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Cross‑species comparative analysis 
of single presynapses
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Syed A. Bukhari 1, Martin Becker 2, Alan L. Chang 2, Davide De Francesco 2, Camilo Espinosa 2, 
Neal G. Ravindra 2, Nadia Postupna 3, Caitlin S. Latimer 3, Carol A. Shively 4, 
Thomas C. Register 4, Suzanne Craft 5, Kathleen S. Montine 1, Edward J. Fox 1, C. Dirk Keene 3, 
Sean C. Bendall 2, Nima Aghaeepour 2,6,7 & Thomas J. Montine 1*

Comparing brain structure across species and regions enables key functional insights. Leveraging 
publicly available data from a novel mass cytometry‑based method, synaptometry by time of flight 
(SynTOF), we applied an unsupervised machine learning approach to conduct a comparative study 
of presynapse molecular abundance across three species and three brain regions. We used neural 
networks and their attractive properties to model complex relationships among high dimensional data 
to develop a unified, unsupervised framework for comparing the profile of more than 4.5 million single 
presynapses among normal human, macaque, and mouse samples. An extensive validation showed 
the feasibility of performing cross‑species comparison using SynTOF profiling. Integrative analysis 
of the abundance of 20 presynaptic proteins revealed near‑complete separation between primates 
and mice involving synaptic pruning, cellular energy, lipid metabolism, and neurotransmission. In 
addition, our analysis revealed a strong overlap between the presynaptic composition of human and 
macaque in the cerebral cortex and neostriatum. Our unique approach illuminates species‑ and region‑
specific variation in presynapse molecular composition.

Synapses are asymmetric intercellular junctions that differ in presynaptic neurotransmitters and postsynaptic 
receptors. In animals, presynaptic terminals are present in all neurons and may be the only exclusively neuronal 
feature among  cells1. Despite their unique and essential role in central nervous system  function2–7, the molecular 
diversity of human presynapses remains poorly understood. Indeed, a fuller appreciation of the molecular diver-
sity of human presynapses has been obscured by technological limitations that force a trade-off in either capturing 
single presynapses with limited molecular information, or capturing more detailed molecular information using 
bulk synaptosome  preparations8–11. Our recently developed mass cytometry- (CyTOF-) based  method12–14, syn-
aptometry by time of flight (SynTOF), has enabled high-throughput, multiplex analysis of single synaptic events 
(analogous to cellular events in CyTOF), either pre- or post-synaptic vesicles, offering a unique opportunity to 
characterize the molecular composition of presynaptic events at an unprecedented  scale15.

Cross-species comparative analysis is a powerful method to understand human biological process specific-
ity and understand biological system  evolution16. However, integrating a large amount of heterogeneous data 
across multiple species requires statistically advanced tools that are computationally efficient and highly scal-
able. While multiple techniques are emerging to address these issues for monospecies single-event  data15,17,18, no 
principled framework exists for multispecies single-event data. One strategy to bypass this is to analyze species 
data independently and identify single events  separately19–21 requires identified (annotated) and well-defined 
single events. The limited understanding of the molecular composition of the presynapse thus precludes using 
this paradigm on SynTOF data.

To address this gap, we develop here an alternate, “comparative anatomy” approach that leverages an advanced 
machine-learning algorithm, enabling a direct cross-species comparison among the molecular composition of 
single presynaptic events. We leveraged publicly available single-presynapse event data: 3,657,113 from research 
volunteers (Hu), 759,227 from cynomolgus macaque (Macaca fascicularis, non-human primate NHP), and 
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201,261 from wild-type C57Bl/6 mouse (Mu), characterized by the expression of phenotypic  antibodies15,17,18 
related to synaptic composition and organization, and showing cross-species reactivity. This dataset was col-
lected on research volunteers without neurologic disease or neuropathologic  changes22–25 (n = 6, 2 females) aged 
76–97 years, healthy female NHP without neuropathologic changes (n = 4, 4 females) aged 11 years, and healthy 
22-month wild-type C57Bl/6 mice (n = 5, 3 females) (Fig. 1A).

Our method identifies differences and similarities between the three species in the cerebral cortex at unpar-
alleled scale and breadth of multiplexing. It further leads to new insight into primates’ presynaptic differences 
in the neostriatum and Hu and Mu presynaptic divergences in the hippocampus. It reveals a strong similarity 
between “disease-free” (control) Hu and NHP in presynaptic molecular composition for both cerebral cortex 
and neostriatum, with analogous presynaptic signatures in both primates, as well as a large divergence between 
primates and Mu.

Results
Non‑zero cross‑reactive SynTOF markers. To address concerns about comparing interspecies data 
derived from antibody-based detection, we first assessed the positive mean marker expression using a one-
sided t-test (Fig.  S1A) and determined that our panel resulted in significant non-zero marker reactivities 
(P-value < 0.05). We then compared the target protein avidity of each antibody to minimize any potential impact 
on the observed  measurements26–31. To do so, we compared the mean expression values using antibodies vali-
dated to react with Mu, NHP, Hu epitopes (Fig. 1B). Analysis of variance revealed no significant differences in 
mean expression levels of Hu, NHP, and Mu presynaptic proteins in cerebral cortex (P-value = 0.87 > 0.05 after 
multi-testing correction). Similarly, pairwise t-test comparisons between mean expression level of Hu and NHP 
presynaptic events in neostriatum (P-value = 0.93 > 0.05) and Hu and Mu presynaptic events in hippocampus 
(P-value = 0.99 > 0.05) also revealed no significant differences after multi-testing correction (Fig. S1B–C). These 
results show that the antibody panel did not have significant differences in reactivity across the three species.

In addition, no significant differences on the marker variance was observed when merging data from different 
species (P-value > 0.05) (Fig. 1C). Taken together, our results show that potential sources of technical variation in 
antibody reactivity across species are minimal and non-significant, indicating that within our defined parameters 
SynTOF cross-species comparison can be pursued.

Minimal confounded model enables cross‑species comparison. We explored further the extent to 
which species-specific variations might impact our results. To do so, our machine-learning clustering algorithm 
(described in “Methods”) was jointly applied to presynaptic SynTOF data from Hu, NHP, and Mu using one 
model per brain region, to avoid confounding our results with regional variability (Fig. 1D, E). Single events per 
species with a mean frequency lower than 0.01 per cluster were filtered out to abrogate the contribution of noise. 
Cluster consistency was validated using the silhouette  score32.

Since assessing the correctness of a clustering method would require labeled data or prior knowledge of 
presynaptic composition, we assessed the impact of well-known technical confounding factors on data variations. 
T-distributed stochastic neighbor embedding (t-SNE) applied on the shared representation of single presynapse 
exhibited good mixing, without clear separation between subjects or sex (Figs. 1D, S1D). The impact of species 
on this clustering was evaluated by creating a nearest-neighbor graph built on the mean expression vector of 
each subject on each cluster, weighted using the inverse Euclidean norm (Fig. 1E). To assess the confounding 
of species in clustering output, only clusters gathering events from multiple species—11 clusters including both 
Hu and NHP (P1–P11) and one cluster gathering events from the three species (A1)—were considered when 
creating the graph. The observed proximity between nodes from the same clusters in the graph suggests that 
our algorithm created low-dimensional representation that clustered events by presynaptic event features rather 
than species  differences32. A higher similarity score was observed between presynapses and marker expression 
within the same cluster than within each species (see Fig. S2A–D and Method).

A similar validation pipeline was applied on models trained using data from other brain regions. As a meta-
analysis, we found that using a separate model for each of the three species, thus completely eliminating marker 
reactivity issues, resulted in the same outcome as using a single model for all species. Specifically, Hu and NHP 
clusters from different models retained strong correlations compared to Mu (Fig. S2E–G). In addition, no sig-
nificant differences were observed between the intra- and inter-species median correlations of primate (Hu 
and NHP) and Mu pre-synaptic subpopulations defined either using one model for all three species (single) 
or separate models for each species (separate) with the same number of clusters per species (Wilcoxon’s test 
P-value > 0.05) (Fig. S2G).

These results suggested the clustering method was minimally impacted by technical variability, reflecting 
observations using separate models (Fig. S2E–G) and the absence of technical confounder effects on our model 
results (Fig. 2A–C).

Finally, overlaying the original t-SNE with protein expression profiles revealed an overall high enrichment 
of presynaptic SNAP25 across species, spanning all clusters, with no significant differences between the three 
groups (P-value = 0.74 after Kruskal–Wallis test), further validating our presynaptic gating strategy (Fig. S3A, B). 
All together, these multiple controls and checks ensure that the antibodies selected for our comparative SynTOF 
study yielded robust single presynapse data across species with minimal confounding.

Distinct cerebral cortical presynaptic molecular composition between primates and Mu. The 
generated clusters mainly exhibited species-specific presynaptic subgroups, identifying 11 clusters exclusively 
with primate presynaptic events (P1–11) and 4 clusters composed entirely of Mu samples (Mu1-4) (Fig. 2A–D). 
Although one cluster grouped together events from all species (A1), the overall low expression for the 20 proteins 
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Figure 1.  Cross-species presynaptic event comparison in cerebral cortex using a learning-based algorithm is 
minimally impacted by technical confounders. (A) Public available SynTOF data collected on synaptosome 
preparations from three species: human (Hu), non-human primate cynomolgus macaques (Macaca fascicularis, 
NHP), and C57Bl6 mouse (Mu) from different brain regions was leveraged in our  study17. A region-specific 
machine-learning pipeline was developed to compare these more than 4 M pre-synapses between species from 
three different brain regions: cerebral cortex (CTX, isocortical organization) from all three species (Brodmann 
area 9 for Hu and frontal cortex for NHP); neostriatum (NSTR) from Hu and NHP (Mu NSTR was not 
collected); and hippocampus (HIPP; allocortical organization) from Hu (at the level of the lateral geniculate 
nucleus) and Mu (NHP HIPP was unavailable because of commitments to other projects). (B) Mean species 
cross-reactive protein expression levels for Hu, NHP and Mu in cerebral cortex. One-way ANOVA test revealed 
no significant differences between the three species’ mean levels (P-value > 0.05). Lines represent mean value 
for each species. (C) Coefficient of variation computed on mono-species (Hu) and multi-species dataset per 
protein for three brain regions. (CTX, cortex; STR, Striatum; HIPP, Hippocampus). (D) Proportion of subject-
specific synaptic events per cluster stratified by species. Presynaptic events across samples group together based 
on clustering assignment, no clusters were clearly segregated by subjects or sex, suggesting that our method is 
unaltered by intra-species or sex variation. (E) Nearest-neighbor graph built using the mean expression of single 
events from 11 primate-specific clusters (P1–P11) and one multi-species cluster (A1) (nodes). Edges correspond 
to the inter and intra-species one minus the normalized Euclidean distances between two subjects. Only edges 
superior to the mean distance value are shown. The model derives a latent space that brings closer events from 
the same nature regardless of the species origin. Node positions are computed based on the Fruchterman-
Reingold algorithm. (AS, alpha-synuclein).
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observed in the A1 cluster suggests that presynaptic events present in this cluster remained largely undistin-
guished by the chosen antibody panel (Fig. 2B). A higher proportion of Mu events was observed compared to 
primate events in this cluster (Fig. 2C, D). Interestingly, VGLUT and GAD65 were found to co-expressed in 
one Mu-specific cluster (Mu4) and one Primate-specific cluster (P8) (Figs. 2B, S3C). Similar  to17, one “high-
expressed” primate-specific cluster was found (P4) with high expression of most of the markers (Fig. 2B) includ-
ing co-expression of VGLUT, VMAT2 and SERT (Figs. 2B, S3C). Hu and NHP events were unequally distributed 
between primates-specific clusters, with a significant difference in event abundance between species observed 
in 4 clusters (P3, P7, P8, P10) (Fig. 2C). Additional statistical analysis showed high expression of GAD65 in 4 
clusters (Mu2, Mu4, P8 and P9) and high expression of VGLUT in all Mu-specific clusters and 5 primate clusters 
(P1, P4, P5, P7 and P8) (Figs. 2B, S3B–D).

A more meaningful description of the underlying organization of the different clusters and the relative differ-
ences between species was obtained by building a Pearson correlation graph from the mean expression vectors 
of each species, illustrated in Fig. 2E. This graph exhibited significantly stronger correlations within primate-
specific clusters than between primates and Mu, splitting the presynaptic events into two subgroups, with the 
multi-species cluster (A1) of unidentified events lying at the intersection of this binary partition.

This underlying molecular composition was consistent with the evolutionary tree and can be appreciated at 
different scales. At a high level, a cross-species correlation analysis showed lower correlation coefficients between 
mean expression of Mu and Hu protein levels than NHP and Hu protein levels, highlighting the close presynaptic 
molecular proximity between NHP and Hu compared to Hu and Mu (Figs. 2E, S3E). The resulting partitioning 
is also noticed at the single presynaptic event level with the t-SNE plot, depicting a species-dependent structure 
of the presynaptic molecular events with a large overlay between Hu and NHP samples (Fig. 2D).

The divergent nature of Hu and Mu presynaptic events in the cerebral cortex was also observed in hippocam-
pus. Using the same pipeline, a new model was trained on presynaptic events from Hu and Mu hippocampi, 
generating a hippocampal low dimensional space with a few overlaps between events from the two species, 
corroborating our findings from the cerebral cortex (Fig. S4). Notably, three out of fourteen clusters contained 
events from both Hu and Mu, including two clusters of low-expressed markers and one cluster with a signifi-
cantly greater number of Mu events found in the hippocampus (Fig. S4A–D). While these three Hu-Mu clusters 
showed high correlation, significantly higher expression of GAD65, Synaptobrevin and lower expression of DJ1 
and ApoE in Mu compared with Hu distinguished the two species (Adjusted Wilcoxon’s P-value < 0.05) (Fig. S4E, 
F). Furthermore, hippocampal Hu-specific clusters showed similar profiles as primate-specific presynapses in 
the cerebral cortex: one “high expressed” human-specific cluster was generated aligning with our observation 

Figure 2.  Presynaptic landscape across species in cerebral cortex. (A) t-SNE of single presynaptic events 
after nonlinear dimension reduction colored by annotated clusters. (B) Row-normalized cross-species mean 
expression heatmap of 20 proteins per cluster. (C) Mean frequency of presynaptic events per cluster stratified 
by species after removing events present in less than 0.01. Symbols indicate significant differences using 
Wilcoxon’s P-value < 0.05 after Benjamini–Hochberg correction. (D) t-SNE of single presynaptic events after 
nonlinear dimension reduction colored by species. (E) Graph based on the Fruchterman-Reingold algorithm of 
mean expression values displaying the underlying organization of the 15 clusters in the cerebral cortex. Nodes 
represent mean expression vectors embedded in the latent space, while edges indicate Pearson correlation 
coefficients after Bonferroni correction (P-value < 0.05). Only edges superior to the global mean Pearson 
correlation value were drawn. (AS, alpha-synuclein).
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in the cerebral cortex and previous  study17, and one Mu-specific cluster with co-expression of VGLUT and 
GAD65 (Fig. S4G).

More broadly, inter-individual correlations were more consistent within primates or Mu than across these 
species (Fig. 3A). For meta-analysis across brain regions, a correlation network associating mean expression per 
cluster per brain region was built, visualizing a comprehensive higher correlation within Mu-specific clusters 
regardless of brain region, (as suggested by the proximity of this community on the graph), than across clus-
ters including primate samples (Fig. 3B). Together this comparative analysis describes an overall quantitatively 
divergent nature of presynaptic molecular composition between primates and Mu.

Pseudo‑bulk analysis shows species‑specific molecular profiles and weak connection between 
nuclear transcriptomic and presynaptic proteomic data in cerebral cortex. As no common pre-
synaptic clusters were identified between Mu and primates, we performed a pseudo-bulk differential analysis to 
identify species-specific expression. To do so, the adjusted Wilcoxon test was applied on pseudo-bulk marker 
mean expressions between Hu and NHP cerebral cortex, and between Primate and Mu. A holistic comparative 
analysis of the cerebral cortex indicated significantly higher enrichment of CD47, ApoE, calreticulin, GAMT, 
SLC6A8, GATM and VMAT2 (P-value < 0.05), and lower expression of Synaptobrevin 2 (P-value < 1e−7), in 
primates compared with Mu, with no significant differences between Hu and NHP (P-value > 0.05) (Fig. 3C). 
Furthermore, significantly higher levels of pseudo-bulk mean expression of both GAD65, an enzyme specifically 
expressed by inhibitory neurons, and VGLUT, a vesicular transporter expressed by excitatory neurons, were 
found in Mu than in the two primates (Kruskal–Wallis test P-value < 1e−2) (Fig. S3A). Similar observations were 
found in the hippocampus: ApoE, calreticulin, CD47, CD56 and DJ1, had significantly higher expression in Hu, 
while synaptobrevin2, GAD65, VGLUT, as well as APP, TMEM and LRRK2 had significantly lower expression 
in Hu than in Mu (Fig. S4H).

We hypothesized that the synaptic proteomic signature across species also might be observed at the tran-
scriptomic level by investigating the relative differences between protein abundance at the presynapse level and 

Figure 3.  Divergence in presynaptic molecular signatures between primate and Mu in the cerebral cortex. (A) 
Inter-individual variations: density plot showing inter-species Pearson correlation coefficient distribution of 
markers in the cerebral cortex. (B) Meta-analysis across brain regions visualized through a Pearson correlation 
graph. Each node represents the mean expression in one brain region-dependent cluster. Edges correspond to 
the Pearson correlation coefficient between these nodes. Only significant edges (P-value < 0.05 using non-
correlation testing corrected using Bonferroni’s method), above the global mean edge value, are drawn. Nodes 
are colored by species-specificity of each cluster and positioned based on the Fruchterman-Reingold algorithm. 
(C) Significant pseudo-bulk presynaptic differential protein mean expression analysis between primates and 
Mu in cerebral cortex in SynTOF and RNA-seq data. Only significantly different proteins between Mu and 
primates, with fold-change greater than 0.5, and that show no significant differences between the two primates, 
are colored. P-values are derived using Wilcoxon’s test after Benjamini–Hochberg correction. (D) Significant 
pseudo-bulk presynaptic differential protein mean expression analysis between primates and Mu in cerebral 
cortex in RNA-seq data  from33. Similar to (C), only significantly different genes between Mu and primates that 
showed no differences in primates are colored. (AS, alpha-synuclein).
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gene expression at the nuclear level. Exploiting publicly available transcriptomic data from Hu (n = 2), NHP 
(in this case marmoset) (n = 2), and Mu (n = 12)33, a pseudo-bulk comparison was applied to the 20 transcripts 
that encode the proteins targeted by our SynTOF panel. Although limited by the small cohort size, most of our 
presynaptic protein expression data correlated poorly with the nuclear abundance of the corresponding tran-
script in the motor cortex (Fig. 3D). Interestingly, the significant relative overabundance of VGLUT in Hu was 
conserved at both the nuclear transcript and synaptic protein levels. Although technical confounders including 
the cross-species brain size and relative age differences might limit this study, these results align with what has 
been observed by others in bulk  tissue34–36, and emphasize the value of SynTOF in discovering the molecular 
composition of synapses.

Integrated analysis between Hu and NHP presynaptic events in cerebral cortex and neostria‑
tum exhibited strong proximity of primate presynaptic organization. Finally, we supplemented 
our results from the frontal cortex by performing the same clustering analysis using NHP and Hu samples 
from the neostriatum (Figs. 4A, S5A). Precisely, the same unsupervised workflow (with a newly trained model) 
was applied on single-presynapses acquired from the neostriatum of both primates (see “Methods”). A correla-
tion network built from species-specific mean expression per clusters brought out a stronger correlation among 
intra-cluster presynaptic events from different species as indicated by proximity of these vectors in the correla-
tion network, emphasizing the overall strong similarity between primate presynaptic molecular composition for 
the 20 proteins analyzed (Fig. 4B). Just as for the frontal cortex, the presynaptic events from the neostriatum of 
the two primates blend well together, forming 15 new cross-species clusters (NS-P1-15) (Fig. 4A–C), includ-
ing one “high-expressed” cluster (NS-P9) and one VGLUT-VMAT2-SERT co-expressed cluster (Fig. S5A, B). 
However, the relative presynaptic proportion per cluster contrasts significantly between the two species in 10 
clusters (Fig. 4D).

To gain further insight of the differences between Hu and NHP, we investigated markers differentially 
expressed between Hu and NHP within each cluster (Fig. 4E). Using 20 phenotypic markers, we compared 
mean marker intensity between Hu and NHP using adjusted Wilcoxon’s test. Differences between the two pri-
mates included a relatively higher expression of DJ1 and AS in frontal cortex, and ApoE in neostriatum for Hu 

Figure 4.  SynTOF analysis reveals a strong proximity between Hu and NHP presynaptic events with species 
specificity at the protein level. (A) t-SNE of presynaptic events after nonlinear dimension reduction colored by 
clusters. (B) Visualization of the connection between mean expression of Hu and NHP samples from different 
clusters. Nodes represent mean expression vectors per cluster stratified by species, edges correspond to Pearson 
correlation between nodes vectors. Only significant edges (P-value < 0.05 using non-correlation testing) above 
the global mean edge value are displayed. Homogeneity was observed across the two datasets, suggesting a high 
similarity between identified presynaptic events in the two species. Node positions were computed based on 
the Fruchterman-Reingold algorithm. (C) Original single events from neostriatum embedded and projected 
in two dimensions using t-SNE, colored by species. (D) Mean frequency of Hu and NHP synaptic events per 
cluster after removing events present in less than 0.01. Symbols indicate significant differences using Wilcoxon’s 
P-value < 0.05 (*) after Benjamini–Hochberg correction. (E) Volcano plot of differential protein expression 
between Hu and NHP, per cluster in cerebral cortex and neostriatum after multiple testing corrected Wilcoxon’s 
test. Only significantly different marker expressions are colored.
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compared to NHP with an adjusted P-value < 0.05. Contrarily, parkin and LRRK2 in both regions, VMAT in 
frontal cortex and VGLUT in neostratium showed overall higher expression in NHP compared to Hu samples 
(FDR after correction P-value < 0.05). Minor differences in the Hu neostriatum include BIN1 and SERT (3 
clusters) decreased protein expression, and AS and GAMT (2 clusters) increased expression compared to NHP 
(Figs. 4E, S5C).

Discussion
Cross-species comparison of the central nervous system has a long tradition of illuminating human-specific 
structures and providing insight into function. Indeed, Bjornson-Hooper, et al. recently reported an extensive 
cross-species comparison of Hu, NHP, and Mu CyTOF data from immune cells in blood, demonstrating the 
importance of understanding differences between human and model  organisms37. Here, we report our cross-
species comparison of presynaptic molecular composition using publicly available SynTOF data. As far as we 
are aware, our study provides the first unsupervised integrating cross-species comparison of multiplexed, single 
presynaptic data. Several antibodies were used to gate for presynaptic events versus other debris in the homoge-
nate, yielding 20-plex quantitative data on over 4.5 million single, highly enriched presynaptic events from the 
three species. These unparalleled broad, deep, and specific multispecies molecular data formed the basis of our 
comparative presynaptic investigation. Leveraging recent machine-learning advances, we developed the first 
integrated framework to compare the large cross-species datasets generated by SynTOF and investigated key 
differences and similarities among species and brain regions in presynaptic protein expression from disease-free 
(control) Hu, NHP, and Mu brain.

Analysis across multiple species can be challenging as data obtained from different groups might be con-
founded by unidentified technical and biological  factors26. While many techniques have been developed to correct 
known unwanted  variations26–29,31, determining which biological factors play the most important roles in cross-
species investigations remains an open question. While merged cross-species data enables direct comparison, it 
has some potential limitations, including notably the possible technical differences across species. This potential 
limitation, inherent to antibody-based experiments, was addressed by conducting statistical analyses on SynTOF 
signals across species and computing the dispersion between single-species and multi-species datasets. These 
analyses revealed no significant differences in both cases (P-value > 0.05). Additional validation analysis sug-
gested that the clustering method was minimally impacted by technical variability, reflecting observations using 
separate models (Fig. S2E–G) and the absence of technical confounders on our model results (Fig. 1D–F). All 
together, these results confirmed the minimal influence of technical variation on SynTOF signals, and allowed 
the comparison of synaptic subpopulations using our multi-species integrating approach despite known differ-
ences in target sequence.

We focused primarily on isocortical samples because this region was available from all three species. Our 
clustering analysis revealed two non-overlapping types of presynapse clusters: primate-specific and Mu-specific; 
pseudo-bulk comparative analysis of primate and Mu protein expression in cerebral cortex exhibited 8 sig-
nificantly higher protein levels in primates including components of “eat-me, don’t eat me” signaling between 
synapses and microglia (ApoE, calreticulin, and CD47)38, creatine metabolism (GAMT, GATM and SLC6A8), 
and neurotransmission (VMAT2)39–42. In contrast, 3 proteins involved in the machinery of neurotransmission 
(GAD65, synaptobrevin2, VGLUT) had a significantly lower expression in primates. A low correlation was 
found between presynaptic protein expression and the transcriptomic abundance of these proteins in the motor 
 cortex34,43,44 with the exception of lower expression of VGLUT at both the presynaptic protein and nuclear 
transcriptomic levels (Fig. 3C).

We supported our analysis in cerebral cortex by comparing SynTOF data from Hu and Mu in the allocorti-
cal hippocampus. The clustering algorithm revealed a small overlap between single presynapses from the two 
species, corroborating the pervasive difference in the molecular composition of presynapses in Hu and Mu. 
Although most of our results aligned well with existing knowledge of the molecular composition of synapses, 
some synaptic profiles were unexpected, such as GAD65 + VGLUT + SERT in H-Mu4 (Fig.  S4C), and should be 
interpreted cautiously until an alternative highly multiplexed single-synapse technology is available that can vali-
date our results. Pseudo-bulk analysis performed on hippocampus data and led to similar significant differences 
between Hu and Mu presynaptic protein levels, which overlapped with isocortical presynapses (i.e., increased 
ApoE, calreticulin, CD47 and decreased VGLUT, synaptobrevin-2, GAD65 in Hu compared to Mu). These data 
support significant differences in both isocortical and hippocampal presynapse protein abundance important 
to basic functions such as neurotransmission, energy metabolism, and synaptic pruning.

Although differences in protein expression were observed between NHP and Hu, the generated clusters did 
not identify any Hu-only or NHP-only subgroups, indicating strong proximity between the molecular compo-
sition of presynapses for the two primates in both frontal cortex and neostriatum. In the frontal cortex, where 
only 6 presynaptic proteins expressed significantly different between Hu and NHP across all clusters AS and 
DJ1 expression was higher in Hu, while LRRK2 and parkin showed lower expression in Hu. In neostriatum, the 
significant cross-cluster differences between Hu and NHP presynaptic protein levels validated higher expression 
of ApoE in Hu and lower expression of the same three proteins (LRRK2, Parkin) in Hu.

There are several limitations to our study, including those inherent in using available  data15 that, by nature, will 
in hindsight have missed opportunities for maximum utility. First, our study is of course limited by the 20 marker 
panel chosen to characterize the presynaptic particles across species. Specifically, around 32% of Mu pre-synapses 
and less than 3% of primate pre-synapses are undistinguished by our panel (Fig. 2C). In addition, a practical 
limitation in this study was the enormous difference in the size of the cerebral cortex between the three species. 
We used a region of prefrontal cerebral cortex (Brodmann area 9) from Hu, prefrontal cortex from NHP, and all 
of cerebral cortex from Mu. In theory, this variation in subregion of cerebral cortex in the different species and 



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13849  | https://doi.org/10.1038/s41598-023-40683-8

www.nature.com/scientificreports/

differences in potential projections from synapsing cells originating in other region might confound our results; 
Similarly, cellular composition and  distribution34,45, synapse  density46, network  organization47,48, morphological 
 features49 can vary across species. These variations could potentially contribute to the observed differences at the 
presynaptic level. Indeed, Bakken et al., reported a broadly conserved cellular taxonomy across mice, marmosets 
and humans albeit with differences in cellular proportion and gene expression in the motor cortex. Furthermore, 
they found a larger overlap of neuronal cell type composition between humans and marmosets (39%) than pri-
mates and mice (27%) along with a significant difference in the ratio of excitatory to inhibitory neurons (2:1 in 
humans, 3:1 in marmosets, and 5:1 in mice). These species-specific cellular profiles may explain the substantial 
overlap observed between Hu and NHPs presynapses, as well as the weaker similarity between primates and 
mice presynaptic composition. However, we expect that it has limited impact because we already have shown no 
significant difference in data from this same SynTOF panel from Hu temporal versus parietal  cortex17.

Age also was a potential source of variability in our study. Approximated as percent of maximum lifespan, 
the humans had lived 73% ± 4.8, the macaques had lived 40%  ± 0.9, and the mice had lived 96% of their lifespan. 
While Hu and Mu were comparably aged relative to maximum lifespan, NHP were relatively younger. Differences 
in age may influence the observed pre-synaptic composition, given the diverse lifetime of synaptic proteins. 
 Recently50, revealed the heterogeneity and wide range of synapse protein lifetimes in various regions of the mouse 
brain. Although the lifespan and diversity of synaptic proteins in primates remain unexplored, synapse density 
and function were found altered during brain  aging51,52. However, we found many differences in presynapse 
protein abundance between the similarly aged Hu and Mu, suggesting that these are valid species differences 
relatively uncompromised by effects of aging. We observed many fewer regional differences in SynTOF presyn-
aptic signal between Hu and NHP, suggesting that at least for these 20 proteins there may be limited impact of 
aging when both clinical and pathologic examinations are used to exclude subclinical “age-related” diseases. A 
more comprehensive understanding of synapse protein lifetime across species would enhance our understanding 
of synaptic function and diversity.

In summary, we proposed a machine learning framework to compare presynapse molecular abundance 
across three species and three brain regions. After extensive analysis to assure the validity of cross-species com-
parison of SynTOF data, we observed significant differences in protein abundance of primate (Hu and NHP) 
vs. Mu presynapses with respect to synaptic pruning, cellular energy, lipid metabolism, and neurotransmission. 
In contrast, there was strong overlap between presynaptic molecular composition of Hu and NHP presynapses 
in both cerebral cortex and neostriatum. As expected, presynaptic composition correlated with evolutionary 
distance. More divergent presynaptic landscapes were observed between Hu and Mu (~ 87 MYA) than between 
Hu and NHP (~ 28.9 MYA)53, aligning with cross-species transcriptome and epigenome comparative  analysis33.

Brain species specificity has been extensively studied at the cell level, comparing transcriptome expression 
from various brain regions. Our proteomic results did not correlate well with nuclear transcriptome, as has 
been observed by others in bulk tissue, and thereby provide a unique perspective on the comparative molecular 
composition of presynapses that may guide functional insight in humans and other species.

Methods
All SynTOF data used in the present study were generated in a previous  publication17 and are publicly avail-
able. Please, see the Supplemental Methods for details. As described therein human, macaque, and mouse syn-
aptosomes were prepared using established  protocols10, modified for CyTOF  analysis18, including mass tag 
 barcoding15.

Unsupervised deep‑learning approach for interspecies clustering. Identification of subpopulation 
similarities and differences between species usually relies on an integrated clustering assignment  pipeline54–57. 
However, clustering in high-dimensional space is challenging, due to the unreliability of similarity  metrics58. 
Dimension reduction techniques, such as Principal Component Analysis (PCA), circumvent this issue by low-
ering the dimensionality of the input data. Yet, the representative power of popular dimension reduction algo-
rithms such as PCA is limited due to assumptions made about the data (e.g., linearity).

To bypass this issue, we leverage neural networks and their attractive property to model complex relationships 
between high dimensional data to develop a unified unsupervised framework for comparing the profile of more 
than 4.5 million presynaptic events among normal Hu, NHP, and Mu samples. That is, we used a fully connected 
neural  network59 that has proven its effectiveness on large single-event  datasets17,60. Indeed, this approach pro-
vides an effective framework to handle our large and heterogeneous multi-species dataset and perform direct 
comparisons, while being a suitable solution to simultaneously derive a conjoint cross-species low-dimensional 
representation and identify differences between the observed presynaptic events groups. We used the autoen-
coder paradigm, a non-linear embedding method, to derive a compressed low dimensional representation of 
the input  data61 while jointly clustering it in an unsupervised way using a loss that preserves the local structure 
of the input data, critical to perform accurate clustering of the data.

We trained the neural network models with single-event vectors, representing expression across 20 mark-
ers, sampled equally from multiple species from the same region. Pooling the data enables direct comparisons 
between species. Three independent models were trained using samples from different brain regions: cerebral 
cortex (Hu, NHP, and Mu), hippocampus (Hu and Mu), and neostriatum (Hu and NHP). For each region, a 
balanced dataset was obtained by downsampling the number of events, stratified by species, to have a similar 
proportion of events across species and avoid creating a biased integrated space toward one dominating species.

Before applying clustering, we first pretrained the two autoencoders to learn a common low dimensional 
representation of the multi-species input data by minimizing the standard mean square error (MSE) loss 
(https:// github. com/ tpjoe/ SynTO F2021)17. Then, the weights of the network were fine-tuned minimizing the 

https://github.com/tpjoe/SynTOF2021
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reconstruction loss as well as a clustering  loss62, added on top of the low dimensional representation of the two 
autoencoders. The two autoencoders consist of sequences of fully connected layers with a bottleneck in the 
middle that imposes a compressed representation of the original input. The optimal number of clusters was 
derived using the Elbow method and the centers of the clusters were initiated using the K-means algorithm. 
Both trainings were performed using an adaptive gradient method (Adagrad)63, with an initial learning rate of 
0.1 and a batch size of 1024. A common Glorot  scheme64 was adopted to initialize the weights of the networks. 
The optimal number of epochs was derived automatically exploiting the early stopping algorithm. Finally, the 
stochastic nature of the training was reduced by repeating the whole training procedure 10 times. Cluster robust-
ness was assessed by applying a consensus meta-clustering which combines clusters from 10 runs using a greedy 
 algorithm65, resulting in 15 clusters in the prefrontal cortex (Fscore = 0.776, NMI = 0.702). No hyperparameter 
selection process was employed. Our model was implemented in Python using  Keras66. The architecture of the 
model with its parameterization is represented in Fig. S6.

For dimension reduction, we used the python implementation of tSNE algorithm from scikit learn  library67, 
which has a random initialization of the point position. Reproducibility of the figures was ensured by fixing the 
initialization.

Clustering validation. We validated the consistency of the generated clustering partition using a silhouette 
 score32. This score represents the similarity of an event to events from its own group compared to events from 
other groups. Comparing silhouette scores based on event clustering defined by model ( scluster ), based on species 
grouping ( sspecies ) and subject grouping ( ssubject ), allowed us to quantify bias in learned low dimensional embed-
ding regarding species or subject  origin26. The silhouette score of overall partitioning generated by the model 
reached 0.6, whereas the silhouette score obtained by grouping single events based on species origin or subjects 
was 0.1 or − 0.1, respectively.

To gain further insight into how the model generates the clustering of the single presynaptic events, we lever-
aged earth mover’s distance (EMD)68, which measures the similarity between distributions and quantifies the 
impact of confounders in CyTOF  data26,31. Briefly, we computed the pairwise EMD between marker expression 
distribution of different species across clusters for each marker in cerebral cortex. A significantly lower mean 
EMD (P-value < 0.001) was found when comparing marker expression between species within the same clusters 
to different clusters for almost all markers (Fig. S2A–D).

Statistical analysis. Coefficient of variation (CV) is a popular metric to quantify the homogeneity and the 
spread of the distribution and compare the relative variability between  datasets69. For instance, it has been widely 
used to quantify the batch effect on the data  variance70,71. Here, CV was used to quantify the effect of pooling 
multiple species SynTOF data together on the marker expression variance by comparing the CV computed for 
Hu data only with the CV computed for combined data from multiple species (Fig. 1D). There was no signifi-
cant difference between mean coefficient of variation (CV) from the two datasets (t-Test P-value = 0.79 in cer-
ebral cortex = 0.99 in neostriatum, and = 0.98 > 0.05 in hippocampus), demonstrating that significant variation in 
marker distribution spread was not observed when pooling data from different species.

Graph‑based analysis. A Pearson correlation graph was built using the spring layout of the Networkx 
Python package (https:// netwo rkx. org/ docum entat ion/ stable/), based on the Fruchterman-Reingold  algorithm72. 
Edge weights were set equal to the absolute correlation coefficient between nodes. P-values were derived using 
the Pearsonr function from Python package  Scipy73 and adjusted for multiple hypothesis testing using Bonfer-
roni correction. Only significant edges above the global mean edge value were drawn. For visualization pur-
poses, we filtered out correlation coefficients lower than the mean correlation coefficient (Figs. 2E, 3B, S4F).

Proximity between subjects across clusters was determined using a nearest-neighbor graph built on single-
event mean expression (Fig. 1E). To do so, we set edges equal to the normalized Euclidean distance between 
the nodes and only significant edges above the global mean edge value were drawn. A similar layout was used 
for this graph.

Transcriptomic data (Single nucleus RNA‑seq). Transcriptomic data (single nucleus RNA-seq) from 
the three species from motor cortex provided  by33 were used to perform the pseudo-bulk analysis. Statistical 
analysis was performed in Python using Scipy  library73 on all SCT normalized neuronal single  cells74.

Visualization. Figures have been created using Matplotlib and seaborn packages in Python. Biorender was 
used to generate subfigures in Figs. 1, 2, 4, S2 and S4.

Data availability
The codes are available at https:// github. com/ elo- nsrb/ SynTOF_ Cross- speci es_ analy sis. The raw SynTOF data 
are available on Dryad at https:// doi. org/ 10. 5061/ dryad. z612j m6cr  (see18 for more information).
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