Table 6. Experiment results were 
analyzed using Minitab 21 program and graphs were drawn. After the samples were subjected to different pro-
cesses, the changing hardness and microstructures also had an effect on the machinability.

After the heat treatment, the α-ferrite phase volume increased in the sample, while the pearlite phase volume 
 decreased2. Observable decreases were detected in Ra and kerf values due to the relative decrease in hard-
ness. In Figs. 4 and 5 microstructures of tempered samples at commercial and Heating to 960 °C holding and 

(2)y = β0 + β1x1 + β2x2 + . . .+ βkβk + ε

(3)y = β0

n∑

i=1

βiXi +

n∑

i=0

βiiX
2
i +

n∑

i=0

n∑

j=1

βijXiXj + ε0

Table 4.  Parameters and levels of Box behnken surface response methodology.

Continuous Factors

Level values

Low High

Time off (µs) 200 300

Current (A) 4 6

Dielectric (bar) 4 16

Wire feed (m/min) 4 10

Wire tension (g) 12 20

Categorical factor 1 2 3 4 5

Process type Master sample Heat treated Cold forged Plasma welded Mig-mag welded
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Table 5.  DL and ELM parameters.

Parameters DL Basic ELM P-ELM OP-ELM

Optimization algorithm Adam,RmsPROP – – –

Normalization Min–Max scaling Min–Max scaling Min–Max scaling Min–Max scaling

Input layer activation function ReLu, sigmoid Sigmoid Sigmoid Sigmoid

Output layer activation function – Linear Linear Linear

Number of input layer neuron 6 6 6 6

Number of output layer neuron 1 6 6 6

Number of hidden layers 3 1 1 1

Number of hidden#1 layer neuron 6, 12 10, 12, 15 80, 120, 150 80, 120, 150

Number of hidden#2 layer neuron 6, 12 – – –

Number of hidden#3 layer neuron 6, 12 – – –

Learning rate 0.001

Batch size 16

Training size 0.9 0.9 0.9 0.9

Test size 0.1 0.1 0.1 0.1

Epochs 1000 – – –

Table 6.  WEDM parameters and results.

Exp. no Toff Current Dielectric Wf Wt Sample Ra Kerf MRR WWR 

1 250 6 16 7 16 Mig-mag welded 2.57 271 0.267 0.133

2 300 5 10 7 12 Mig-mag welded 3.64 384 0.378 0.188

3 250 5 4 4 16 Heat treated 3.22 315 0.310 0.154

4 300 6 10 7 16 Plasma welded 3.21 339 0.333 0.165

5 300 5 4 7 16 Plasma welded 3.63 383 0.377 0.187

6 250 6 10 10 16 Heat treated 1.95 215 0.211 0.105

7 300 4 10 7 16 Mig-Mag welded 3.62 382 0.376 0.187

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

222 250 5 10 7 16 Cold forged 2.64 280 0.276 0.137

223 250 5 10 7 16 Cold forged 2.62 270 0.266 0.132

224 250 6 10 4 16 Master sample 2.95 311 0.307 0.152

225 250 4 16 7 16 Mig-mag welded 3.08 325 0.320 0.159

226 250 5 10 10 20 Plasma welded 2.6 274 0.270 0.134

227 250 6 10 7 12 Heat treated 2.55 269 0.265 0.132

228 200 5 10 10 16 Heat treated 2.15 205 0.209 0.104

229 250 6 10 7 20 Plasma welded 2.59 273 0.269 0.134

230 250 4 10 4 16 Plasma welded 3.33 359 0.354 0.176

Figure 4.  Master sample Hardox microstructures.
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quenching + Heating to 240 °C and holding 3 h after air cooling are given respectively. In these microstructures 
as the tempering temperature increased α-ferrite phase volume also increased whereas pearlite phase volume 
decreased. Similar results were also encountered in literatüre3,46.

Microhardness. The hardness values of the samples were measured and given in Fig. 6. According to the 
hardness results, the commercial sample hardness was 394. Following the heat treatment, the hardness of the 
sample was measured as 330. The sample hardness was 348 by cold drawing process. The microhardness values 
of the welded samples were relatively lower than the other processes. It was measured as plasma welded 245 and 
mig-mag welded 262. Microhardness also affected machinability due to changes in microstructure and conduc-
tivity. Master sample has tempered martensite structure (Fig. 2). These hardox steels are produced thoroughly 
hardened and presented as  such2. Similar results were also encountered in literatüre2,46.

In hardox bars, 2% diameter reduction was achieved in each cold drawing process. After this process repeated 
twice, a relative increase in hardness values was expected. This affected its machinability and caused Ra, kerf 
values to be lower than the commercial sample. The underlying reason for giving similar results with heat treat-
ment can be explained by increased conductivity values.

The effect of heat input and subsequent cooling process to the sample on the microstructure is very important. 
Since the welding heat of Hardox rods will create a tempering effect in this region after  welding3, it is inevitable 
that a fine perlite structure will form in the microstructure. In addition, heat input affected the electrical con-
ductivity in welded samples. As a result, Ra affected the Kerf, MRR and WWR outputs. Lamel bainite in the weld 
metal zone microstructure of the sample significantly affected the machinability (Fig. 7).

In Fig. 8, the weld zone microstructure of the sample welded using 180 A with the MAG method is given. 
Here, the α-ferrite phase morphology is dendritic. In addition, a thin pearlite phase was observed between the 
dendritic phases.

Analysis of variance (ANOVA) tests were also performed for the responses and the results are presented in 
Tables 7, 10, 13 and 16. As seen in Table 7, the model F value was calculated as 86.04 according to the Ra ANOVA. 
In addition, since the model p value is < 0.05, it shows that the determined variables and the model are statisti-
cally significant. In addition, all WEDM parameters are extremely important for the model according to F and 

Figure 5.  Heat treated Hardox microstructures.

Figure 6.  Microhardness result.
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P values. According to the ANOVA results, the most important parameter affecting the surface roughness was 
found to be the hardox samples exposed to different processes (40.40%).

In the analysis for Ra, Model  R2 value was obtained as 0.9534. Estimated and adjust  R2 values were calculated 
as 0.9290 and 0.9423, and these two values show a statistically significant agreement (Table 8).

Regression analyses are performed for the modeling and analysis of different variables with a relationship 
between one dependent variable and one or more independent  variables22. Linear regression models are rela-
tively simple and provide an mathematical formula that can produce predictions. In this study, the equations 
for estimation of the Ra, kerf, MRR and WWR were calculated using regression analysis. Response function 
equations with determined coefficients for Ra, Kerf, MRR, WWR efficiency are shown in Tables 9, 12, 15 and 18. 
Signs and magnitudes of the coefficients in the response functions show the effect of the independent variables 
on the response function and its importance in this context. The most ideal regression equations for ra are given 
in Table 9, depending on the results of the Box behnken experimental design.

When Fig. 9 is examined, an increase in Ra values was observed with the increase of Toff, one of the WEDM 
parameters. A general decrease in Ra values was observed with the increase of Current, Dielectric, wire feed 
and wire tension values. When the effects of the samples on Ra were examined according to the process type, 
the lowest Ra values were acquired in the heat-treated, cold forged, master sample, plasma welded and mig-mag 
welded processes, respectively. Similar results were also encountered in literatüre1,12,28.

As seen in Table 10, the model F value was calculated as 90.21 according to the kerf ANOVA. In addition, 
since the model p value is < 0.05, it shows that the determined variables and the model are statistically significant. 
In addition, all WEDM parameters were found to be extremely important for the model according to F and P 
(< 0.05) values. According to the ANOVA results, the most important parameter affecting the kerf was found to 
be the hardox samples exposed to different processes (41.92%).

In the analysis for Kerf, the Model  R2 value was obtained as 0.9555. Estimated and adjust  R2 values were 
calculated as 0.9324 and 0.9449, and these two values show a statistically significant agreement (Table 11). The 
most ideal regression equations for kerf are given in Table 12, depending on the results of the Box behnken 
experimental design.

Figure 7.  Plasma welded Hardox microstructures.

Figure 8.  Mig-mag welded Hardox microstructures.
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When Fig. 10 is examined, an increase in kerf values was observed with the increase of Toff, one of the WEDM 
parameters. A general decrease in kerf values was observed with the increase in Current, Dielectric, wire feed 
and wire tension values. When the effects of the samples on the kerf were examined according to the process 
type, the lowest kerf values were obtained in the heat-treated, cold forged, master sample, plasma welded and 
mig-mag welded processes, respectively. There are similar results in some studies in  literature2,47–51.

As seen in Table 13, the model F value was calculated as 92.11, according to the MRR ANOVA. In addition, 
since the model p value is < 0.05, it shows that the determined variables and the model are statistically significant. 
In addition, all WEDM parameters were found to be extremely important for the model according to F and P 
(< 0.05) values. According to the ANOVA results, the most important parameter affecting the MRR was found 
to be the hardox samples exposed to different processes (41.87%).

In the analysis for MRR, the Model  R2 value was obtained as 0.9563. Estimated and adjust  R2 values were 
calculated as 0.9339 and 0.9460, and these two values show a statistically significant agreement (Table 14). The 
most ideal regression equations for mrr are given in Table 15, depending on the results of the Box behnken 
experimental design.

Table 7.  Analysis of variance for Ra.

Source DF Seq SS Contribution (%) Adj SS Adj MS F-value P value

Model 44 37.6023 95.34 37.6023 0.85460 86.04 0.000

Linear 9 37.1177 94.11 37.1177 4.12419 415.22 0.000

Toff 1 4.0365 10.23 4.0365 4.03651 406.39 0.000

Current 1 3.9206 9.94 3.9206 3.92055 394.72 0.000

Dielctric 1 4.1314 10.48 4.1314 4.13141 415.94 0.000

Wf 1 4.6803 11.87 4.6803 4.68028 471.20 0.000

Wt 1 4.4133 11.19 4.4133 4.41330 444.33 0.000

Sample 4 15.9356 40.40 15.9356 3.98391 401.10 0.000

Square 5 0.0325 0.08 0.0325 0.00650 0.65 0.659

Toff * toff 1 0.0083 0.02 0.0034 0.00344 0.35 0.557

Current * current 1 0.0240 0.06 0.0214 0.02136 2.15 0.144

Dielctric * dielctric 1 0.0000 0.00 0.0000 0.00004 0.00 0.949

Wf * Wf 1 0.0001 0.00 0.0000 0.00001 0.00 0.971

Wt + Wt 1 0.0002 0.00 0.0002 0.00020 0.02 0.888

2-Way ınteraction 30 0.4522 1.15 0.4522 0.01507 1.52 0.051

Toff * current 1 0.0004 0.00 0.0004 0.00040 0.04 0.840

Toff * dielctric 1 0.0135 0.03 0.0135 0.01352 1.36 0.245

Toff * Wf 1 0.0198 0.05 0.0198 0.01985 2.00 0.159

Toff * Wt 1 0.0022 0.01 0.0022 0.00221 0.22 0.638

Toff * sample 4 0.0586 0.15 0.0586 0.01465 1.47 0.212

Current * dielctric 1 0.0192 0.05 0.0192 0.01922 1.94 0.166

Current * Wf 1 0.0650 0.16 0.0650 0.06498 6.54 0.011

Current * Wt 1 0.0020 0.01 0.0020 0.00200 0.20 0.654

Current * sample 4 0.0396 0.10 0.0396 0.00991 1.00 0.410

Dielctric * Wf 1 0.0003 0.00 0.0003 0.00032 0.03 0.858

Dielctric * Wt 1 0.0016 0.00 0.0016 0.00162 0.16 0.687

Dielctric * sample 4 0.0423 0.11 0.0423 0.01058 1.07 0.375

Wf * Wt 1 0.0320 0.08 0.0320 0.03200 3.22 0.074

Wf * sample 4 0.0641 0.16 0.0641 0.01602 1.61 0.173

Wt * sample 4 0.0914 0.23 0.0914 0.02285 2.30 0.060

Error 185 1.8375 4.66 1.8375 0.00993

Lack-of-fit 160 1.4871 3.77 1.4871 0.00929 0.66 0.932

Pure error 25 0.3504 0.89 0.3504 0.01402

Total 229 39.4399 100.00

Table 8.  Model summary for Ra.

S R-sq R-sq (adj) R-sq (pred)

0.0996624 95.34% 94.23% 92.90%
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When Fig. 11 is examined, an increase in MRR values was observed with the increase of Toff, one of the 
WEDM parameters. Contrary to Ra and Kerf, it is desirable to have high MRR values. A general decrease in kerf 
values was observed with the increase in Current, Dielectric, wire feed and wire tension values. When the effects 
of the samples on the MRR were examined according to the process type, the highest MRR values were obtained 
in the mig-mag welded, plasma welded, cold forged, master sample and heat-treated processes, respectively. There 
are similar results in some studies in literatüre2,6,40,52,53.

As seen in Table 16, the model F value was calculated as 92.12, according to the wwr ANOVA. In addition, 
since the model p value is < 0.05, it shows that the determined variables and the model are statistically significant. 
In addition, all WEDM parameters were found to be extremely important for the model according to F and P 
(< 0.05) values. According to the ANOVA results, the most important parameter affecting the WWR was found 
to be the hardox samples exposed to different processes (41.88%).

Table 9.  Regression equations for Ra.

Sample

Master sample Ra

3.63 + 0.00681 Toff − 0.247 Current + 0.0138 Dielctric + 0.1343 Wf- 0.0476 Wt − 0.000004 Toff * Toff
+ 0.0221 Current * Current + 0.000027 Dielctric * Dielctric − 0.00006 Wf * Wf + 0.000133 Wt * Wt
+ 0.000090 Toff * Current − 0.000087 Toff * Dielctric − 0.000210 Toff * Wf + 0.000053 Toff * Wt
− 0.00517 Current * Dielctric − 0.01900 Current * Wf − 0.00250 Current * Wt − 0.00022 Dielctric * Wf
− 0.000375 Dielctric * Wt − 0.00333 Wf * Wt

Heat treated Ra

2.84 + 0.00687 Toff − 0.230 Current + 0.0140 Dielctric + 0.1120 Wf − 0.0244 Wt − 0.000004 Toff * Toff
+ 0.0221 Current * Current + 0.000027 Dielctric * Dielctric − 0.00006 Wf * Wf + 0.000133 Wt * Wt
+ 0.000090 Toff * Current − 0.000087 Toff * Dielctric − 0.000210 Toff * Wf + 0.000053 Toff * Wt
− 0.00517 Current * Dielctric − 0.01900 Current * Wf − 0.00250 Current * Wt − 0.00022 Dielctric * Wf
− 0.000375 Dielctric * Wt − 0.00333 Wf * Wt

Plasma welded Ra

3.39 + 0.00700 Toff − 0.222 Current + 0.0229 Dielctric + 0.1258 Wf − 0.0337 Wt − 0.000004 Toff * Toff
+ 0.0221 Current * Current + 0.000027 Dielctric * Dielctric − 0.00006 Wf * Wf + 0.000133 Wt * Wt
+ 0.000090 Toff * Current − 0.000087 Toff * Dielctric − 0.000210 Toff * Wf + 0.000053 Toff * Wt
− 0.00517 Current * Dielctric − 0.01900 Current * Wf- 0.00250 Current * Wt − 0.00022 Dielctric * Wf
− 0.000375 Dielctric * Wt − 0.00333 Wf * Wt

Mig-mag welded Ra

3.20 + 0.00771 Toff − 0.222 Current + 0.0194 Dielctric + 0.1318 Wf − 0.0325 Wt − 0.000004 Toff * Toff
+ 0.0221 Current * Current + 0.000027 Dielctric * Dielctric − 0.00006 Wf * Wf + 0.000133 Wt * Wt
+ 0.000090 Toff * Current − 0.000087 Toff * Dielctric − 0.000210 Toff * Wf + 0.000053 Toff * Wt
− 0.00517 Current * Dielctric − 0.01900 Current * Wf − 0.00250 Current * Wt − 0.00022 Dielctric * Wf
− 0.000375 Dielctric * Wt − 0.00333 Wf * Wt

Cold forged Ra

3.31 + 0.00818 Toff − 0.281 Current + 0.0132 Dielctric + 0.1124 Wf − 0.0444 Wt − 0.000004 Toff * Toff
+ 0.0221 Current * Current + 0.000027 Dielctric * Dielctric − 0.00006 Wf * Wf + 0.000133 Wt * Wt
+ 0.000090 Toff * Current − 0.000087 Toff * Dielctric − 0.000210 Toff * Wf + 0.000053 Toff * Wt
− 0.00517 Current * Dielctric − 0.01900 Current * Wf − 0.00250 Current * Wt − 0.00022 Dielctric * Wf
− 0.000375 Dielctric * Wt − 0.00333 Wf * Wt

Figure 9.  Main effect plot for Ra.
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In the analysis for WWR, the Model  R2 value was obtained as 0.9561. Estimated and adjust  R2 values were 
calculated as 0.9341 and 0.9462, and these two values show a statistically significant agreement (Table 17). The 
most ideal regression equations for wwr are given in Table 18, depending on the results of the Box behnken 
experimental design.

When Fig. 12 is examined, an increase in WWR values was noticed with the increase of Toff, one of the 
WEDM parameters. A general decrease in WWR values was observed with the increase in Current, Dielectric, 
wire feed and wire tension values. When the effects of the samples on the wwr were examined according to the 
process type, the lowest WWR values were obtained in the heat-treated, cold forged, master sample, plasma 
welded and mig-mag welded processes, respectively.

Optimization with artificial intelligence. In this study, 36 different trial run were applied with these DL 
parameters. Additionally 8 different trial run were applied with these ELM parameters. The DL and ELM model 
used in the study are shown in Figs. 13 and 14. The dataset for DL and ELM are set to (230 * 4). In deep learn-
ing, the maximal vigorous results were determined according to the mean square error. Adam as the optimiza-
tion algorithm, sigmoid as the activation function, number of hidden layers 3, number of neurons 6 and were 

Table 10.  Analysis of variance for kerf.

Source DF Seq SS Contribution (%) Adj SS Adj MS F-value P value

Model 44 415,102 95.55 415,102 9434.1 90.21 0.000

Linear 9 409,690 94.30 409,690 45,521.1 435.28 0.000

Toff 1 46,868 10.79 46,868 46,868.3 448.16 0.000

Current 1 42,576 9.80 42,576 42,576.1 407.12 0.000

Dielctric 1 44,111 10.15 44,111 44,110.8 421.79 0.000

Wf 1 45,840 10.55 45,840 45,839.8 438.32 0.000

Wt 1 48,172 11.09 48,172 48,171.8 460.62 0.000

Sample 4 182,124 41.92 182,124 45,530.9 435.37 0.000

Square 5 507 0.12 507 101.3 0.97 0.438

Toff * toff 1 69 0.02 19 18.7 0.18 0.673

Current * current 1 427 0.10 381 381.3 3.65 0.058

Dielctric * dielctric 1 3 0.00 1 0.8 0.01 0.929

Wf * Wf 1 7 0.00 8 7.7 0.07 0.787

Wt * Wt 1 0 0.00 0 0.2 0.00 0.961

2-Way Interaction 30 4905 1.13 4905 163.5 1.56 0.040

Toff * current 1 5 0.00 5 5.2 0.05 0.824

Toff * dielctric 1 169 0.04 169 168.8 1.61 0.205

Toff * Wf 1 0 0.00 0 0.2 0.00 0.963

Toff * Wt 1 46 0.01 46 45.6 0.44 0.510

Toff * sample 4 488 0.11 488 122.0 1.17 0.327

Current * dielctric 1 214 0.05 214 213.9 2.05 0.154

Current * Wf 1 648 0.15 648 648.1 6.20 0.014

Current * Wt 1 9 0.00 9 9.4 0.09 0.765

Current * sample 4 526 0.12 526 131.4 1.26 0.289

Dielctric * Wf 1 45 0.01 45 45.2 0.43 0.512

Dielctric * Wt 1 10 0.00 10 10.5 0.10 0.752

Dielctric * sample 4 495 0.11 495 123.9 1.18 0.319

Wf * Wt 1 266 0.06 266 265.9 2.54 0.113

Wf * sample 4 1020 0.23 1020 255.1 2.44 0.049

Wt * sample 4 962 0.22 962 240.5 2.30 0.060

Error 185 19,347 4.45 19,347 104.6

Lack-of-fit 160 15,353 3.53 15,353 96.0 0.60 0.968

Pure error 25 3994 0.92 3994 159.8

Total 229 434,449 100.00

Table 11.  Model summary for kerf.

S R-sq R-sq (adj) R-sq (pred)

10.2264 95.55% 94.49% 93.24%
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determined as 10% of the data to be tested. In the extreme learning machine, the activation function is sigmoid 
in the hidden layers and linear in the output layers. The number of neurons in both the input layers is 6 and the 
number of neurons in the output layers is 6.

The results are optimized with the DL and ELM. MSE values and r square values of Ra, Kerf, MRR and WWR 
values as a result of DL and ELM optimization are given in Table 19. It is also optimized by linear regression to 
compare the optimization results. In addition, the regression equations of the outputs are shown in Eqs. 4–7.

Deep learning model runs for two learning algorithms (RmsProp, Adam), two activation functions (ReLU, 
Sigmoid) and different neuron numbers. ELM models runs for basic-ELM, P-ELM and OP-ELM. For Ra, 
Kerf, MRR and WWR, the best MSE value for test data are given in bold. The results are given supplementary 
documents.

The best test MSE value for Ra was obtained as 0.012 in DL and the r squared value 0.9274. The best test 
MSE value for kerf was obtained as 248.28 in ELM and r squared value 0.8676. The best MSE value for MRR was 
obtained as 0.000101 in DL and the r squared value 0.944. The best MSE value for WWR was obtained as 0.000037 
in DL and the r squared value 0.918473. As a result, it was concluded that different optimization methods can 
be applied according to different outputs (Ra, Kerf, MRR, WWR). It also shows that artificial intelligence-based 
optimization methods give successful estimation results about Ra, Kerf, MRR, WWR values.

Table 12.  Regression equations for kerf.

Sample

Master sample Kerf
438 + 0.582 Toff − 29.9 Current + 1.96 Dielctric + 7.34 Wf − 6.04 Wt − 0.000262 Toff * Toff
+ 2.96 Current * Current − 0.0038 Dielctric * Dielctric + 0.047 Wf * Wf + 0.0047 Wt * Wt − 0.0102 Toff * Current
− 0.00968 Toff * Dielctric + 0.0007 Toff * Wf + 0.0075 Toff * Wt − 0.545 Current * Dielctric − 1.897 Current * Wf
− 0.171 Current * Wt − 0.083 Dielctric * Wf − 0.0302 Dielctric * Wt − 0.304 Wf * Wt

Heat treated Kerf
339 + 0.599 Toff − 26.1 Current + 2.40 Dielctric + 5.05 Wf − 3.79 Wt − 0.000262 Toff * Toff
+ 2.96 Current * Current − 0.0038 Dielctric * Dielctric + 0.047 Wf * Wf + 0.0047 Wt * Wt − 0.0102 Toff * Current
− 0.00968 Toff * Dielctric + 0.0007 Toff * Wf + 0.0075 Toff * Wt − 0.545 Current * Dielctric − 1.897 Current * Wf
− 0.171 Current * Wt − 0.083 Dielctric * Wf − 0.0302 Dielctric * Wt − 0.304 Wf * Wt

Plasma welded Kerf
401 + 0.622 Toff − 27.9 Current + 3.05 Dielctric + 7.28 Wf − 4.43 Wt − 0.000262 Toff * Toff
+ 2.96 Current * Current − 0.0038 Dielctric * Dielctric + 0.047 Wf * Wf + 0.0047 Wt * Wt − 0.0102 Toff * Current
− 0.00968 Toff * Dielctric + 0.0007 Toff * Wf + 0.0075 Toff * Wt − 0.545 Current * Dielctric − 1.897 Current * Wf
− 0.171 Current * Wt − 0.083 Dielctric * Wf − 0.0302 Dielctric * Wt − 0.304 Wf * Wt

Mig-mag welded Kerf
387 + 0.665 Toff − 26.2 Current + 2.54 Dielctric + 7.41 Wf − 4.40 Wt − 0.000262 Toff * Toff
+ 2.96 Current * Current − 0.0038 Dielctric * Dielctric + 0.047 Wf * Wf + 0.0047 Wt * Wt − 0.0102 Toff * Current
− 0.00968 Toff * Dielctric + 0.0007 Toff * Wf + 0.0075 Toff * Wt − 0.545 Current * Dielctric − 1.897 Current * Wf
− 0.171 Current * Wt − 0.083 Dielctric * Wf − 0.0302 Dielctric * Wt − 0.304 Wf * Wt

Cold forged Kerf
404 + 0.719 Toff − 32.9 Current + 1.93 Dielctric + 4.80 Wf − 5.77 Wt − 0.000262 Toff * Toff
+ 2.96 Current * Current − 0.0038 Dielctric * Dielctric + 0.047 Wf * Wf + 0.0047 Wt * Wt − 0.0102 Toff * Current
− 0.00968 Toff * Dielctric + 0.0007 Toff * Wf + 0.0075 Toff * Wt − 0.545 Current * Dielctric − 1.897 Current * Wf
− 0.171 Current * Wt − 0.083 Dielctric * Wf − 0.0302 Dielctric * Wt − 0.304 Wf * Wt

Figure 10.  Main effect plot for kerf.
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Comparative graphs of the actual value in the test values of the best model obtained for Ra, Kerf, MRR and 
WWR and the predicted values of the model are given in the Fig. 15. In the graphs, the black and solid lines 
show the actual values, and the red and dashed lines show the predicted values of the best model. The graphs 
show that the best model achieves results very close to the true values.

The coefficients of the regression equations obtained without normalization on the data are given Eqs. 4–7.

(4)
yRa = 0.454+ 0.0041 ∗ Toff − 0.2214 ∗ Current − 0.0378 ∗ Dielectric − 0.085 ∗Wire feed

− 0.058 ∗Wire tension+ 0.1053 ∗ Process type

(5)
ykerf = 469.28+0.0044∗Toff−22.97∗Current−3.87∗Dielectric−8.44∗Wire feed−6.131∗Wire tension+11.168∗Process type

(6)
ymrr = 0.4634+ 0.00043 ∗ Toff − 0.0227 ∗ Current − 0.0038 ∗ Dielectric − 0.0082 ∗Wire feed

− 0.0060 ∗Wire tension+ 0.0110 ∗ Process type

Table 13.  Analysis of variance for MRR.

Source DF Seq SS Contribution (%) Adj SS Adj MS F-value P value

Model 44 0.401223 95.63 0.401223 0.009119 92.11 0.000

Linear 9 0.396049 94.40 0.396049 0.044005 444.54 0.000

Toff 1 0.044966 10.72 0.044966 0.044966 454.25 0.000

Current 1 0.042077 10.03 0.042077 0.042077 425.06 0.000

Dielctric 1 0.042758 10.19 0.042758 0.042758 431.94 0.000

Wf 1 0.043562 10.38 0.043562 0.043562 440.06 0.000

Wt 1 0.047008 11.20 0.047008 0.047008 474.87 0.000

Sample 4 0.175677 41.67 0.175677 0.043919 443.67 0.000

Square 5 0.000491 0.12 0.000491 0.000098 0.99 0.424

Toff * toff 1 0.000073 0.02 0.000018 0.000018 0.18 0.672

Current * current 1 0.000396 0.09 0.000369 0.000369 3.73 0.055

Dielctric * dielctric 1 0.000006 0.00 0.000001 0.000001 0.01 0.907

Wf * Wf 1 0.000013 0.00 0.000015 0.000015 0.16 0.693

Wt * Wt 1 0.000003 0.00 0.000003 0.000003 0.03 0.854

2-Way ınteraction 30 0.004683 1.12 0.004683 0.000156 1.58 0.037

Toff * current 1 0.000006 0.00 0.000006 0.000006 0.06 0.811

Toff * dielctric 1 0.000174 0.04 0.000174 0.000174 1.76 0.187

Toff * Wf 1 0.000003 0.00 0.000003 0.000003 0.03 0.858

Toff * Wt 1 0.000051 0.01 0.000051 0.000051 0.51 0.475

Toff * sample 4 0.000470 0.11 0.000470 0.000117 1.19 0.318

Current * dielctric 1 0.000232 0.06 0.000232 0.000232 2.35 0.127

Current * Wf 1 0.000638 0.15 0.000638 0.000638 6.45 0.012

Current * Wt 1 0.000000 0.00 0.000000 0.000000 0.00 0.959

Current * sample 4 0.000468 0.11 0.000468 0.000117 1.18 0.321

Dielctric * Wf 1 0.000046 0.01 0.000046 0.000046 0.46 0.497

Dielctric * Wt 1 0.000012 0.00 0.000012 0.000012 0.12 0.728

Dielctric * sample 4 0.000451 0.11 0.000451 0.000113 1.14 0.340

Wf * Wt 1 0.000249 0.06 0.000249 0.000249 2.52 0.114

Wf * sample 4 0.000903 0.22 0.000903 0.000226 2.28 0.062

Wt * sample 4 0.000981 0.23 0.000981 0.000245 2.48 0.046

Error 185 0.018313 4.37 0.018313 0.000099

Lack-of-fit 160 0.014439 3.44 0.014439 0.000090 0.58 0.975

Pure error 25 0.003874 0.92 0.003874 0.000155

Total 229 0.419536 100.00

Table 14.  Model summary for Mrr.

S R-sq R-sq (adj) R-sq (pred)

0.0099494 95.63% 94.60% 93.39%
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Conclusion
Hardox steel was subjected to different processes to change its structure. These processes were carried out with 
five different samples as heat treatment, cold forging, plasma welding, mig-mag welding and commercial sam-
ple. In this context, the microstructure, microhardness and electrical conductivity of Hardox steel samples are 
expected to vary. Then, the samples affected by these changes were processed in WEDM with the box-behnken 
experimental design. Ra, Kerf, MRR and WWR results were analyzed in Minitab 21 program.

In the next phase of the study, a prediction model was created for Ra, Kerf, MRR and WWR with DL and ELM 
using these data. Anaconda Python 3.9 version was used as a program in the optimization study. Additionally, 

(7)
ywwr7 = 0.231+ 0.00021 ∗ Toff − 0.011 ∗ Current − 0.0019 ∗ Dielectric − 0.0040 ∗Wire feed

− 0.00303 ∗Wire tension+ 0.0054 ∗ Process type

Table 15.  Regression equations for Mrr.

Sample

Master sample MRR

0.440 + 0.000592 Toff − 0.0314 Current + 0.00227 Dielctric + 0.00779 Wf- 0.00720 Wt
− 0.000000 Toff * Toff + 0.00291 Current * Current − 0.000005 Dielctric * Dielctric + 0.000066 Wf * Wf
+ 0.000017 Wt * Wt − 0.000011 Toff * Current − 0.000010 Toff * Dielctric − 0.000003 Toff * Wf
+ 0.000008 Toff * Wt − 0.000568 Current * Dielctric − 0.001883 Current * Wf − 0.000029 Current * Wt
− 0.000084 Dielctric * Wf − 0.000032 Dielctric * Wt − 0.000294 Wf * Wt

Heat treated MRR

0.340 + 0.000604 Toff − 0.0274 Current + 0.00267 Dielctric + 0.00579 Wf − 0.00483 Wt
− 0.000000 Toff * Toff + 0.00291 Current * Current − 0.000005 Dielctric * Dielctric + 0.000066 Wf * Wf
+ 0.000017 Wt * Wt − 0.000011 Toff * Current − 0.000010 Toff * Dielctric − 0.000003 Toff * Wf
+ 0.000008 Toff * Wt − 0.000568 Current * Dielctric − 0.001883 Current * Wf − 0.000029 Current * Wt
− 0.000084 Dielctric * Wf − 0.000032 Dielctric * Wt − 0.000294 Wf * Wt

Plasma welded MRR

0.404 + 0.000631 Toff − 0.0292 Current + 0.00329 Dielctric + 0.00783 Wf − 0.00565 Wt
− 0.000000 Toff * Toff + 0.00291 Current * Current − 0.000005 Dielctric * Dielctric + 0.000066 Wf * Wf
+ 0.000017 Wt * Wt − 0.000011 Toff * Current − 0.000010 Toff * Dielctric − 0.000003 Toff * Wf
+ 0.000008 Toff * Wt − 0.000568 Current * Dielctric − 0.001883 Current * Wf − 0.000029 Current * Wt
− 0.000084 Dielctric * Wf − 0.000032 Dielctric * Wt − 0.000294 Wf * Wt

Mig-Mag welded MRR

0.397 + 0.000672 Toff − 0.0282 Current + 0.00281 Dielctric + 0.00786 Wf − 0.00579 Wt
− 0.000000 Toff * Toff + 0.00291 Current * Current − 0.000005 Dielctric * Dielctric + 0.000066 Wf * Wf
+ 0.000017 Wt * Wt − 0.000011 Toff * Current − 0.000010 Toff * Dielctric − 0.000003 Toff * Wf
+ 0.000008 Toff * Wt − 0.000568 Current * Dielctric − 0.001883 Current * Wf − 0.000029 Current * Wt
− 0.000084 Dielctric * Wf − 0.000032 Dielctric * Wt − 0.000294 Wf * Wt

Cold forged MRR

0.407 + 0.000725 Toff − 0.0341 Current + 0.00220 Dielctric + 0.00534 Wf − 0.00694 Wt
− 0.000000 Toff * Toff + 0.00291 Current * Current − 0.000005 Dielctric * Dielctric + 0.000066 Wf * Wf
+ 0.000017 Wt * Wt − 0.000011 Toff * Current − 0.000010 Toff * Dielctric − 0.000003 Toff * Wf
+ 0.000008 Toff * Wt − 0.000568 Current * Dielctric − 0.001883 Current * Wf − 0.000029 Current * Wt
− 0.000084 Dielctric * Wf − 0.000032 Dielctric * Wt − 0.000294 Wf * Wt

Figure 11.  Main effect plot for MRR.
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a linear regression models are presented to compare the results. According to these results, ideal DL and ELM 
models have been presented for future studies.

According to the experimental results;

• The lowest Ra values were obtained in heat-treated, cold forged, master sample, plasma welded and mig-mag 
welded processes, respectively. The best Ra (surface roughness) value of 1.92 µm was obtained in the heat 
treated sample and in the experiment with a time off of 250 µs.

• Model F value in ANOVA analysis for Ra is 86.04. In addition, the model showed that the determined vari-
ables and the model were statistically significant since the p value was < 0.05.

• WEDM parameters are extremely important for Ra compared to F and P values.
• In the analysis made for Ra, the model  r2 value was obtained as 0.9534.
• The lowest kerf values were obtained in heat-treated, cold forged, master sample, plasma welded and mig-

mag welded processes, respectively. The best kerf value of 200 µ was obtained in the heat treated sample and 
in the experiment with a time off of 200 µs.

Table 16.  Analysis of variance for WWR.

Source DF Seq SS Contribution (%) Adj SS Adj MS F-value P value

Model 44 0.099077 95.63 0.099077 0.002252 92.12 0.000

Linear 9 0.097799 94.40 0.097799 0.010867 444.54 0.000

Toff 1 0.011104 10.72 0.011104 0.011104 454.25 0.000

Current 1 0.010390 10.03 0.010390 0.010390 425.06 0.000

Dielctric 1 0.010559 10.19 0.010559 0.010559 431.94 0.000

Wf 1 0.010757 10.38 0.010757 0.010757 440.06 0.000

Wt 1 0.011608 11.20 0.011608 0.011608 474.87 0.000

Sample 4 0.043381 41.88 0.043381 0.010845 443.67 0.000

Square 5 0.000121 0.12 0.000121 0.000024 0.99 0.424

Toff * toff 1 0.000018 0.02 0.000004 0.000004 0.18 0.672

Current * current 1 0.000098 0.09 0.000091 0.000091 3.73 0.055

Dielctric * dielctric 1 0.000002 0.00 0.000000 0.000000 0.01 0.907

Wf * Wf 1 0.000003 0.00 0.000004 0.000004 0.16 0.693

Wt * Wt 1 0.000001 0.00 0.000001 0.000001 0.03 0.854

2-Way ınteraction 30 0.001156 1.12 0.001156 0.000039 1.58 0.037

Toff * current 1 0.000001 0.00 0.000001 0.000001 0.06 0.811

Toff * dielctric 1 0.000043 0.04 0.000043 0.000043 1.76 0.187

Toff * Wf 1 0.000001 0.00 0.000001 0.000001 0.03 0.858

Toff * Wt 1 0.000013 0.01 0.000013 0.000013 0.51 0.475

Toff * sample 4 0.000116 0.11 0.000116 0.000029 1.19 0.318

Current * dielctric 1 0.000057 0.06 0.000057 0.000057 2.35 0.127

Current * Wf 1 0.000158 0.15 0.000158 0.000158 6.45 0.012

Current * Wt 1 0.000000 0.00 0.000000 0.000000 0.00 0.959

Current * sample 4 0.000115 0.11 0.000115 0.000029 1.18 0.321

Dielctric * Wf 1 0.000011 0.01 0.000011 0.000011 0.46 0.497

Dielctric * Wt 1 0.000003 0.00 0.000003 0.000003 0.12 0.728

Dielctric * sample 4 0.000111 0.11 0.000111 0.000028 1.14 0.340

Wf * Wt 1 0.000062 0.06 0.000062 0.000062 2.52 0.114

Wf * sample 4 0.000223 0.22 0.000223 0.000056 2.28 0.062

Wt * sample 4 0.000242 0.23 0.000242 0.000061 2.48 0.046

Error 185 0.004522 4.37 0.004522 0.000024

Lack-of-fit 160 0.003566 3.44 0.003566 0.000022 0.58 0.975

Pure error 25 0.000957 0.92 0.000957 0.000038

Total 229 0.103599 100.00

Table 17.  Model summary for WWR.

S R-sq R-sq (adj) R-sq (pred)

0.0049441 95.61% 94.62% 93.41%



17

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14100  | https://doi.org/10.1038/s41598-023-40710-8

www.nature.com/scientificreports/

• In the ANOVA analysis for Kerf, the model F value is 90.21. In addition, the model showed that the deter-
mined variables and the model were statistically significant since the p value was < 0.05.

• WEDM parameters are extremely important for kerf compared to F and P values.
• In the analysis made for Kerf, the model  r2 value was obtained as 0.9555.
• Contrary to Ra and kerf, it is desirable to have high mrr values. On average, the highest mrr values were 

obtained in mig-mag welded, plasma welded, cold forged, master sample and heat-treated processes, respec-
tively. The best mrr value of 200 g  min−1 was obtained in the mig-mag welded sample and in the experiment 
with a time off of 300 µs.

• Model F value in ANOVA analysis for Mrr is 92.12. In addition, the model showed that the determined vari-
ables and the model were statistically significant since the p value was < 0.05.

• WEDM parameters are extremely important for mrr compared to F and P values.
• In the analysis made for Mrr, the model  r2 value was obtained as 0.9563.

Table 18.  Regression equations for WWR.

Sample

Master sample WWR 

0.2188 + 0.000294 Toff − 0.0156 Current + 0.00113 Dielctric
+ 0.00387 Wf − 0.00358 Wt − 0.000000 Toff * Toff + 0.001446 Current * Current
− 0.000002 Dielctric * Dielctric + 0.000033 Wf * Wf + 0.000009 Wt * Wt− 0.000005 Toff * Current
− 0.000005 Toff * Dielctric − 0.000001 Toff * Wf + 0.000004 Toff * Wt- 0.000282 Current * Dielctric
− 0.000936 Current * Wf- 0.000014 Current * Wt − 0.000042 Dielctric * Wf − 0.000016 Dielctric * Wt
− 0.000146 Wf * Wt

Heat treated WWR 

0.1688 + 0.000300 Toff − 0.0136 Current + 0.00133 Dielctric + 0.00288 Wf − 0.00240 Wt
− 0.000000 Toff * Toff + 0.001446 Current * Current − 0.000002 Dielctric * Dielctric
+ 0.000033 Wf * Wf + 0.000009 Wt * Wt − 0.000005 Toff * Current- 0.000005 Toff * Dielctric
− 0.000001 Toff * Wf + 0.000004 Toff * Wt − 0.000282 Current * Dielctric − 0.000936 Current * Wf
− 0.000014 Current * Wt − 0.000042 Dielctric * Wf − 0.000016 Dielctric * Wt − 0.000146 Wf * Wt

Plasma welded WWR 

0.2008 + 0.000314 Toff − 0.0145 Current + 0.00164 Dielctric + 0.00389 Wf − 0.00281 Wt
− 0.000000 Toff * Toff + 0.001446 Current * Current − 0.000002 Dielctric * Dielctric + 0.000033 Wf * Wf
+ 0.000009 Wt * Wt − 0.000005 Toff * Current − 0.000005 Toff * Dielctric − 0.000001 Toff * Wf
+ 0.000004 Toff * Wt − 0.000282 Current * Dielctric − 0.000936 Current * Wf − 0.000014 Current * Wt
− 0.000042 Dielctric * Wf − 0.000016 Dielctric * Wt − 0.000146 Wf * Wt

Mig-Mag welded WWR 

0.1975 + 0.000334 Toff − 0.0140 Current + 0.00140 Dielctric + 0.00391 Wf − 0.00288 Wt
− 0.000000 Toff * Toff + 0.001446 Current * Current − 0.000002 Dielctric * Dielctric + 0.000033 Wf * Wf
+ 0.000009 Wt * Wt − 0.000005 Toff * Current − 0.000005 Toff * Dielctric − 0.000001 Toff * Wf
+ 0.000004 Toff * Wt- 0.000282 Current * Dielctric − 0.000936 Current * Wf − 0.000014 Current * Wt
− 0.000042 Dielctric * Wf − 0.000016 Dielctric * Wt − 0.000146 Wf * Wt

Cold forged WWR 

0.2022 + 0.000360 Toff − 0.0169 Current + 0.00110 Dielctric + 0.00265 Wf − 0.00345 Wt
− 0.000000 Toff * Toff + 0.001446 Current * Current − 0.000002 Dielctric * Dielctric + 0.000033 Wf * Wf
+ 0.000009 Wt * Wt − 0.000005 Toff * Current − 0.000005 Toff * Dielctric − 0.000001 Toff * Wf
+ 0.000004 Toff * Wt − 0.000282 Current * Dielctric − 0.000936 Current * Wf − 0.000014 Current * Wt
− 0.000042 Dielctric * Wf − 0.000016 Dielctric * Wt − 0.000146 Wf * Wt

Figure 12.  Main effect plot for WWR.
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• The lowest wwr values were obtained in heat-treated, cold forged, master sample, plasma welded and mig-
mag welded processes, respectively. The best wwr value of 0.098 g was obtained in the heat treated sample 
and in the experiment with a time off of 200 µs.

• Model F value in ANOVA analysis for Wwr is 92.12. In addition, the model showed that the determined 
variables and the model were statistically significant since the p value was < 0.05.

• WEDM parameters are extremely important for wwr compared to F and P values.
• In the analysis made for WWR, the model  r2 value was obtained as 0.09561.

In the analysis made with artificial intelligence systems;

• The best test MSE value for Ra was obtained as 0.012 in DL and the r squared value 0.9274.
• The best test MSE value for Kerf was obtained as 248.28 in ELM and r squared value 0.8676.
• The best MSE value for MRR was obtained as 0.000101 in DL and the r squared value 0.9444.

Figure 13.  DL architecture of this study.

Figure 14.  ELM architecture of this study.
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• The best MSE value for WWR was obtained as 0.000037 in DL and the r squared value 0.9184

As a result, it was concluded that different optimization methods can be applied according to different outputs 
(Ra, Kerf, MRR, WWR). It also shows that artificial intelligence-based optimization methods give successful 
estimation results about Ra, Kerf, MRR, WWR values. According to these results, ideal DL and ELM models 
have been presented for future studies.

Data availability
All the raw data of analysis are available as supplementary data. Any other data generated or analyzed during 
this study are available from the corresponding authors on reasonable request. https:// docs. google. com/ sprea 
dshee ts/d/ 1Bbrf VpeJv SvvjX V5HjV qyY9F bl8gT u4l/ edit? usp= shari ng& ouid= 10443 94479 76128 85815 5& rtpof= 
true& sd= true.

Table 19.  Result of DL, ELM and linear regression.

Method
Optimization algorithms 
(ANN)-ELM methods Neuron numbers Activation functions Training MSE Test MSE r2

Ra

Linear regression 0.0295 0.0373 0.7752

Deep learning
Adam 12, 12, 12 ReLu, ReLu, ReLu 0.0088 0.0120 0.9274

RmsProp 12, 6, 6 ReLu, ReLu, ReLu 0.0094 0.0163 0.9018

ELM

Basic ELM 10 Sigmoid 0.0295 0.0353 0.7870

P-ELM 100 Sigmoid 0.0333 0.031 0.8130

OP-ELM 120 Sigmoid 0.0109 0.022 0.8671

Kerf

Linear regression 328.32 405.45 0.7837

Deep learning
Adam 6, 6, 6 Sigmoid, Sigmoid, Sigmoid 314.32 362.40 0.8067

RmsProp 12, 6, 12 Sigmoid, Sigmoid, Sigmoid 317.17 359.55 0.8082

ELM

Basic ELM 15 Sigmoid 287.69 360.07 0.8079

P-ELM 80 Sigmoid 294.58 386.90 0.7937

OP-ELM 120 Sigmoid 116.55 248.28 0.8676

MRR

Linear regression 0.000313 0.000395 0.7832

Deep learning
Adam 12, 6, 6 ReLu, ReLu, ReLu 0.000069 0.000101 0.9444

RmsProp 12, 6, 6 ReLu, ReLu, ReLu 0.000069 0.000179 0.9018

ELM

Basic ELM 15 Sigmoid 0.000295 0.00038 0.7916

P-ELM 80 Sigmoid 0.00033 0.000396 0.7831

OP-ELM 120 Sigmoid 0.000096 0.000166 0.9091

WWR 

Linear regression Linear regression 0.000077 0.000097 0.7844

Deep learning
Adam 6, 12, 6 ReLu, ReLu, ReLu 0.000016 0.000037 0.918473

RmsProp 12, 12, 12 ReLu, ReLu, ReLu 0.000020 0.000058 0.8714

ELM

Basic ELM 12 Sigmoid 0.000075 0.000095 0.7890

P-ELM 80 Sigmoid 0.000082 0.000091 0.7971

OP-ELM 120 Sigmoid 0.000028 0.000073 0.8382

Figure 15.  Original data and model output comparison graph for best test MSE Value.

https://docs.google.com/spreadsheets/d/1BbrfVpeJvSvvjXV5HjVqyY9Fbl8gTu4l/edit?usp=sharing&ouid=104439447976128858155&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1BbrfVpeJvSvvjXV5HjVqyY9Fbl8gTu4l/edit?usp=sharing&ouid=104439447976128858155&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1BbrfVpeJvSvvjXV5HjVqyY9Fbl8gTu4l/edit?usp=sharing&ouid=104439447976128858155&rtpof=true&sd=true
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