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A solvable model 
for symmetry‑breaking phase 
transitions
Shatrughna Kumar 1, Pengfei Li 2, Liangwei Zeng 3, Jingsong He 4 & Boris A. Malomed 1,5*

Analytically solvable models are benchmarks in studies of phase transitions and pattern-forming 
bifurcations. Such models are known for phase transitions of the second kind in uniform media, 
but not for localized states (solitons), as integrable equations which produce solitons do not admit 
intrinsic transitions in them. We introduce a solvable model for symmetry-breaking phase transitions 
of both the first and second kinds (alias sub- and supercritical bifurcations) for solitons pinned to a 
combined linear-nonlinear double-well potential, represented by a symmetric pair of delta-functions. 
Both self-focusing and defocusing signs of the nonlinearity are considered. In the former case, exact 
solutions are produced for symmetric and asymmetric solitons. The solutions explicitly demonstrate 
a switch between the symmetry-breaking transitions of the first and second kinds (i.e., sub- and 
supercritical bifurcations, respectively). In the self-defocusing model, the solution demonstrates the 
transition of the second kind which breaks antisymmetry of the first excited state.

The topic: spontaneous symmetry breaking in nonlinear systems.  Dynamics of collective excita-
tions in physical systems is determined by the interplay of the underlying diffraction or dispersion, nonlinear 
self-interactions of the fields or wave functions, and potentials acting on the fields. In this context, it is com-
monly known that the ground state (GS) of linear systems reproduces the symmetry of the underlying potential, 
while excited states may realize other representations of the same symmetry1. In particular, the wave function 
of a particle trapped in a symmetric double-well potential (DWP) is even, while the first excited state is odd.

While these basic properties are demonstrated by the linear Schrödinger equation, the dynamics of Bose-
Einstein condensates (BECs) is governed, in mean-field approximation, by the Gross-Pitaevskii equation (GPE), 
which takes into regard interactions between particles, adding the cubic term to the Schrödinger equation for 
the single-particle wave function2,3. The repulsive or attractive interactions are represented by the cubic term 
with the self-defocusing (SDF) or self-focusing (SF) sign. Essentially the same model is the celebrated nonlinear 
Schrödinger equation (NLSE), which governs the propagation of optical waves in nonlinear media4 and finds a 
plenty of other realizations, as the universal model to govern the interplay of the weak diffraction or dispersion 
and cubic SF nonlinearity5. In optics, a counterpart of the trapping potential is the term in the NLSE which 
accounts for the waveguiding structure induced by a transverse profile of the refractive index.

The GS structure in models combining the DWP and SF nonlinearity follows the symmetry of the underlying 
potential only in the weakly nonlinear regime. A generic effect which occurs with the increase of the SF non-
linearity strength is the symmetry-breaking phase transition, which makes the GS asymmetric with respect 
to two wells of the DWP6. This effect of the spontaneous symmetry breaking (SSB) implies, inter alia, that the 
commonly known principle of quantum mechanics, according to which GS cannot be degenerate1, is no longer 
valid in the nonlinear models: obviously, the SSB gives rise to a degenerate pair of two mutually symmetric GSs, 
with the maximum of the wave function pinned to the left or right potential well of the underlying DWP. The 
same system admits a symmetric state coexisting with the asymmetric ones, but, above the SSB point, it does 
not represents the GS, being unstable against symmetry-breaking perturbations.

In systems with the SDF sign of the nonlinearity, the GS remains symmetric and stable, while the SSB transi-
tion breaks the antisymmetry of the first excited state (it is a spatially odd one, with precisely one zero of the wave 
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function, located at the central point). The resulting state with the spontaneously broken antisymmetry keeps 
the zero point, which is shifted from the center to right or left.

The concept of the SSB in systems of the NLSE type with the SF nonlinearity was first proposed, in an abstract 
mathematical form, by Davies in 19797. Another early realization of this concept was introduced in 1985 by 
Eilbeck, Lomdahl, and Scott, in the form of the “self-trapping model”8. The latter work had actually initiated 
systematic studies of SSB phase transitions.

In optics, the SSB was observed experimentally in a photorefractive crystal with saturable SF nonlinearity 
and an effective DWP waveguiding structure9. SSB was also predicted for photonic modes supported by a sym-
metrically designed plasmonic metamaterial10. For the self-attractive BEC loaded into a DWP trap, the symmetry-
breaking transition was elaborated in Refs.11,12. In that context, tunnel-coupling oscillations between condensates 
trapped in two potential wells separated by a barrier represent the bosonic Josephson effect13. Experimentally, 
the self-trapping of a stationary state with spontaneously broken antisymmetry in a self-repulsive condensate 
loaded in DWP, as well as Josephson oscillations in that setup, were reported in Ref.14.

A ramification of the topic is SSB in dual-core systems, such as twin-core optical fibers, with the SF cubic 
nonlinearity acting in each core15. In such systems, the interplay of the SF and linear coupling between parallel 
cores gives rise to the SSB transition from the symmetric state to a spontaneously established one with unequal 
powers carried by the two cores. This type of the symmetry-breaking phase transition was studied in detail 
theoretically16–21 and recently demonstrated experimentally in a twin-core fiber22. In terms of the respective 
system of linearly-coupled NLSEs, the SSB transition is represented by the bifurcation which links symmetric 
and asymmetric solutions23. Depending on the type of the intra-core nonlinearity and the wave form under 
the consideration (delocalized or self-trapped), the symmetry-breaking bifurcation may be of the supercritical 
(alias forward) or subcritical (backward) type. The corresponding bifurcations give rise to the destabilization of 
the symmetric state and creation of a pair of asymmetric ones at the SSB point, which go forward or backward 
as stable or unstable branches, respectively, following the variation of the SSB-driving nonlinearity strength. In 
the latter (subcritical) case, the unstable lower branches of the asymmetric states normally reverse into the stable 
forward-going upper ones at certain turning points (see, e.g., Fig. 7 below). As a result, stable asymmetric states 
emerge subcritically, at a value of the nonlinearity strength which is smaller than that at the SSB point. Accord-
ingly, the system is bistable in the interval between the turning and SSB points, where the symmetric and upper 
asymmetric states coexist as stable ones. In terms of statistical physics, the super- and subcritical bifurcations are 
identified as symmetry-breaking phase transitions of the second and first kinds, respectively. In the latter case, 
the bistability corresponds to the hysteresis between the GS and overcooled or overheated phases.

Other varieties of optical SSB effects occur in dual-core laser setups combining the SF nonlinearity with gain 
and loss. The theoretical model of such setups is based on a pair of linearly coupled complex Ginzburg-Landau 
equations with the cubic-quintic nonlinearity24. A spontaneously established asymmetric regime of the operation 
of a symmetric pair of coupled lasers was observed in Ref.25.

The SSB phenomenology was also predicted in models with symmetric  nonlinear potentials, induced by 
spatial modulation of the local SF or SDF coefficient26,27. In optical waveguides, the modulation can be imposed 
by spatially inhomogeneous distributions of a resonant dopant, which gives rise to strong local nonlinearity28. 
In experiments with BEC, the Feshbach resonance (FR) controlled by spatially nonuniform laser illumination 
of the condensate may be employed to build an effective nonlinearity landscape29–31. Other techniques available 
to the experimental work with BEC make it possible to “paint” a necessary FR-induced nonlinear potential by a 
fast moving laser beam32 or a spatial light modulator33–35.

The model.  The use of the nonlinear potential suggests a possibility to design experimentally feasible solv‑
able SSB settings, which admit exact analytical solutions for symmetric, antisymmetric, and asymmetric states. 
The key component of solvable models is the nonlinear term in the NLSE with coordinate x, which is concen-
trated at x = 0 , being represented by the δ-function:

This model is formulated in terms of optics, with the evolution along propagation distance z under the action 
of the real nonlinearity coefficient σ , scaled to be σ = +1 or −1 , which corresponds, respectively, to the SF or 
SDF sign of the nonlinearity. In that case, the δ-function term represents a narrow layer of an optical material 
with strong cubic susceptibility (e.g., AlGaAs, whose susceptibility exceeds that of silica by a factor ≃ 70036) 
embedded in the linear planar waveguide, provided that the width of the layer is small in comparison with that 
of self-trapped light beams propagating in the waveguide. This setting can be readily implemented in the experi-
ment, as the typical width of spatial solitons is measured in tens of microns37. In that case, the linear trapping 
potential, −εδ(x) , present in Eq. (1), is relevant too, as the linear refractive index of materials such as AlGaAs is 
much higher than the background value in the host material (silica). As concerns the sign of the nonlinearity, 
the consideration of the SDF layer is also interesting, as semiconductor materials may demonstrate negative 
nonlinear susceptibility.

The same Eq. (1), with z replaced by time t, applies to BEC, with the δ-function potential induced by the FR-
inducing laser beam tightly focused at x = 0 . The same optical beam also induces the linear potential represented 
by coefficient ε . In a similar context, Eq. (1) with ε = 0 was first introduced, as a model of a nonlinear bosonic 
junction, in Ref.38. Further, a model of the matter-wave soliton interferometer with a nonlinear soliton splitter 
corresponds to ε < 0 and σ = −1 in Eq. (1)39.

Equation (1) gives rise to the exact solution for a family of self-trapped states (solitons) pinned to the delta-
functional potential:
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where k is an arbitrary propagation constant, and the shape function is

The self-trapped modes are characterized by their integral power,

which is a dynamical invariant of Eq. (1).
The well-known Vakhitov-Kolokolov (VK) criterion, dP/dk > 040–43, immediately implies that the family of 

solutions (3) in the case of the SF nonlinearity, σ = +1 , and ε > 0 is stable in its entire existence region, k > ε2/2 
(and completely unstable if the linear potential is repulsive, with ε < 0 ). For localized states supported by the SDF 
nonlinearity, with σ = −1 , the VK stability criterion is replaced by the anti-VK one44, dP/dk < 0 . Accordingly, 
in this case the localized states (3) are also stable in their entire existence region, which is 0 < k < ε2/2 . The 
definition of the power given by Eq. (4) demonstrates that the bound states pinned to δ-function potential with 
the SF sign of the nonlinearity exist in the interval of 0 < P0 < 1 , while the competition of the linear attractive 
potential and SDF nonlinear term gives rise to the bound states in the entire range of 0 < P0 < ∞.

An exceptional case is the one corresponding to σ = +1 (SF) and ε = 0 (no linear potential), for which Eq. 
(4) demonstrates the degeneracy of the localized states, whose power takes the single value, P0 = 1 , which does 
not depend on k. This property implies that the corresponding family represents a specific example of Townes 
solitons (a commonly known family of Townes solitons is one produced by localized solutions of two-dimensional 
NLSE with the spatially uniform cubic SF nonlinearity45). Because Townes solitons, with their single value of 
the power, have dP/dk = 0 , the VK criterion predicts that they correspond to a border between the stability 
and instability. It is known that, in fact, the Townes solitons are subject to the subexponentially commencing 
instability, which eventually leads to the onset of the critical collapse (emergence of a local singularity after a 
finite propagation distance)42,43.

It is also worthy to mention the value of the Hamiltonian of the pinned state (3),

[the Hamiltonian is another dynamical invariant of Eq. (1)]. Note that the existence condition for solution (3), 
σ

(√
2k − ε

)

> 0 , implies H0 < 0 for ε > 0 , hence the localized solution represents a true bound state with the 
negative energy.

The possibility to produce exact analytical solutions for localized states pinned to the δ-function nonlinear 
potential suggests a possibility to design a solvable DWP model based on a set of two δ-functions, separated by 
distance which may be set equal to 1 by means of rescaling:

The equation for stationary states is produced by the substitution of expression (2) in Eq. (6):

The Hamiltonian corresponding to Eq. (6) is

cf. Eq. (5). The physical implementation of the model in optics and BEC is straightforward: in the former case, 
one can embed two parallel nonlinear layers in the linear waveguide, while in the former case the necessary 
configuration may be created by two tightly focused FR-inducing laser beams.

A particular case of Eq. (6) with ε = 0 was introduced, in the context of BEC, in Ref.46. Exact solutions for 
symmetric, antisymmetric, and, which is most interesting, asymmetric stationary wave functions were produced 
in that work, demonstrating a very peculiar feature, namely, an SSB bifurcation of the extreme subcritical type, in 
which backward-going branches of unstable states never turn forward and, accordingly, never become stable. In 
other words, it is a unique example of the symmetry-breaking phase transition of the first kind which does not 
produce any stable phase past the transition point, and gives rise to a fully unstable overcooled phase, represented 
by the completely unstable asymmetric states.
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Recently, another example of such an anomalous phase transition was found in Ref.47 in the study of dual-core 
couplers with the SF nonlinearity and fractional diffraction, represented by operator 

(

−∂2/∂x2
)α/2 , with Lévy 

index α48, acting in each core. In that case, the extreme subcritical SSB bifurcation takes place at α = 1 , which 
is the border between the normal symmetry-breaking phase transition of the first kind at 1 < α < 2 , and full 
instability of the system, driven by the supercritical collapse, at α < 1 . However, the fractional-coupler model 
cannot be solved analytically, on the contrary to Eq. (7).

Objectives of the work.  Our purpose is to produce an analytical solution of the full model, with the 
combined linear-nonlinear δ-functional DWP in Eq. (6). The linear terms are represented by ε > 0 (the attrac-
tive potential), while both SF and SDF signs of the nonlinearity, σ = ±1 , will be addressed. For σ = +1 , the 
solution explicitly demonstrates gradual switch from the extreme subcritical bifurcation to the supercritical 
one via a regular subcritical bifurcation, in which the backward-going (lower) branches of unstable asymmetric 
states reverse into stable upper branches at turning points. For σ = −1 the results are more straightforward, 
corroborating the stability of the symmetric GS and the occurrence of the supercritical antisymmetry-breaking 
transition in the first excited state.

While the asset of the model is its analytical solvability, some results are produced in a numerical form, using 
Eqs. (6) and (7) with a regularized δ-function,

defined by a small width w (in most cases, w = 0.01 was used, which is 1/100 of the distance between the two δ
-funtions). In this connection, it is relevant to mention that the realization of the present model as the optical 
waveguide implies that a characteristic value of the separation between the two narrow attractive layers may 
be ∼ 50 µ m, hence w = 0.01 corresponds to the layer’s thickness ∼ 0.5 µ m. In view of the above-mentioned 
possibility to use a material with the nonlinear susceptibility exceeding that in the bulk waveguide by a factor 
∼ 700 , this thickness will be sufficient to provide the requires nonlinearity. In the case of the realization in BEC, 
a relevant size of the separation may be ∼ 10 µ m. Then, the nearly-delta-functional potential may be induced by 
a laser beam focused on a spot of size ∼ 0.5 µ m, which will correspond to w ≃ 0.05 , in the scaled units.

The comparison with the numerical solutions is relevant to check how well the solvable model represents a 
realistic one, with the finite width w of the potential wells, and also to test predictions for stability of the sym-
metric, antisymmetric, and asymmetric solitons pinned to the δ -functional DWP. The analytical and numerical 
results are summarized in the next section, and are discussed in the concluding one.

Results
Exact analytical solutions for the symmetric, asymmetric, and antisymmetric states.  The 
self‑focusing nonlinearity.  The fact that Eq. (7) is linear at x  = ±1/2 makes it possible to construct obvious 
solutions in these areas, as exp

(

−
√
2k|x + 1/2|

)

 and exp
(

−
√
2k|x − 1/2|

)

 at x < −1/2 and x > +1/2 , re-
spectively, and a combination of these terms at |x| < 1/2 . At points x = ±1/2 , the solutions are matched by the 
continuity condition for U(x) and the jump condition for the derivative dU/dx,

The generic solution satisfying these conditions can be looked for as

where amplitudes U1(k) and U2(k) should be found from the substitution of ansatz (11)–(13) in Eq. (10). For this 
stationary solution, the value of Hamiltonian (8) is

where P is the integral power, defined as per Eq. (4).
First, it is easy to find the exact solutions for symmetric states in the SF model ( σ = +1 ), with equal ampli-

tudes U1(k) = U2(k) ≡ Usymm(k):
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A typical example of a symmetric bound state (soliton), for ε = 2 and k = 2.1 , is displayed in Fig. 1c. This plots 
is produced by the numerical solution of Eq. (7), being virtually indistinguishable from its counterpart given by 
the analytical solution, as provided by Eqs. (11)–(13) and (15).

Because S, as defined by Eq. (16), is always positive, the solution given by Eq. (15) for σ = +1 and −1 exists 
for E(ε, k) > 1 and E(ε, k) < 1 , respectively. As it follows from Eq. (17), this condition implies that, in the case 
of SF nonlinearity, the symmetric state with given propagation constant k exists if the strength of the linear δ
-function potential does not exceed a maximum value,

In other words, for given ε the symmetric state exists for k exceeding a value (kmin)symm determined by Eq. (18) 
with < replaced by = , i.e., beneath the red curve in Fig. 2a. In particular,

In the SDF case, the existence area for the symmetric states is opposite, ε > (εmax)symm . The existence boundary 
(18) is shown by the red curve in Fig. 2a.

The bound states (solitons) are characterized by the total power defined as per Eq. (4). For the symmetric 
states in the model with the SF nonlinearity, it is

(16)S(k) ≡
√

2

k
sinh

(√
2k
)

,

(17)E(ε, k) ≡ exp
(√

2k
)

− ε

√

2

k
sinh

(√
2k
)

.

(18)ε < (εmax)symm ≡
√
2k

1+ exp
(

−
√
2k
) .

(19)(kmin)symm ≈
{

2ε2, for ε ≪ 1,
ε2/2, for ε ≫ 1.

Figure 1.   (a–c) Typical examples of antisymmetric, asymmetric, and symmeric bound states (solitons) 
produced by the numerical solution of Eq. (7) with the δ-functions approximated by expression (9), the SF 
nonlinearity ( σ = +1 ), and parameters ε = 2 , k = 2.1 . In panel (b) two asymmetric states are plotted, which are 
mirror images of each other. The antisymmetric and symmetric states are unstable, while the asymmetric one is 
stable. (d–f) Typical examples of antisymmetric, broken-antisymmetry, and symmetric bound states for the SDF 
nonlinearity ( σ = −1 ) and ε = 2 , k = 1 . In panel (e), two states with broken antisymmetry are mirror images 
of each other. The antisymmetric state is unstable, while the ones with broken antisymmetry and unbroken 
symmetry are stable.
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As k varies from the minimum value (kmin)symm [see Eq. (19)] towards k → ∞ , the power (20) grows from 0 
to 2, so that

Examples of this dependence for ε = 1 and 2 are displayed in Fig. 3. Note that it satisfies the above-mentioned 
VK criterion, dP/dk > 0.

An essential fact is that the substitution of ansatz (11)–(13) in Eq. (10) produces, as well, an exact solution for 
asymmetric bound states in the model with the SF nonlinearity, with the following values of amplitudes U1 and U2:

(or U1 ⇄ U2 ). Typical examples of stable asymmetric states are presented in Fig. 1b. They are produced as 
numerical solutions of Eq. (7), being indistinguishable from their analytically found counterparts.

Obviously, the solution given by Eqs. (22) and (23) bifurcates from the symmetric one (15) (with σ = +1 ) at 
E = 2 , and exists at E > 2 . For a given propagation constant, the asymmetric solution exists if ε does not exceed 
a respective maximum value,
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.
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)

1
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2S(k)
,
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(
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)

2
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√

E2(k)− 4
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Figure 2.   (a) In the model with the SF nonlinearity, σ = +1 , the symmetric bound states with amplitudes (15) 
exist beneath the boundary in the plane of (k, ε) displayed by the red curve, which is produced by Eq. (18). The 
asymmetric states, with the amplitudes given by Eqs. (22) and (23), exist beneath the green boundary, which 
is produced by Eq. (24). (b) In the model with the SDF nonlinearity, σ = −1 , the antisymmetric bound states 
with amplitudes (15) exist above the brown boundary, which is defined by Eq. (18). The states with broken 
antisymmetry and amplitudes given by Eqs. (39) and (40) exist above the blue boundary, which is defined by Eq. 
(41).
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cf. Eq. (18). The boundary (24) is shown by the green curve in Fig. 2a. For fixed ε , the asymmetric solution exists 
in the region beneath this boundary, and only the symmetric state exists in the stripe between the red and green 
curves in Fig. 2a. In particular, (εmax)symm(k → 0) = 0 , i.e., at ε = 0 the symmetric states exist in the entire 
region of 0 < k < ∞ , while it follows from Eq. (24) that, in the same limit of ε → 0 , the asymmetric state exists, 
in agreement with Ref.46, at

In accordance with generic properties of the SSB bifurcation23, the symmetric states are stable solely in the stripe 
between the red and green curves in Fig. 2a, being destabilized by the SSB bifurcation beneath the green one. 
These expectations are corroborated below by direct simulations of the perturbed evolution of the symmetric 
modes displayed in Fig. 12.

The asymmetry degree of stationary states is defined, in terms of the respective integral power,

as

Full analytical expressions for the integral power of the asymmetric states, Pasy(k) , and the respective value of � 
are very cumbersome. Nevertheless, it is easy to find that, while k grows from the minimum value (kmin)asy(ε) at 
the SSB bifurcation point, which is determined by the left inequality in Eq. (24) replaced by the equality [see, in 
particular, Eq. (25) for ε = 0 ], towards k → ∞ , Pasy(k) varies from the bifurcation-point value,

[with Psymm(k) given by Eq. (20)] to

Actually, Eq. (29) provides the same value as given above by Eq. (4) with σ = +1 and k → ∞ . It follows from 
the above expressions that, as ε increases from zero towards infinity, Pbif  monotonously decreases from

to Pbif (ε → ∞) = 0 . In particular, Pbif (ε) is exponentially small for large ε:

(24)ε < (εmax)asy ≡
√
2k

1− 2 exp
(

−
√
2k
)

1− exp
(

−2
√
2k
) < (εmax)symm,

(25)k > (kmin)asy(ε = 0) ≡ (1/2)(ln 2)2 ≈ 0.24.

(26)P(k) =
∫ 0

−∞
U

2(x)dx +
∫ +∞

0
U

2(x)dx ≡ P− + P+,

(27)� ≡
P+ − P−
P+ + P−

.

(28)Pbif = Psymm

(

k = (kmin)asy(ε)
)

,

(29)Pasy(k → ∞) = 1.

(30)Pbif (ε = 0) =
8

27
(3+ ln 2) ≈ 1.094

(31)Pbif (ε) ≈ exp (−ε).

Figure 3.   The dependence of the integral power of the symmetric bound states on the propagation constant, in 
the model with the SF sign of the nonlinearity, as given by Eq. (20), for ε = 1 and 2. As shown by Eq. (21), with 
the increase of k the power is slowly approaching the limit value, Psymm(k = ∞) = 2.
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Comparison of limit values (28) and (29) of the integral power for the asymmetric states makes it possible to iden-
tify a threshold value εthr for the switch of the SSB phase transition between the first and second kinds (i.e., the 
switch between the sub- and supercritical SSB bifurcation): the phase transition may only be of the first kind for 
Pbif > Pasy(k → ∞) ≡ 1 , and it becomes the second-order transition for Pbif < 1 . The corresponding equation, 
Pbif = 1 , combined with Eq. (24), in which ε < (εmax)asy is replaced, as said above, by ε = (εmax)asy , amounts to

where kthr ≡ (kmin)asy(ε = εthr) . Numerical solution of Eq. (32) produces the single root, kthr ≈ 0.298 , with the 
respective threshold value of ε produced by Eq. (24):

This result is corroborated by comparison with numerically generated SSB diagrams, in the form of �(P) depend-
ences, which are displayed in Fig. 4. In a detailed form, the numerical data demonstrate that the threshold value 
belongs to interval 0.07 < εthr < 0.08 , while it is difficult to extract εthr from the data with higher accuracy.

Note that narrow intervals of the variation of P for branches of the asymmetric states in panels (a-f) of Fig. 4 
correspond to the analytical results presented here [see, e.g., the limits of the variation of P given by Eqs. (29) 
and (30)]; in panels (g-i), the �(P) curves are partly cut, for technical reasons. The range of the variation of P 
for the branch of the symmetric states, with � ≡ 0 , is chiefly determined by the limit value (21). For ε = 0 , the 
detailed analysis, reported for this case in Ref.46, demonstrates, in agreement with Fig. 4a, that the largest power 
of the symmetric solitons is 

(

Psymm

)

max
≈ 2.08 , which is attained at k ≈ 1.40.

(32)1+ tanh
(

√

kthr/2
)

+
√

kthr/2sech
2
(

√

kthr/2
)

− 2 sinh(
√

2kthr) = 0,

(33)εthr ≈ 0.074.

Figure 4.   The asymmetry parameter (27) for the numerically produced solutions of Eq. (7) with the SF 
nonlinearity ( σ = +1 ) vs. the integral power (26) at different values of strength ε of the linear δ-functional 
potential, which are indicated in panels. The switch between the symmetry-breaking phase transitions of the 
first and second kinds, alias sub- and supercritical SSB bifurcations, takes place between ε = 0.07 and 0.08, in 
agreement with analytical result (33).
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The asymmetric solitons are completely stable in the area εthr < ε < (εmax)asy , as illustrated below by Fig. 13. 
At ε < εthr , the asymmetric solutions belonging to the lower branches in Figs. 4a–d, with d�/dP < 0 , are unsta-
ble, while the upper branches, with d�/dP > 0 , are stable. Actually, the instability intervals for the asymmetric 
solitons are very narrow.

In addition to the symmetric and asymmetric stationary states, Eqs. (6) and (6) with the SF sign of the non-
linearity, σ = +1 , give rise to antisymmetric ones, with U(−x) = −U(x) , see an example in Fig. 1a. However, 
as well as in the case of ε = 046, the antisymmetric states are completely unstable because, for the same value of 
integral power P, they correspond to higher values of Hamiltonian (8) than the symmetric bound states. The 
instability of the antisymmetric states is illustrated below by Fig. 14.

The self‑defocusing nonlinearity.  Typical examples of antisymmetric, broken-antisymmetry, and symmetric 
states produced by Eq. (7) with the SDF nonlinearity, i.e., σ = −1 in Eq. (7), are displayed in Fig. 1d–f, respec-
tively. In this case, the symmetric state, given by solution (15) with σ = −1 , which exists, as said above, at 
ε > (εmax)symm [see Eq. (18)], is always stable, realizing the model’s GS. Accordingly, it is not subject to SSB. 
More interesting is the first excited state above the GS, i.e., the antisymmetric one, given by  Eqs. (11)–(13) (with 
σ = −1)

where S and E is defined, as above, as per Eqs. (16) and (17). Because S is always positive, this solution exists 
under condition E < −1 . The substitution of Eq. (17) demonstrates that this condition amounts to

cf. Eq. (18). The antisymmetric state exists, at ε > 1 , in the area of the (µ, ε) plane above the brown boundary 
shown in Fig. 2b. Because Eq. (35) yields ε ≥ 1 in the limit of k → 0 , there are no antisymmetric states at ε < 1 . 
The integral power of the antisymmetric state is

This dependence is displayed in Fig. 5 for ε = 2 . Note that expression (36) with all values of ε satisfies the above-
mentioned anti-VK criterion, dP/dk < 0 , which is necessary for the stability of bound states supported by the 
SDF nonlinearity44.

With the variation of k from the largest value, kmax , which is determined by Eq. (35), towards k → 0 , the 
power (36) monotonously increases from Panti(kmax) = 0 to values diverging as

at k → 0 . The divergence is explained by the fact that, in the limit of k → 0 , there is an antisymmetric delocal-
ized state with divergent power,

(34)U1(k) = −U2(k) =
√

−[E(k)+ 1]/S(k) ≡ Uanti(k),

(35)ε ≥ (εmin)anti ≡
√
2k

1− exp
(

−
√
2k
) ,

(36)Panti(k) =
1

2
U

2
anti(k)
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(√

k/2
)

√
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−
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sinh2
(√
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.

(37)Panti(k) ≈ (ε − 1)/
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Figure 5.   The dependence of the integral power of the antisymmetric bound states on the propagation constant 
k, in the case of the SDF sign of the nonlinearity ( σ = −1 ), as given by Eq. (36), for ε = 4 . At k → 0 the power 
diverges according to Eq. (37). The power vanishes at k ≈ 7.686 , which is determined by Eq. (35) with ε = 4.
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The bound state with broken antisymmetry is given by Eqs. (11)–(13) with amplitudes

This solution exists under condition E < −2 . The substitution of expression (17) in the latter condition leads to 
the following existence area for the solutions with broken antisymmetry:

cf. Eq. (35). This area is located above the blue boundary in Fig. 2b. Because Eq. (41) yields ε ≥ 3/2 in the limit 
of k → 0 , there are no states with broken antisymmetry at ε < 3/2.

In agreement with the existence of the delocalized antisymmetric state (38), there is also a delocalized state 
with broken antisymmetry, viz.,

where

The mirror image of this solution is also a delocalized state with broken antisymmetry. Note that the delocalized 
antisymmetric state and the one with the broken antisymmetry exist, according to Eqs. (38) and (43), at ε > 1 
and ε > 3/2 , respectively, in accordance with what is said above for the generic solutions of the same types.

For the comparison’s sake, it is relevant to mention that Eq. (7) with the SF nonlinearity, σ = +1 , and ε < 1 
also gives rise to a delocalized antisymmetric state with k = 0 , viz .,

cf. Eq. (38). However, as well as all antisymmetric solutions of Eq. (6) with the SF nonlinearity, this solution is 
unstable (against modulational perturbations, cf. Rev.38), and Eq. (7) with σ = +1 does not produce solutions 
with unbroken antisymmetry.
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Figure 6.   The evolution of the shapes of antisymmetric (a), asymmetric (b), and symmetric (c) numerically 
produced solutions of Eq. (7) with σ = +1 and ε = 0.5 , following the increase of k.
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Numerical solutions
Numerical investigation of Eqs. (6) and (7) with the δ-functions approximated as per Eq. (9) is relevant for check-
ing the analytical results reported above. Because the width of the linear and nonlinear potential wells in real 
systems is finite, the numerical results also provide the verification of the relevance of the analytical predictions, 
which are obtained above with the use of the ideal δ-functions.

The self‑focusing nonlinearity.  Numerically found examples of bound states of the symmetric and 
antisymmetric types, as well as ones with broken symmetry and antisymmetry, in the cases of the SF and SDF 
signs of the nonlinearity, are displayed above in Fig. 1. In a systematic way, the evolution of the antisymmetric, 
asymmetric, and symmetric solitons produced by Eq. (7) with σ = +1 , following the increase of propagation 
constant k, is summarized in Fig. 6.

The most essential results in the form of the SSB diagrams for the SF model, which corroborate the basic 
analytically predicted property of the model, viz., the switch of the character of the symmetry-breaking phase 
transition from the first to second kind (in other words, the switch from the subcritical SSB bifurcation to the 
supercritical one) at the threshold point (33), are demonstrated above in Fig. 4. In addition to that, it is relevant 
to plot the bifurcation diagrams in the plane of k and asymmetry parameter � . These are presented in Fig. 7, for 
the same set of values of ε as in Fig. 4. The branch of the symmetric states commences at k = (kmin)symm [see Eq. 
(19)], while the value of k(ε) at the SSB bifurcation point is determined by Eq. (24).

Further, the families of symmetric and asymmetric solitons are characterized, as physical states, by the respec-
tive dependences P(k) and H(P), where H is the Hamiltonian defined by Eq. (8). These dependences are dis-
played, respectively, in Figs. 8 and 9. In the former figure, the branches of the symmetric states commence at 
k = (kmin)symm , see Eq. (19). In panels (a-f) of Fig. 8, P varies between limit values 0 and 2 along the symmetric 
branches, and between Pbif  [see Eq. (28)] and P = 1 along the the asymmetric ones [in panels (g-i), the varia-
tion range of P is truncated, for technical reasons; it is also partly cut in Fig. 9f]. In Fig. 9i, dependences H(P) 
for the symmetric and asymmetric states are indistinguishable. Note also that, in latter case, the value Pbif  at the 

Figure 7.   The asymmetry parameter (27) for the numerically produced solutions of Eq. (7) with σ = +1 vs. 
propagation constant k at the same values of ε which are presented in Fig. 4.
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SSB point is extremely small, in agreement with Eq. (31). Coordinates of the SSB points in Figs. 8a and 9a are 
correctly predicted by Eqs. (25) and (30).

In the range where the asymmetric states exist, they realizes the minimum of H, i.e., the system’s GS. A specific 
feature of the system is that it has no true GS at larger values of P, where only the unstable symmetric states exist, 
and there are no stationary states whatsoever at P > 2.

The self‑defocusing nonlinearity.  Dependences P(k), H(P), �(k) , and θ(P) for the families of antisym-
metric solitons and those with broken antisymmetry, as produced by the numerical solution of Eq. (7) with 
σ = −1 , are collected, severally, in panels (a-c), (d-f), (g-i), and (j-l) of Fig. 10, for three different values of the 
strength of the linear δ -function potential, viz., ε = 2, 3, and 5. These sets of plots are counterparts of those for 
the model with σ = +1 which are displayed above in Figs. 8, 9, 7, and 4, respectively. In particular, the P(k) 
curves and SSB points on all the curves plotted in Fig. 10 are correctly predicted by Eqs. (36) and (35).

An obvious difference from the case of the SF nonlinearity is that the bifurcation of the spontaneous breaking 
of antisymmetry in the SDF case is always supercritical, as seen in Figs. 10j–l. In other words, the model with the 
SDF nonlinearity always gives rise to the antisymmetry-breaking phase transition of the second kind. It is also 
worthy to note that the soliton branches with both unbroken and broken antisymmetry always satisfy the above-
mentioned anti-VK criterion, dP/dk < 0 , which is the necessary (but not sufficient) condition for their stability.

Finally, the evolution of the antisymmetric, broken-antisymmetry, and symmetric bound states produced 
by Eq. (7) with σ = −1 and ε = 2 , following the increase of propagation constant k, is summarized in Fig. 11. 
Note that, in agreement with the analytical solutions, the evolution is opposite to that in the model with the 
SF nonlinearity ( σ = +1 ), which is displayed above in Fig. 6. Namely, the amplitude and integral power of the 
solitons increase/decrease with the growth of k in the SF/SDF system.

The evolution of unstable bound states.  It is relevant to test the expected (in)stability of symmetric 
and antisymmetric bound states, as well as ones with broken symmetry and antisymmetry, in direct simulations 

Figure 8.   The integral power of the symmetric and asymmetric bound states in the case of the SF nonlinearity 
( σ = +1 ) vs. the propagation constant for the same values of ε as in Figs. 4 and 7.
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of Eq. (6) with the ideal δ-function replaced by its regularized version (9), for both the SF and SDF signs of the 
nonlinearity, i.e., σ = +1 and −1.

First, Fig. 12 collects typical examples which demonstrate the perturbed evolution of stable [panels (a,d,f,h,i)] 
and unstable [panels (b,c,e,g)] symmetric bound states in the model with the SF nonlinearity. These results are 
compatible with the prediction of the stability area for the symmetric states, in the form of the stripe between 
the lower and upper boundaries in Fig. 2a. It is observed that, naturally, all the unstable symmetric states dem-
onstrate manifestations of the SSB instability, leading to spontaneous formation of asymmetric states. In some 
cases, such as the one displayed in panel 2f, the unstable symmetric state, which is located close to the instability 
boundary, features conspicuous persistent oscillations, while in other cases the stronger instability creates nearly 
stationary modes with strong asymmetry.

Another expected result corroborated by the direct simulations of the perturbed evolution is that nearly all 
the asymmetric solitons are stable in the case of the SF nonlinearity, as shown in Fig. 13 for strongly asymmetric 
solutions. Unstable are asymmetric solitons belonging to the backward-going (lower) branch in Figs. 4a–d. In 
fact, they exist only in a very narrow parameter region, and the development of the instability pulls them towards 
a stable counterpart existing at the same value of P (not shown here in detail, as this is a known feature of the 
subcritical SSB bifurcation).

In addition to the above results, direct simulations displayed in Fig. 14 confirm the expected instability of 
all antisymmetric bound states in the case of the SF nonlinearity. In the cases shown in panels (e) and (f) of the 
figure, the instability is barely visible as the interaction between two power peaks of the antisymmetric modes 
is very weak.

Lastly, characteristic examples of the perturbed evolution of the bound states of the symmetric, antisymmetric, 
and broken-antisymmetry types in the model with the SDF nonlinearity are collected in Fig. 15. In particular, in 
agreement with the above predictions all symmetric states are stable in this case, as shown in Fig. 15a–c. Further, 
panels (d,e) and (f) of Fig. 15 present, respectively, examples of moderately and weakly unstable antisymmetric 

Figure 9.   The Hamiltonian of the symmetric and asymmetric bound states, calculated as per Eq. (8) with 
σ = +1 , vs. the integral power, P, for the same values of ε as in Figs. 4, 7, and 8.
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states, in agreement with the boundaries plotted in Fig. 2b. It is seen that the instability leads to spontaneous 
replacement of the corresponding states by oscillatory ones with broken antisymmetry. Finally, panels (g-i) 
demonstrate stability of the stationary states with weakly or strongly broken antisymmetry, also in agreement 
with the boundary plotted in Fig. 2b.

Figure 10.   Dependences P(k) (a–c), H(P) (d–f), �(k) (g–i), and θ(P) (j–l) for the families of antisymmetric 
solitons and those with broken antisymmetry, generated by the numerical solution of Eq. ( 7) with σ = −1 , 
three different values of ε , which are indicated in the panels, and the δ-function approximated by expression 
(9). Counterparts of these dependences in the system with σ = +1 are displayed above in Figs. 8, 9, 7, and 4, 
respectively.

Figure 11.   The evolution of shapes of the antisymmetric (a), broken-antisymmetry (b), and symmetric (c) 
numerically found solutions of Eq. (7) with σ = −1 and ε = 2 , following the increase of k.
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Discussion
Starting from the two-dimensional Ising lattice49,50, exactly solvable models serve as benchmarks for studies of 
phase transitions in diverse physical settings51–55. Transitions from a paramagnetic phase to a ferromagnetic one 
in spin systems, and similar transitions in many other media are intrinsically related to spontaneous breaking 
of the symmetry of the underlying setting. It is well known that phase transitions are classified as ones of the 
first and second kinds. Hysteresis and bistability, in the form of the coexistence of the GS (ground state) with a 
metastable overcooled or overheated phase, are possible in the former case.

Similar phenomenology is exhibited by nonlinear dynamical systems, in the form of bifurcations, i.e., transi-
tions between different stable states of the system, caused by variation of the system’s control parameter(s)23. 
Counterparts of the phase transitions of the first and second kinds are identified as bifurcations of the subcriti-
cal and supercritical types in dynamical systems. The subcritical bifurcation creates stable states prior to the 
destabilization of the symmetric one, thus the bifurcation of this type admits the bistability and hysteresis, like 
phase transitions of the first kind.

In most cases, phase transitions in statistical physics, as well as bifurcations in dynamical systems, are stud-
ied between spatially uniform states. On the other hand, transitions between spatially localized (self-trapped) 
modes, such as solitons, are possible too. The analysis of the latter topic may benefit from the consideration of 
models admitting exact solutions for symmetry-breaking transitions in self-trapped states. However, finding 

Figure 12.   The evolution of stable and unstable symmetric bound states in the model with the SF nonlinearity, 
as produced by simulations of Eq. (6) with σ = +1 and parameters (ε, k) = (0.05, 0.05) (a), (0.05, 0.1) (b), 
(0.5, 2) (c), (0.5, 0.3) (d), (0.5, 1) (e), (2, 2) (f), (2, 2.8) (g), (5, 10) (h), and (5, 11.7) (i). The panels plot values of 
|ψ(x, z)| by means of the color code.
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solvable models is a challenging task, because basic integrable models that give rise to solitons, such as the one-
dimensional NLSE, do not admit intrinsic transitions in the solitons.

The objective of the present work is to introduce a solvable nonlinear model with the DWP (double-well 
potential) which makes it possible to produce exact solutions for localized states with full and broken symme-
tries, that are linked by symmetry-breaking transitions of both first and second kinds. In other words, the states 
with unbroken and broken symmetries may be linked by bifurcations of the sub- and supercritical types. The 
solvability of the present model is possible due to the fact that the nonlinearity is represented by the symmetric 
set of two δ-functions. A prototype of this model was introduced previously in Ref.46, but it had produced a very 
limited result, viz., the SSB (spontaneous-symmetry-breaking) bifurcation of the extreme subcritical form. That 
bifurcation gave rise to completely unstable asymmetric states, represented by backward-going solution branches 
which never turned forward. In the present work, we have introduced the solvable DWP model including both 
nonlinear and linear potentials, which are based on the symmetric pair of δ-functions. The respective nonlinear 
potential is considered with both the SF (self-focusing) and SDF (self-defocusing) signs.

The analytical solutions, confirmed by their numerically found counterparts (which were produced replac-
ing the ideal δ-functions by the narrow Gaussians), give rise to the full set of symmetric and asymmetric states 
in the model with the SF nonlinearity, as well as the full set of symmetric and antisymmetric states, along with 
ones with broken antisymmetry, in the SDF model. In the case of the SF nonlinearity, the most important aspect 
of the analytical solution is the explicitly found switch from the symmetry-breaking phase transition of the first 
kind into one of the second kind, or, in other words, the switch of the subcritical bifurcation into the supercriti-
cal one. The switch takes place with the increase of strength ε of the linear part of the DWP potential based on 
the symmetric pair of δ-functions. Starting from the above-mentioned extreme subcritical bifurcation at ε = 0 , 
the switch is found analytically to occur at the point given by Eqs. (32) and (33), which is corroborated by the 
numerical findings. To the best of our knowledge, no previously studied model made it possible to predict the 
change of a symmetry-breaking phase transition between the first and second kinds (or the change of the sub/
supercritical character of the SSB bifurcation) in an analytical form.

The analytical solution is also reported here for the model with the SDF nonlinearity, where the situation is 
simpler: the GS is always represented by the completely stable symmetric localized state, while the antisymmetry-
breaking phase transition of the second kind (i.e., the supercritical bifurcation) destabilizes the lowest excited 
state (a spatially odd stationary one) at the critical point given by Eq. (41). These analytical results for the SDF 
model are confirmed by the numerical solution too.

Figure 13.   The evolution of stable asymmetric bound states in the model with the SF sign of the nonlinearity 
( σ = +1 ), as produced by simulations of Eq. (6) with σ = +1 and parameters (ε, k) = (0.05, 0.5) (a), (0.5, 1) 
(b), (2, 2.5) (c), (5, 12) (d).
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The solvable models elaborated in the present work suggest possibilities for analytical studies of SSB phase 
transitions and bifurcations in more complex settings. In particular, it may be interesting to address a two-com-
ponent system with the combined linear-nonlinear DWP potential. A degenerate form of the two-component 
system, with the nonlinear-only SF potential, based on the symmetric pair of δ-functions, was introduced in 
Ref.56. In that model, the SF nonlinearity includes self-interaction in each component and cross-interaction 
between the components. Note that the two-component SF model, unlike the single-component one, admits an 
antisymmetry-breaking phase transition in spatially odd localized states, and it also opens the way to the con-
sideration of the SSB transition in a state which combines spatially symmetric and antisymmetric components.

Another new possibility is offered by a model with three equidistant δ-functions set on a circle, unlike the 
infinite one-dimensional domain considered in the present work (the circle with the purely nonlinear SDF 

Figure 14.   The evolution of unstable antisymmetric bound states in the model with the SF nonlinearity, as 
produced by simulations of Eq. (6) with σ = +1 and parameters (ε, k) = (0.05, 0.05) (a), (0.05, 2) (b), (0.5, 0.3) 
(c), (0.5, 1) (d), (2, 2) (e), (5, 10) (f).
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potential, represented by a symmetric pair of δ-functions set at diametrically opposite points, was addressed in 
Ref.57, in which case it did not give rise to SSB transitions, the respective GS being always symmetric). Various 
setups with a triangle of potential wells embedded in a nonlinear medium were studied for BEC58,59 and multicore 
optical fibers60–64. In the circular setting with three δ-function wells, one can construct exact solutions carrying 
vorticity and address feasible SSB transitions in them.

On the other hand, as a step towards the consideration of two-dimensional models, where full solvability 
is not plausible, one can introduce a set of two parallel linearly-coupled one-dimensional lines, each bearing 
a DWP represented by the symmetric pair of the δ-functions. In all these extensions, analytical solutions will 
take an essentially more cumbersome form than the one addressed in the present work, but the analysis may 
still be possible.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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Figure 15.   (a), (b) and (c): The evolution of stable symmetric bound states in the model with the SDF sign of 
the nonlinearity, as produced by simulations of Eq. (6) with σ = −1 and parameters (ε, k) = (2, 1.5) , (2, 2) and 
(5, 8), respectively. (d, e) and (f): The evolution of moderately and weakly unstable antisymmetric bound states 
for (ε, k) = (2, 1) , (2, 1.5), and (5, 8), respectively. (g), (h) and (i): The evolution of stable bound states with 
moderately, weakly, and strongly broken antisymmetry, for (ε, k) = (2, 1.5) , (2.8, 1.8) and (5, 8), respectively.
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