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Predicting the molecular 
mechanism‑driven 
progression of breast cancer 
through comprehensive network 
pharmacology and molecular 
docking approach
Bharti Vyas 1, Sunil Kumar 2, Ratul Bhowmik 3 & Mymoona Akhter 3*

Identification of key regulators is a critical step toward discovering biomarker that participate in BC. 
A gene expression dataset of breast cancer patients was used to construct a network identifying key 
regulators in breast cancer. Overexpressed genes were identified with BioXpress, and then curated 
genes were used to construct the BC interactome network. As a result of selecting the genes with the 
highest degree from the BC network and tracing them, three of them were identified as novel key 
regulators, since they were involved at all network levels, thus serving as the backbone. There is some 
evidence in the literature that these genes are associated with BC. In order to treat BC, drugs that 
can simultaneously interact with multiple targets are promising. When compared with single‑target 
drugs, multi‑target drugs have higher efficacy, improved safety profile, and are easier to administer. 
The haplotype and LD studies of the FN1 gene revealed that the identified variations rs6707530 and 
rs1250248 may both cause TB, and endometriosis respectively. Interethnic differences in SNP and 
haplotype frequencies might explain the unpredictability in association studies and may contribute to 
predicting the pharmacokinetics and pharmacodynamics of drugs using FN1.

Abbreviations
BC  Breast cancer
HR  Hazard ratio
DR  Drug repurposing
SNP  Single nucleotide polymorphism

Breast cancer is a malignant tumor of the glandular milk duct epithelial cells or of the breast lobule. It is a 
multifaceted disease and the most common type of cancer among women. In 2020, there were 2,261,419 newly 
diagnosed cases and 684,996 deaths due to  BC1,2. The overall survival rate for BC is very low, but with proper 
diagnosis and treatment, there are good chances of  recovery3. Risk factors for BC progression generally fall into 
two categories causal and non-causal. As a causal risk factor, breast cancer is influenced by a mutation in genes 
and non-causal risk factors (age, drinking alcohol, hormonal imbalance, obesity, and abnormal menstruation, 
some genetic or epigenetic factors) have an indirect effect on BC progression. Causal factors are directly respon-
sible for BC progression and accurate identification of these risk factors is therefore crucial for early diagnosis, 
prognosis, and treatment of breast cancer. The molecular mechanisms and pathogenic processes involved in BC 
progression are not clearly understood yet therefore understanding the molecular mechanisms and pathogenetic 
processes of BC requires the identification of both causal and non-causal genetic risk factors. Since genetic factors 
play a crucial role in the disease the identification of disease-causing key genes will help understand the disease 
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better. Transcriptomics analysis has gained much popularity as a platform for study of key genes responsible 
for various diseases including cancer as indicated by various reports in the  literature4–13. Various therapeutic 
strategies adopted for the intervention of disease, such as targeted therapy, have led to a decline in global breast 
cancer death rates. Therefore, identification of key genes involved in the development of diseases like BC will 
help in the understanding of prognosis and development of appropriate treatment for the disease.

Although the development of molecular targets for breast cancer prognosis and treatment have  improved14,15 
but at the same time resistance to several anticancer therapies has also been reported thereby a continuous 
demand for search for newer interventions for the disease. A number of individual studies have been reported 
with several sets of key genes responsible for BC based on single transcriptomic dataset  analysis4–13, however no 
common key gene could be identified from these studies. To obtain stable and precise results researchers usu-
ally use multiple datasets for their study that may or may not be normalized. We have used normalized dataset 
(BioXpress) for our study to minimize the errors using bioinformatic techniques to screen potential biomarkers 
for breast cancer. BioXpress v3.0 (https:// hive. bioch emist ry. gwu. edu/ bioxp ress)16 database enables researchers to 
select appropriate profiles of mRNA expression data of BC. DAVID was used to perform functional and pathway 
enrichment analyses on the identified DEGs,  STRING17 to construct PPI networks and Cytoscape to visualize 
 them18,19. The genotype data of Han Chinese (CHB) was used to examine the identified biomarkers and their 
association with other diseases.

Drug repurposing (DR) process identifies new therapeutic uses from existing drugs (Provised drugs, failed/
investigational drugs, marketed drugs, etc.). Comparatively to traditional and de-novo drug discovery, DR is 
safer, more time-efficient, less time-consuming, and less expensive therefore, using approved drugs as a starting 
point to discover new therapeutics for other diseases is a promising strategy. In the past decade, the DR strategy 
has grown in popularity between researchers and pharmaceutical companies with considerable success. In order 
to determine the structural binding affinity between drugs and targets, molecular docking analysis was used 
in several studies. The main objectives of this study are as follows: (i) Identification of common BC-causing 
biomarkers and their associated disease. (ii) Investigating drugs guided by biomarkers for treating BC, and (iii) 
validation of identified drugs molecules by docking.

Result
Construction of network and identification of biomarker by multiple overlapping closed 
curves. The STRING server was employed to prepare the network of the selected BC target. The selected 
list (5557 genes, table S1) of the target was submitted in the STRING to generate the network. The output file 
showed the interaction between the targets obtained from BioExpress database. A schematic diagram provides 
a summary of all methodological techniques in a schematic diagram (Fig.  1). STRING has a default feature 
that does not carry duplicate genes; those genes are not officially mention. STRING was generated the network 
532 out of 5556 genes (Fig. 2). STRING was generated the network 532 out of 5556 genes that was take up as 
input in Cytoscape to generate the node file. The results obtained were summited to Cytoscape and the node file 

Figure 1.  Schematic diagram summarizing the study.

https://hive.biochemistry.gwu.edu/bioxpress
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was generated using the network analyzer to obtain the details of degree, betweenness, and closeness centrality 
(Table S2). On the basis of these results, 30 targets were selected and a Venn diagram was generated using the 
Venn Diagram tool. The Venn diagram result revealed that 3 genes have a close relationship with each other and 
the target disease (Fig. 3, Table 1).

Identification of BC‑related pathways and biological processes. DAVID was used to analyze the 
Enrichment analysis with Gene Ontology (GO) biological processes for selected genes after generated the net-
work related to BC. GO has several levels of terms like GO biological processes, cellular components, and molec-
ular function, and all three were used for analysis of selected genes. The genes were found related to 15 biological 
processes, 8 cellular components, and 10 molecular function processes associated with BC (Fig. 4). Three plots 
were generated using R to illustrate the correlation between the biological processes, cellular components, and 
molecular function with the genes identified. The results indicated that the genes involved with the develop-
mental proteins and oxidoreductase will make a good target for the design and development of anti-BC agents.

Identification of hub genes associated BC. Hub genes tend to exert core functions in a closely related 
network. Of the 532 genes within the module, 30 most relevant genes were selected as the candidate hub genes 
(FN1, MMP9, GFAP, PPARG, FOXM1, PVALB, CAV1, AQP4, ASPM, DPP6, LEP, GATA4, PBK, APOB, CES1, 
ACAN, IBSP, CAV3, S100B, CAPSL, MYH11, DMD, LPL, WT1, EPO, SLC2A4, PRSS1, TK1, NEURL1 and 
SLC6A4). Three genes (FN1, FOXM1, and PPARG ) out of 30 genes were significantly associated with BC. The 
prognosis results of these three genes adjusted for stage and grade also indicated significance (Fig. 5).

Study of LD and haplotype. Genotype data of CHB (Han Chinese) were retrieved from the International 
Hapmap Project for studies of the LD and haplotypes to examine the genetic parameter of the identified FN1 
biomarker. Data about the susceptibility of many diseases due to genetic variants has been evaluated as the infor-
mation helps to find the vital biomarkers for functional associations with different diseases and drug resistance 

Figure 2.  Network of the up regulated gene in breast cancer.
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Figure 3.  Venn Diagram according to the degree, betweenness, and closeness centrality list of gene.

Table 1.  result obtained in terms of list of genes name with closenesscentrality value, degree value and 
betweennesscentrality value by using cytoscape.

S. no.

List of closeness centrality value with 
gene name

List of degree value with 
gene name

List of betweenness centrality value with 
gene name

Closeness centrality value Gene name Degree value Gene name Betweenness centrality value Gene name

1. 0.390058972 FN1 55 FN1 0.20955087 FN1

2. 0.380756579 MMP9 47 ASPM 0.111268893 MMP9

3. 0.373990307 GFAP 47 PLK1 0.099078669 GFAP

4. 0.358914729 PPARG 45 HJURP 0.073683881 PPARG 

5. 0.35506135 LEP 44 FOXM1 0.069789183 FOXM1

6. 0.35506135 CAV1 44 PBK 0.063945787 PVALB

7. 0.351023503 PVALB 44 AURKB 0.054494125 CAV1

8. 0.342962963 ACAN 44 KIF2C 0.050132032 AQP4

9. 0.342202513 AQP4 44 UBE2C 0.049865671 ASPM

10. 0.340942563 S100B 44 BUB1 0.043633496 DPP6

11. 0.340691685 ADIPOQ 43 KIF20A 0.04099145 LEP

12. 0.334537572 CXCL10 43 KIF4A 0.040050006 GATA4

13. 0.334296029 GATA4 43 TPX2 0.036809687 PBK

14. 0.331899642 NTRK2 43 CDC20 0.03589432 APOB

15. 0.331187411 MMP13 42 PPARG 0.030337315 CES1

16. 0.331187411 RELN 42 TOP2A 0.030289124 ACAN

17. 0.328136074 MYH11 41 EXO1 0.029325479 IBSP

18. 0.327208481 DMD 41 RRM2 0.028388592 CAV3

19. 0.324684432 IGFBP1 41 CCNB2 0.028324107 S100B

20. 0.324229692 APOB 41 BIRC5 0.027015506 CAPSL

21. 0.324229692 CALB2 41 CENPF 0.026273232 MYH11

22. 0.323549965 IBSP 41 UHRF1 0.025703679 DMD

23. 0.323324022 ITGA7 41 NEK2 0.024780402 LPL

24. 0.323098395 FOXM1 41 NDC80 0.024613117 WT1

25. 0.323098395 TIMP4 40 ASF1B 0.024271394 EPO

26. 0.321527778 SLC17A7 40 MELK 0.02321294 SLC2A4

27. 0.32130465 WT1 40 CEP55 0.022544861 PRSS1

28. 0.320637119 COMP 40 NUF2 0.02236115 TK1

29. 0.319972357 GRIN2B 39 MYBL2 0.021729956 NEURL1

30. 0.318870523 EPO 39 CDC25C 0.020696107 SLC6A4
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due to SNPs. The LD and haplotype study revealed significant blocks in the FN1 gene, having nonrandom asso-
ciations as represented in Fig. 6, Table S3. Two SNPs (rs1250248, and rs6707530) were identified and found 
to role in different diseases and drug resistance. These 2 SNPs (rs1250248, and rs6707530) with minor allele 
frequencies and r2 ≥ 0.8 showed high correlation between the loci. Linkage disequilibrium has been reported 
between the common polymorphism found on FN1 at positions 215,360,440 and 215,436,073. The analysis 
revealed that of the nsSNPs identified, only two nsSNPs occurred and were linked in Han Chinese individuals. 

Figure 4.  aPlots illustrating the correlation between the biological processes (BPs), cellular components (CCs), 
molecular function (MF) and KEGG pathways with the genes identified by DAVID.
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The results also indicated that only MAF (minor allele frequency) values of 0.263, and 0.233 showed relatively 
strong linkage disequilibrium. The genotype of rs6707530 with the FN1 gene increased the risk of occurrence 
of  TB20. The genetic variant of FN1 rs1250248 was also found to be significantly associated with endometriosis. 
This study demonstrates a potential connection between breast cancer, TB and endometriosis, and in this paper 
reported genetic variants of FN1 were identified as chemoresistance. These results provide an evidence of altera-
tion leading to chemoresistance in several diseases. LD and haplotype information would be beneficial in drug 
development and in understanding the genetic associations of FN1 with adverse drug effects.

Biomarker guided drug repositioning and validation. To support identification of a drug for targeted 
therapy, the analysis of drug sensitivity of identified biomarkers by two approaches i.e. LD and GSCA was carried 
out. Further that the results of LD and haplotype study revealed the relationship between FN1 (key gene in breast 
cancer) with endometriosis, therefore FDA approved drugs used in breast cancer and endometriosis were selected 

Figure 5.  Kaplan–Meier curve of key regulators FN1, FOXM1 and PPARG. p values were calculated using the 
log rank test to evaluate the overall survival analysis between low expression (black) and high expression (red) of 
key regulator genes of patients.

Figure 6.  LD structure of FN1 gene: (A, B) LD structure of maximum number of SNPs, (C, D, E) LD structure 
of FN1 with minimum block size.
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for validation of the biomarkers using docking procedure by Autodock vina. In addition GSCA online server 
results obtained as output was used to study interaction of drugs with three selected genes (PPARG, FOXM1 
and FN1). The results of GSCA showed PPARG and FN1 are sensitive towards 23 drugs (AR-42, AT-7519, 
BMS345541, BX-912, CUDC-101, FK866, I-BET-762, Ispinesib, Mesylate, JW-7-24-1, KIN001-102, Metho-
trexate, NG-25, PHA-793887, PI-103, PIK-93, Phenformin, QL-X-138, THZ-2-102-1, TPCA-1, TubastatinA, 
Vorinostat, WZ3105, XMD13-2, GSK690693, and NPK76-II-72-1) whereas FOXM1 was least sensitive towards 
them but had sensitivity towards RDEA119, Trametinib and selumetinib drugs. The forty-four drugs obtained 
from the GSCA and LD analysis were subjected for docking studies against all the three proteins related to the 
biomarkers for validation. The results showed that the drugs THZ-2-102-1, navitoclax, ng25, and trametinib 
have good binding affinity with all the three proteins whereas vorinostat had least binding affinity with all the 
three targets which was found to be inconsistent to the GSCA result. This inconsistency in results may be to the 
difference in the inputs made as the GSCA uses gene information whereas docking is study of protein ligand 
interaction. Since docking is robust technique we relied on docking results for further study (Table 2). The results 
revealed that 18 drugs have good binding affinity with proteins pdb id 3M7P, 4Y29, 3G73 associated with FN1, 
PPARG, and FOXM1 (Figs. 7, 8 Table 2). Docking result showed that most of the drugs have good affinity for 
PPARG , followed by FN1 and FOXM1. For PPARG biomarker (protein pdb id 4Y29), Tucatinib, THZ-2-102-1, 
Olaparib, Navitoclax, ng25, Trametinib Methotrexate, Abemaciclib, Alpelisib drugs showed best docking score 
of -11.7, -11.0, -10.6, -10.5, -10.3, -9.3, -9.8, -9.2, -9.6; for FN1 (protein pdb id 3m7p), Tucatinib, THZ-2-102-1, 
Olaparib, Navitoclax, ng25, Trametinib, Methotrexate, Abemaciclib, Alpelisib, Ribociclib showed best docking 
score of -10.1, -7.7, -8.7, -7.9, -7.4, -7.0, -9, -9, -8.9, -9.4 and FOXM1 (protein pdb id 3G73,) Tucatinib, THZ-
2-102-1, Olaparib, Navitoclax, ng25, Trametinib,Methotrexate, Abemaciclib, Alpelisib, Ribociclib showed best 
docking score of -7.8, -10.8, -7, -10.6, -10.0, -8.9, -6.9, -6.8, -6.5, -6.5. However, it was observed that five drugs 
viz. Tucatinib, THZ-2-102-1, Olaparib, Navitoclax, ng25, Trametinib, Methotrexate, Abemaciclib showed good 
binding affinity against all three target protein.

The binding interactions of Tucatinib and THZ-2-102-1 within active pockets of 3M7P, 3G73, and 4Y29, is 
shown in Fig. 8. Tucatinib showed hydrogen bond interactions with GLN409 and LEU407; ARG286, HIS287 and 
CYS285, SER289; pi -pi stacking with PHE531; LEU259, GLY284 in addition to Vander Waal and other interac-
tions in 3M7P, 3G73 and 4Y29 respectively. THZ-2-102-1showed hydrogen bond interactions with ARG286, 
SER290, HIS287; ARG503, ARG369, HIS532, ALA465; CYS285; pi -pi stacking with ARG286; PHE371; GLN 
283 and other interactions with 3M7P, 3G73 and 4Y29 respectively.

Discussion
This study demonstrates how predicted biomarkers play an integral role in the progression of BC with the sup-
port of literature and tried to identify the potential small molecules that can be developed for its treatment. To 
study the key genes involved in the breast cancer and their association with other disease network biology based 
approach was taken up in addition to the use of other in-silico tools. The network-analyzed approach with breast 
cancer datasets form Bioexpress database and an independent validation set with 5557 genes was used to generate 
the genes network. A node file of 532 genes was created out of 5557 genes by using the network analyzer. The 
module preservation analysis invalidating set revealed that the identified modules were reliable, as all of their 
summary statistics were above 30. A venn diagram was generated using the Venn Diagram tool based on the 
results obtained and it could be concluded that three genes (FN1, FOXM1, and PPARG ) are closely related to 
the target disease. The literature study revealed that the expression of these biomarkers along with the protein 
related is enhanced in BC.

The involvement of identified overexpresses biomarkers in related biological processes (BPs), molecular func-
tions (MFs), and cellular components (CCs) was studied using network based and integrated statistical methods. 
It was felt that biological processes, cellular components, and molecular function like protease, serine protease, 
hormone, motor protein, protease inhibitor, and cell division process would make a good target for the design 
and development of anti-BC agents.

The expression level of FN1 has been correlated to an advanced stage of breast cancer and poor clinical out-
comes. FN1 were identified for the first time as cancer stromal key genes associated with breast cancer invasion 
and  metastasis21. The FN1 gene encodes fibronectin 1, an important extracellular matrix glycoprotein that plays 
a pivotal role in occurrence and development of various tumors. It binds to several members of the family of 
integrin  receptors22 thereby activating the breast cancer’s PI3K/Akt pathway. Furthermore, FN1 has been shown 
to promote cell proliferation and migration in cancers such as esophageal, oral, nasopharyngeal, colorectal, 
ovarian, renal, and  thyroid23,24.

The Forkhead Box M1 encoded by FOXM1 gene is a transcriptional activator involved in cell proliferation 
and encodes protein which is phosphorylated in M phase and as a result regulates the expression of several cell 
cycle genes, such as cyclin B1 and cyclin  D125. The FOXM1 gene has been reported to overexpress in aggressive, 
therapy-resistant variants of hormone receptor-positive and triple-negative breast tumors and correlated with a 
poor prognosis in a variety of cancers, such as breast cancer and colorectal  cancer25–27.

The Peroxisome Proliferator-Activated Receptor-Gamma (PPARG ) is a ligand-activated nuclear hormone 
receptor that regulates lipid metabolism and insulin  sensitivity28. By synthesizing high amounts of lipids, ERBB2-
positive breast cancer cells generate palmitate-induced  lipotoxicity41. PPAR is a nuclear hormone transcription 
factor that regulates the expression of several genes involved in adipogenesis, energy metabolism, proliferation, 
and growth of tumours. PPARG is the predominant subtype of its family that is expressed in the mammary gland 
and in primary and metastatic breast cancer, according to  references28–35.

PPARG is indirectly involved in development of breast cancer through ERBB2  signaling36 pathway. It has 
been reported that inhibition of the PPARG pathway reduces the aldehyde dehydrogenase positive population in 
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ERBB2-positive breast cancer cells supporting its role in development of  BC36. In numerous malignancies, includ-
ing colorectal cancer, hepatocellular carcinoma, lung cancer, glioma, and leukaemia, the effects of PPAR activity 
in CSCs (Cancer stem cells) has been  investigated36. All these genes are reported overexpressed along with their 
target proteins in cells. This study was aimed to find out specific inhibitor to control the overexpression of these 
proteins in the cancer cells. Lately FDA has been approving the single to multi-target drugs in cancer therapy 
and this move is look at a different scenario, where a new generation of anticancer drugs is capable to prevent 
more. There is major paradigm shift in drug design and discovery due to number of  reasons26,37 and one such 
approach that is gaining fast acceptability is development of multi-target drug. The advantages of multi-target 
drugs over their single-target counterparts include improved efficacy, a safer profile, simpler administration and 

Table 2.  Molecular docking analysis results of ligand selected from GSCA and FDA approved drugs for 
endometriosis and breast cancer against the three targets FN1, FOXM1, and PPARG.

S. no. Drugs name 3G73 (binding affinity (FOXM1)) 3m7p (Binding affinity (FN1)) 4y29 (binding affinity (PPARG))

1. Tucatinib − 7.8 − 10.1 − 11.7

2. THZ-2-102-1 − 10.8 − 7.7 − 11.0

3. Olaparib − 7 − 8.7 − 10.6

4. Navitoclax − 10.6 − 7.9 − 10.5

5. ng25 − 10.0 − 7.4 − 10.3

6. Methotrexate − 6.9 − 9 − 9.8

7. WZ3105 − 8.8 − 6.6 − 9.6

8. Alpelisib − 6.5 − 8.9 − 9.6

9. FK866 − 7.6 − 6.3 − 9.5

10. Trametinib − 8.9 − 7.0 − 9.3

11. GSK690693 − 8.3 − 6.2 − 9.3

12. XMD13-2 − 8.2 − 6.8 − 9.3

13. KIN001-102 − 8.1 − 6.2 − 9.2

14. Abemaciclib − 6.8 − 9 − 9.2

15. PI-103 − 8.6 − 6.7 − 9.0

16. Raloxifene − 6.6 − 8.3 − 8.9

17. I-BET-762 − 7.9 − 6.3 − 8.8

18. BX-912 − 7.6 − 5.9 − 8.8

19. Toremifene − 5.5 − 6.9 − 8.6

20. Cudc-101 − 8.3 − 6.3 − 8.5

21. TPCA-1 − 7.3 − 5.8 − 8.5

22. Fulvestrant − 4.6 − 7.8 − 8.4

23. AR-42 − 7.3 − 5.8 − 8.3

24. Trastuzumab − 6.7 − 8.8 − 8.3

25. JW-7-24-1 − 8.5 − 6.2 − 8.2

26. PHA-793887 − 7.7 − 6.2 − 8.2

27. Palbociclib − 6.5 − 8.5 − 8.2

28. AT-7519 − 7.3 − 5.9 − 7.9

29. PIK-93 − 7.7 − 5.3 − 7.8

30. Letrozole − 5.2 − 6.6 − 7.8

31. RDEA119 − 8.4 − 5.9 − 7.6

32. QL-X-138 − 8.5 − 6.9 − 7.5

33. Ixabepilone − 6.5 − 8.1 − 7.5

34. Anastrozole − 5.4 − 6.6 − 7.5

35. NPK76-II-72-1 − 8.5 − 6.7 − 7.4

36. Selumitinib − 8.4 − 5.6 − 7.3

37. BMS345541 − 7.0 − 5.8 − 7.3

38. Capecitabine − 6.1 − 8 − 7.3

39. Phenformin − 6.6 − 5.6 − 7.1

40. Ribociclib − 6.5 − 9.4 − 7

41. vorinostat − 6.4 − 4.7 − 7.0

42. Cyclophosphamide − 4 − 4.9 − 5.7

43. Fluorouracil − 4.3 − 5.2 − 5.3

44. Thiotepa − 3.7 − 3.8 − 3.7
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patient compliance. Also polypharmacology-guided drug design has been an approach used by scientist for drug 
development in particularly for repurposing of drugs and multi-targeting.

Taking the concept of multitarget approach the docking of FDA approved anticancer (anti BC and antiendo-
metriasis) agents and drugs identified in GSCA analysis was carried out against the three selected targets. The 
results obtained presented in Table 1. It could be observed that THZ-2-102-1 and tucatinib showed best binding 
affinities with all the three target receptors (3M7P, 3G73 and 4Y29) followed by navitoclax, ng25, trametinib, 
olaparib, and methotrexate contrary to this thiopeta had least binding score with all the target receptors. Interac-
tion analyses of the docked poses of  tucatinib38 showed that the drug is a persuasive inhibitor of 3M7P, 3G73 and 
4Y29. Tucatinib and THZ-2-102-1 could be further taken as lead for development of multitarget drug for BC 
treatment. Trametinib is already approved by the FDA in May 2013 for the treatment of metastatic melanomas, 
as well as lung cancer, renal cancer, thyroid cancer, cholangiocarcinoma, and breast  cancer39–42. These reports 
further validated our results that the biomarker identified and drug for multiple target can be “the approach” 
for the disease.

It could be further mentioned that these drugs would be more beneficial in cases suffering from TB as the 
Linkage studies identified the FN1 gene as a susceptibility for  TB20,  endometriosis39. These drugs are not clinical 
approved against to our targets and may be expanded upon for wet lab studies.

Materials and methods
The databases and techniques used for identification, analysis and prediction of target biomarker of BC include 
BioXpress (https:// hive. bioch emist ry. gwu. edu/ bioxp ress), DAVID’s functional annotation tool (https:// david. ncifc 
rf. gov/), Cytoscape (https:// cytos cape. org/), KM plotter database (https:// kmplot. com/ analy sis/), International 
Hapmap Project database (https:// ftp. ncbi. nlm. nih. gov/), Haploview tool (https:// www. broad insti tute. org/ haplo 
view/ haplo view) and Venn Diagram tool (https:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/).

Identification and selection of BC‑associated genes. BioXpress is a differential expression database 
for cancer where RNA-seq and miRNA-derived read counts have been evaluated for differential expression. The 
current version of BioXpress incorporates mRNA and miRNA-derived expression from TCGA and ICGC 16. 
BioExpress database have filter feature like search type, cancer type, feature type, trend with significance cutoff 
to retrieve cancer dataset. To retrieve cancer dataset from the database, filters like cancer type, breast cancer, 
mRNA with adjusted p-value were used and the output file obtained was further used for the study.

Analysis of functional association. The Database for Annotation, Visualization and Integrated Dis-
covery (DAVID) provides a comprehensive set of functional annotation tools for investigators to understand 
the biological meaning behind large lists of  genes43. DAVID’s was used to analyze modules at all levels of the 
 hierarchy44. The pathways and functions with a corrected p < 0.05 were deemed statistically significant.

Construction of protein–protein interaction (PPI) network. Out of 11,053 genes identified which 
were significantly overexpressed in BC patients from  BioXpress16 (FC > 1, adjusted p < 0.05), 5557 genes 
(Table S1) were used for an interactome network using the STRING app in Cytoscape 3.6.01618,19. The network 
was extracted only for the physical interaction network, which represents the protein–protein interaction net-
work of BC-associated genes. A protein–protein interaction network using 2960 nodes and 20,372 edges was 
constructed as a primary network. Venn diagram server was used to show and identify the relationships among 
lists of degree, betweenness, and closeness centrality of the node file.

Survival analysis. KM plotter  database45 (https:// kmplot. com/ analy sis/) was queried for assessing the prog-
nosis of these functionally enriched module genes in network approach. KM survival plots along with 95% con-
fidence interval (95% CI), hazard ratio (HR), number-at-risk, and log-rank p-values of enriched module-genes 
were presented by splitting network approach into lower and higher expression groups, respectively.

Figure 7.  The structure of anti-breast cancer inhibitors of our targets.

https://hive.biochemistry.gwu.edu/bioxpress
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://cytoscape.org/
https://kmplot.com/analysis/
https://ftp.ncbi.nlm.nih.gov/
https://www.broadinstitute.org/haploview/haploview
https://www.broadinstitute.org/haploview/haploview
https://bioinformatics.psb.ugent.be/webtools/Venn/
https://kmplot.com/analysis/
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Figure 8.  (a) Binding of Tucatinib against the FN1 (3M7P) protein. (b) 2D interaction of Tucatinib against FN1 
(3M7P). (c) Binding of Tucatinib against the PPARG (4Y29). (d) 2D interaction of Tucatinib against PPARG 
(4Y29). (e) Binding of Tucatinib against FOXM1 (3G73) protein. (f) 2D interaction of Tucatinib against FOXM1 
(3G73) protein. (g) Binding of THZ-2-102-1 against FN1 (3M7P) protein. (h) 2D interaction of THZ-2-102-1 
against FN1 (3M7P). (i) Binding of THZ-2-102-1 against PPARG (4Y29). (j) 2D interaction of THZ-2-102-1 
against PPARG (4Y29). (k) Binding of THZ-2-102-1 against FOXM1 (3G73) protein. (l) 2D interaction of THZ-
2-102-1 against FOXM1 (3G73) protein.
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Analysis of LD and haplotype. Linkage disequilibrium (LD) plays a key role in a wide range of mapping 
disease associations to demographic history estimation or trail-associated  genes46,47. Haplotype blocks reveal 
information on the combination of alleles or a set of single nucleotide polymorphisms (SNPs) found on the 
same chromosome and aid investigators in localizing disease-causing genes and loci. The Haploview  tool48 was 
used to study LD, and haplotype block for Han Chinese (CHB) genotype data retrieved from the International 
Hapmap  Project49. The genotype data was visualized and examined for linkages and generation of LD and hap-
lotype blocks.

Figure 8.  (continued)
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Biomarker guided drug repositioning. In order to identify potential anti BC agents two approaches 
were used; i.e. Gene Set Cancer Analysis (GSCA) and ii. Molecular docking. To visualize and analyze the corre-
lation between the identified biomarkers and drugs, GSCA (http:// bioin fo. life. hust. edu. cn/ GSCA/#/) an online 
tool was used. On the basis of Spearman Correlation and FDR value (between drugs and targets) drugs were 
selected for further study from GSCA analysis. This approach may be helpful in improving the efficacy or safety 
related to drugs. Further that the LD and haplotype studies revealed that endometriosis is associated with our 
target key  genes39. Therefore, FDA-approved drugs used in BC and endometriosis were selected for further 
studies. Molecular docking studies being a significant in-silico technique for validating the drug-target bind-
ing  interaction50,51 was used to validate the selected drugs for multitarget purposing. The 3D structure of target 
proteins (PBD ID- 4Y29, 3G73, 3M7P) was downloaded from Protein Data Bank (PDB) (https:// www. rcsb. 
org/)52 and used for docking studies. The structure of identified/ selected drugs from GSCA and FDA-approved 
drugs used in BC and endometriosis were download from the PubChem databases (https:// pubch em. ncbi. nlm. 
nih. gov/)53. The AutoDock-vina26 software was used to examine the structural binding performance between 
receptor and drugs by computing affinity scores (kcal/mol). Discovery Studio Visualizer was used to visualize 
3D protein–ligand interaction.

Conclusions
In this study, using network approach the key genes as breast cancer regulators were identified. The GO-terms 
(BPs, MFs and CCs) and key genes regulatory network analyses highlighted as pathogenetic process of BC 
progression. Our study also suggested two biomarkers-guided tucatinib and THZ-2-102-1 drugs which might 
be effective in inhibiting BC-causing proteins (FN1, FOXM1, and PPARG). The literature review and molecular 
docking analysis were used to validate our findings. The findings of our in-silico study may potentially lead to 
insights into the molecular mechanisms that drive BC progression and potential therapeutic agents.

Data availability
The breast cancer gene data utilized in this study are openly available in the BioXpress database at https:// hive. 
bioch emist ry. gwu. edu/ bioxp ress. The DAVID database, STRING, Venn Diagram tool, KM plotter database, 
International Hapmap Project database, Haploview tool used in the present study are available at https:// david. 
ncifc rf. gov/ summa ry. jsp, https:// string- db. org/ cgi/ input? sessi onId= biQZA 8ZybY Yn,https:// bioin forma tics. psb. 
ugent. be/ cgibin/ liste/ Venn/ calcu late_ venn. htpl,https:// kmplot. com/ analy sis/ index. php?p= servi ce,https:// ftp. ncbi. 
nlm. nih. gov/ hapmap/ genot ypes/ 200807_ phase III/ hapmap_ format/ forwa rd/ ,https:// www. broad insti tute. org/ 
haplo view/ haplo view respectively. The protein structure of FN1, PPARG, FOXM1 proteins used in the present 
study, obtained from the PDB (Protein Data Bank) are available at and https:// www. rcsb. org/ struc ture/ 4Y29, 
https:// www. rcsb. org/ struc ture/ 3G73, https:// www. rcsb. org/ struc ture/ 3M7P). GSCA and pubchem used in the 
present study to obtained drugs from the http:// bioin fo. life. hust. edu. cn/ GSCA/#/ drug and https:// pubch em. 
ncbi. nlm. nih. gov/# query= tucat inib respectively. All data generated in the present study is present in the article 
and supplementary information.

Received: 8 December 2022; Accepted: 16 August 2023

References
 1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017).
 2. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 

countries. CA Cancer J. Clin. 71, 209–249 (2021).
 3. Sun, Y.-S. et al. Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 13, 1387–1397 (2017).
 4. Wang, R. et al. Microarray analysis for differentially expressed genes between stromal and epithelial cells in development and 

metastasis of invasive breast cancer. J. Comput. Biol. 27, 1631–1643 (2020).
 5. Lu, X. et al. Identification of the key pathways and genes involved in HER2-positive breast cancer with brain metastasis. Pathol. 

Res. Pract. 215, 152475 (2019).
 6. Wei, L.-M. et al. Identification of hub genes in triple-negative breast cancer by integrated bioinformatics analysis. Gland. Surg. 10, 

799–806 (2021).
 7. Pu, H. et al. VEGFA involves in the use of fluvastatin and zoledronate against breast cancer. Pathol. Oncol. Res. 24, 557–565 (2018).
 8. Chen, C. et al. Identification of key genes in glioblastoma-associated stromal cells using bioinformatics analysis. Oncol. Lett. 11, 

3999–4007 (2016).
 9. Zhao, F. & Yu, Y.-Q. The prognostic roles of mRNAs of the exosomes derived from bone marrow stromal cells in common malig-

nancies: a bioinformatic study. OncoTargets Ther. 11, 7979–7986 (2018).
 10. Kuang, Z., Guo, L. & Li, X. Identification of key genes and pathways associated with classical Hodgkin lymphoma by bioinformatics 

analysis. Mol. Med. Rep. 16, 4685–4693 (2017).
 11. Sarhadi, S. et al. A systems biology approach provides deeper insights into differentially expressed genes in taxane-anthracycline 

chemoresistant and non-resistant breast cancers. Asian Pac. J. Cancer Prev. 18, 2629 (2017).
 12. Zhang, L. et al. Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive 

detection of breast cancer. PLoS ONE 5, e15573 (2010).
 13. Haakensen, V. D. et al. Serum estradiol levels associated with specific gene expression patterns in normal breast tissue and in breast 

carcinomas. BMC Cancer 11, 332 (2011).
 14. Murphy, C. G. & Dickler, M. N. Endocrine resistance in hormone-responsive breast cancer: Mechanisms and therapeutic strategies. 

Endocr. Relat. Cancer 23, R337-352 (2016).
 15. Fracheboud, J. et al. Decreased rates of advanced breast cancer due to mammography screening in The Netherlands. Br. J. Cancer 

91, 861–867 (2004).
 16. Dingerdissen, H. M. et al. BioMuta and BioXpress: Mutation and expression knowledgebases for cancer biomarker discovery. 

Nucleic Acids Res. 46, D1128–D1136 (2018).
 17. Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery 

in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

http://bioinfo.life.hust.edu.cn/GSCA/
https://www.rcsb.org/
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://hive.biochemistry.gwu.edu/bioxpress
https://hive.biochemistry.gwu.edu/bioxpress
https://david.ncifcrf.gov/summary.jsp
https://david.ncifcrf.gov/summary.jsp
https://string-db.org/cgi/input?sessionId=biQZA8ZybYYn,https://bioinformatics.psb.ugent.be/cgibin/liste/Venn/calculate_venn.htpl,https://kmplot.com/analysis/index.php?p=service,https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/200807_phaseIII/hapmap_format/forward/,https://www.broadinstitute.org/haploview/haploview
https://string-db.org/cgi/input?sessionId=biQZA8ZybYYn,https://bioinformatics.psb.ugent.be/cgibin/liste/Venn/calculate_venn.htpl,https://kmplot.com/analysis/index.php?p=service,https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/200807_phaseIII/hapmap_format/forward/,https://www.broadinstitute.org/haploview/haploview
https://string-db.org/cgi/input?sessionId=biQZA8ZybYYn,https://bioinformatics.psb.ugent.be/cgibin/liste/Venn/calculate_venn.htpl,https://kmplot.com/analysis/index.php?p=service,https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/200807_phaseIII/hapmap_format/forward/,https://www.broadinstitute.org/haploview/haploview
https://string-db.org/cgi/input?sessionId=biQZA8ZybYYn,https://bioinformatics.psb.ugent.be/cgibin/liste/Venn/calculate_venn.htpl,https://kmplot.com/analysis/index.php?p=service,https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/200807_phaseIII/hapmap_format/forward/,https://www.broadinstitute.org/haploview/haploview
https://www.rcsb.org/structure/4Y29
https://www.rcsb.org/structure/3G73
http://www.rcsb.org/structure/3M7P
http://bioinfo.life.hust.edu.cn/GSCA/#/drug
https://pubchem.ncbi.nlm.nih.gov/#query=tucatinib
https://pubchem.ncbi.nlm.nih.gov/#query=tucatinib


13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13729  | https://doi.org/10.1038/s41598-023-40684-7

www.nature.com/scientificreports/

 18. Snel, B. STRING: A web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 28, 
3442–3444 (2000).

 19. Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 
13, 2498–2504 (2003).

 20. Nor Hisam, N. S. et al. Combination therapy of navitoclax with chemotherapeutic agents in solid tumors and blood cancer: A 
review of current evidence. Pharmaceutics 13, 1353 (2021).

 21. Cai, X. et al. Down-regulation of FN1 inhibits colorectal carcinogenesis by suppressing proliferation, migration, and invasion. J. 
Cell Biochem. 119, 4717–4728 (2018).

 22. Wang, J. et al. High expression of Fibronectin 1 suppresses apoptosis through the NF-κB pathway and is associated with migration 
in nasopharyngeal carcinoma. Am. J. Transl. Res. 9, 4502–4511 (2017).

 23. Spada, S., Tocci, A., Di Modugno, F. & Nisticò, P. Fibronectin as a multiregulatory molecule crucial in tumor matrisome: from 
structural and functional features to clinical practice in oncology. J. Exp. Clin. Cancer Res. 40, 102 (2021).

 24. Laoukili, J. et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat. Cell Biol. 7, 126–136 
(2005).

 25. Kourtidis, A. et al. An RNA interference screen identifies metabolic regulators NR1D1 and PBP as novel survival factors for breast 
cancer cells with the ERBB2 signature. Cancer Res. 70, 1783–1792 (2010).

 26. Zhang, W., Pei, J. & Lai, L. Computational multitarget drug design. J. Chem. Inf. Model. 57, 403–412 (2017).
 27. Francis, R. E. et al. FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer. Int. J. Oncol. 35, 57–68 

(2009).
 28. Yang, Z. et al. HER2 regulation of peroxisome proliferator-activated receptor gamma (PPARgamma) expression and sensitivity of 

breast cancer cells to PPARgamma ligand therapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 9, 3198–3203 (2003).
 29. Kourtidis, A., Srinivasaiah, R., Carkner, R. D., Brosnan, M. J. & Conklin, D. S. Peroxisome proliferator-activated receptor-gamma 

protects ERBB2-positive breast cancer cells from palmitate toxicity. Breast Cancer Res. BCR 11, R16 (2009).
 30. Michalik, L., Desvergne, B. & Wahli, W. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat. Rev. Cancer 

4, 61–70 (2004).
 31. Glazer, R. I., Yuan, H., Xie, Z. & Yin, Y. PPARgamma and PPARdelta as modulators of neoplasia and cell fate. PPAR Res. 2008, 

247379 (2008).
 32. Evans, R. M., Barish, G. D. & Wang, Y.-X. PPARs and the complex journey to obesity. Nat. Med. 10, 355–361 (2004).
 33. Mueller, E. et al. Terminal differentiation of human breast cancer through PPAR gamma. Mol. Cell 1, 465–470 (1998).
 34. Lehrke, M. & Lazar, M. A. The many faces of PPARgamma. Cell 123, 993–999 (2005).
 35. Pignatelli, M., Cortés-Canteli, M., Lai, C., Santos, A. & Perez-Castillo, A. The peroxisome proliferator-activated receptor γ is an 

inhibitor of ErbBs activity in human breast cancer cells. J. Cell Sci. 114, 4117–4126 (2001).
 36. Yin, F. et al. Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators. Biochem. Biophys. 

Res. Commun. 286, 916–922 (2001).
 37. Petrelli, A. & Giordano, S. From single- to multi-target drugs in cancer therapy: When aspecificity becomes an advantage. Curr. 

Med. Chem. 15, 422–432 (2008).
 38. Murthy, R. K. et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N. Engl. J. Med. 382, 

597–609 (2020).
 39. Brown, N. F., Carter, T., Kitchen, N. & Mulholland, P. Dabrafenib and trametinib in BRAFV600E mutated glioma. CNS Oncol. 6, 

291–296 (2017).
 40. Ikeda, M. et al. Efficacy and safety of trametinib in Japanese patients with advanced biliary tract cancers refractory to gemcitabine. 

Cancer Sci. 109, 215–224 (2018).
 41. Bridgeman, V. L. et al. Preclinical evidence that trametinib enhances the response to antiangiogenic tyrosine kinase inhibitors in 

renal cell carcinoma. Mol. Cancer Ther. 15, 172–183 (2016).
 42. Chen, H., Liu, H. & Qing, G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target. Ther. 3, 5 (2018).
 43. https:// david. ncifc rf. gov/.
 44. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics 

resources. Nat. Protoc. 4, 44–57 (2009).
 45. Chen, X., Miao, Z., Divate, M., Zhao, Z. & Cheung, E. KM-express: An integrated online patient survival and gene expression 

analysis tool for the identification and functional characterization of prognostic markers in breast and prostate cancers. Database 
2018, bay069 (2018).

 46. Blomhoff, A. et al. Linkage disequilibrium and haplotype blocks in the MHC vary in an HLA haplotype specific manner assessed 
mainly by DRB1*03 and DRB1*04 haplotypes. Genes Immun. 7, 130–140 (2006).

 47. Andrade, A. C. B., Viana, J. M. S., Pereira, H. D., Pinto, V. B. & Fonseca e Silva, F. Linkage disequilibrium and haplotype block 
patterns in popcorn populations. PLoS ONE 14, e0219417 (2019).

 48. Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 21, 
263–265 (2005).

 49. International HapMap Consortium. The international HapMap project. Nature 426, 789–796 (2003).
 50. Varghese, R. et al. Emergence of meropenem resistance among cefotaxime non-susceptible streptococcus pneumoniae: evidence 

and challenges. Front. Microbiol. 12, 810414 (2022).
 51. Naha, A. et al. Genome sequencing and molecular characterisation of XDR Acinetobacter baumannii reveal complexities in resist-

ance: Novel combination of sulbactam–durlobactam holds promise for therapeutic intervention. J. Cell. Biochem. 122, 1946–1957 
(2021).

 52. Berman, H. M. et al. The protein data bank. Acta Crystallogr. D Biol. Crystallogr. 58, 899–907 (2002).
 53. Kim, S. et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 47, D1102–D1109 (2019).

Acknowledgements
The authors are thankful to the Department of Biotechnology, Ministry of Science & Technology, Government 
of India for the Bioinformatics infrastructure facility at Jamia Hamdard under the BTISNet program.

Author contributions
B.V carried out the experiment and wrote the manuscript with support and supervised from M.A. R.B and S.K 
designed the figures. All authors discussed the results and commented on the manuscript.

Funding
One of the authors, Ms. Bharti Vyas, acknowledges the fellowship obtained from the Indian Council of Medical 
Research (ICMR), New Delhi.

https://david.ncifcrf.gov/


14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13729  | https://doi.org/10.1038/s41598-023-40684-7

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 40684-7.

Correspondence and requests for materials should be addressed to M.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-40684-7
https://doi.org/10.1038/s41598-023-40684-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Predicting the molecular mechanism-driven progression of breast cancer through comprehensive network pharmacology and molecular docking approach
	Result
	Construction of network and identification of biomarker by multiple overlapping closed curves. 
	Identification of BC-related pathways and biological processes. 
	Identification of hub genes associated BC. 
	Study of LD and haplotype. 
	Biomarker guided drug repositioning and validation. 

	Discussion
	Materials and methods
	Identification and selection of BC-associated genes. 
	Analysis of functional association. 
	Construction of protein–protein interaction (PPI) network. 
	Survival analysis. 
	Analysis of LD and haplotype. 
	Biomarker guided drug repositioning. 

	Conclusions
	References
	Acknowledgements


