
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13415  | https://doi.org/10.1038/s41598-023-40662-z

www.nature.com/scientificreports

The identification of genes 
associated T‑cell exhaustion 
and construction of prognostic 
signature to predict 
immunotherapy response in lung 
adenocarcinoma
Yahua Wu 1, Bin Du 1, Mingqiang Lin 2, Xiaohui Ji 3, Chengliu Lv 1 & Jinhuo Lai 1*

T‑cell exhaustion (Tex) is considered to be a reason for immunotherapy resistance and poor prognosis 
in lung adenocarcinoma. Therefore, we used weighted correlation network analysis to identify Tex‑
related genes in the cancer genome atlas (TCGA). Unsupervised clustering approach based on Tex‑
related genes divided patients into cluster 1 and cluster 2. Then, we utilized random forest and the 
least absolute shrinkage and selection operator to identify nine key genes to construct a riskscore. 
Patients were classified as low or high‑risk groups. The multivariate cox analysis showed the riskscore 
was an independent prognostic factor in TCGA and GSE72094 cohorts. Moreover, patients in cluster 
2 with high riskscore had the worst prognosis. The immune response prediction analysis showed 
the low‑risk group had higher immune, stromal, estimate scores, higher immunophenscore (IPS), 
and lower tumor immune dysfunction and exclusion score which suggested a better response to 
immune checkpoint inhibitors (ICIs) therapy in the low‑risk group. In the meantime, we included two 
independent immunotherapy cohorts that also confirmed a better response to ICIs treatment in the 
low‑risk group. Besides, we discovered differences in chemotherapy and targeted drug sensitivity 
between two groups. Finally, a nomogram was built to facilitate clinical decision making.

Lung cancer remains one of the deadliest cancers in the world, and 85% of them are non-small cell lung cancer 
(NSCLC)1. According to statistics, lung adenocarcinoma (LUAD) is a major subtype of NSCLC, accounting for 
approximately 40% of all  patients2. Despite significant advances in the treatment of LUAD, the 5-year overall 
survival (OS) rate for LUAD is less than 20%3.

In recent years, with the rapid development of immunotherapy, especially the application of immune check-
point inhibitors (ICIs), the prognosis of lung cancer patients has been improved  significantly4,5. However, not 
all patients respond to ICIs, and a minority of patients do not benefit from  ICIs6. In addition, it is worth noting 
that similar to chemotherapy or targeted therapy, a majority of patients who initially respond to ICI therapy and 
then develop primary or secondary resistance.

A growing number of studies suggest that tumor microenvironment (TME) plays an important role in cancer 
development and antitumor processes and may involve in immunotherapy  resistance7. TME contains vari-
ous immune cells, stromal cells and extracellular matrix molecules, of which tumor-infiltrating lymphocytes 
(TILs) are the main immune cells exerting anti-tumor  activity8,9. TILs have been reported as predictive immune 
efficacy biomarkers for lung  cancer10. However, TILs, especially CD8 + T cells, eventually developed a state of 
dysfunction known as T-cell exhaustion during long-term tumor  fight11. The exhausted T cells have been dem-
onstrated to exhibit overexpression of inhibitory receptors, metabolic dysregulation, epigenetic reprogramming 
and loss of effector  functions12–14. And studies have proven that exhausted T cells can induce immune  tolerance15. 
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Immunotherapy depends on the activation of T cells to eliminate tumors. However, the emergence of T-cell 
exhaustion impedes it capacity of anti-tumor and facilitates immune escape. The formation of exhausted T cells 
is regulated by multiple factors, and a deep understanding of key genes that regulated T cell exhaustion might 
help to interpret the underlying mechanism.

Therefore, our study aimed to explored the crucial molecules of T cell exhaustion in LUAD, and attempted 
to construct a prognostic signature and nomogram model to predict prognosis and immunotherapy response 
for LUAD patients.

Methods
Publicly available datasets. We downloaded the normalized RNA sequencing data (transcripts per mil-
lion, TPM) and raw counts data of 539 LUAD patients from the cancer genome atlas (TCGA) (https:// portal. 
gdc. cancer. gov/) database. The normalized matrix files of GSE72094 cohort from the Gene Expression Omnibus 
(GEO) database (https:// www. ncbi. nlm. nih. gov/), which had included 442 LUAD patients, used as an independ-
ent external cohort for risk model validation. The patients’ characteristics and other information of TCGA-
LUAD and GSE72094 cohorts were shown in Supplementary file 1: Table  S1. In addition, immunotherapy 
cohorts including GSE135222 and GSE91061 from GEO database were included for validation of immuno-
therapy response. Probe IDs were converted to gene symbols according to the platform annotation file. If mul-
tiple probes matched the same gene symbol, their median expression values were selected. The information of 
TCGA-LUAD and GEO datasets was summarized in Supplementary file 1: Table S2.

Weighted correction network analysis (WGCNA). Weighted correction network analysis (WGCNA) 
was used to construct co-expression networks of scale-free distributions of genes based on correlations to gene 
expression, from which the most relevant modules to clinical features were  identified16. In our study, we used 
the "pickSoftThreshold" method to choose an appropriate soft threshold parameter. Then, the adjacency was 
transformed into a topological overlap matrix (TOM) and genes with similar expression patterns were divided 
into the same module. Finally, genes from modules that had high correlation coefficients with T-cell exhaustion 
and dysfunction were identified for subsequent analysis.

Consensus clustering analysis. The “ConsensusClusterPlus” R package was used to perform the unsu-
pervised consensus clustering  analysis17. We used 80% of the items for subsampling and divided each subsam-
ple into groups by the k-means algorithm, repeating this clustering process 1000 times. Then, The cumulative 
distribution function (CDF) curve and consensus matrix are used to identify the optimal k-value. Based on the 
optimal k-value, patients were clustered into sub-clusters. In addition, the principal component analysis (PCA) 
and principal coordinate analysis (PCoA) were performed to show the distribution difference of sub-clusters.

Functional enrichment analysis. Enrichment analysis in Gene Ontology (GO) and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) were based on the “Clusterprofiler” R package, where “adjusted p < 0.05” was 
considered  significant18. The gene sets of “hallmark” from the Molecular Signatures Database (MSigDB) were 
analyzed through the gene set enrichment analysis software (v4.3.2). P.adjust < 0.05 and q values < 0.25 were 
considered statistically  significant19,20.

Tumor immune microenvironment evaluation. The ESTIMATE algorithm tool was used to was used 
to calculate stromal, immune and estimated  scores21. The CIBERSORTx (https:// ciber sort. stanf ord. edu/) was 
used to evaluate the composition of 22 kinds of tumor-infiltrating immune cells based on the principle of linear 
support vector  regression22. Single sample gene set enrichment analysis (ssGSEA) based on the R package GSVA 
was used to quantify single sample immune cell infiltration scores. The immune cell abundance identifier (Immu-
CellAI) (http:// bioin fo. life. hust. edu. cn/ ImmuC ellAI) was utilized to obtain the scores of T cell  exhaustion23. 
Moreover, we compared the mRNA expression levels of immune checkpoint suppressor molecules including 
programed cell death protein 1 (PD1), programmed death ligand 1 (PD-L1), cytotoxic T-lymphocyte associ-
ated protein 4 (CTLA4), lymphocyte activating 3 (LAG3), T cell immunoreceptor with Ig and ITIM domains 
(TIGIT), hepatitis A virus cellular receptor 2 (HAVCR2) and other immunosuppressive molecule in two clusters.

Development and verification of prognostic signature. Firstly, differential genes between cluster 1 
and cluster 2 in TCGA cohort were analyzed with the “DESeq2” R package based on the mRNA expression of 
raw counts  data24. The threshold of adjusted P value less than 0.05 (P < 0.05) and the absolute log2 fold-change 
greater than 1 (|log2FC|> 1) were define differential genes. Next, univariate cox regression analysis was utilized 
to screen differential genes that were associated with OS in TCGA and GSE72094 cohort using the “survival” R 
package (P < 0.05). Then, we performed machine learning algorithms including the least absolute shrinkage and 
selection operator (LASSO) regression  analysis25 and random forest (RF)  algorithm26 to improve the accuracy 
and reliability of prognostic signature using the “glmnet” and “randomForestSRC” R packages, respectively. 
Furthermore, we used the intersection of LASSO and the RF to determine candidate genes, followed by multi-
variate cox regression analysis. According to the results of the multivariate cox analysis, the prognostic signature 
was established as follows: Riskscore = 

∑n
i=1

(

Coef × Ni
)

 , where Coef referred the coefficient of gene i and Ni 
represented the expression value of gene i.

To further validate the predictive power of the prognostic signature, we performed Kaplan–Meier survival 
analysis in the TCGA-LUAD and GSE72094 cohorts, where the cutoff value was set to the median riskscore. 
Time-dependent receiver operating characteristic curve (ROC) were plotted using the “timeROC” R package to 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/
https://cibersort.stanford.edu/
http://bioinfo.life.hust.edu.cn/ImmuCellAI
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predict OS at 1, 2 and 3 years in the training dataset (TCGA-LUAD) and validation cohort (GSE72094). Finally, 
we further analyzed the relationship between the prognostic signature and clinical characteristics (including 
age, gender and stage) to clarify the independent prognostic value of riskscore using multivariate Cox regres-
sion analyses.

Development and evaluation of the nomogram. We performed the univariate and multivariate Cox 
regression analyses for clinical parameters and riskscore. In the multivariate Cox model, variables with P < 0.05 
were included in the construction of the nomogram. The calibration analysis and time-dependent ROC curves 
were used to assess the prognostic accuracy of the nomogram model. Decision curve analysis (DCA) curves 
used to evaluate the net benefit of the nomogram.

Immunotherapeutic response prediction. Tumor Immune Dysfunction and Exclusion (TIDE) was a 
computational method to predict ICIs  response27. Based on transcriptomic data from TCGA cohort, T-cell dys-
function scores and TIDE scores were calculated through an online website (http:// tide. dfci. harva rd. edu). The 
Cancer Immunome Atlas (TCIA) database describes the immune landscape of 20 solid tumors and developed 
a novel score called “Immunophenscore” (IPS), which also predicted the response to ICIs. We calculated each 
patients’ IPS scores through an online website (https:// tcia. at/)28. Tumor mutational load (TMB) was a valuable 
biomarker to assess the efficiency of  immunotherapy29. We utilized the “TCGAbiolinks” R package to download 
somatic mutation data, and then calculated TMB values for each LUAD patient in the TCGA cohort based on 
the “Maftools” R  package30. In addition, the mRNA expression of PD-1, PD-L1 and CTLA4 was analyzed in low 
or high-risk groups.

Chemotherapeutic drug sensitivity prediction. We utilized the “pRophetic” R package to estimate the 
half-maximal inhibitory concentrations (IC50) of drugs to predict the sensitivity of LUAD patients to chemo-
therapy and targeted  therapies31.

Statistical analysis. All statistical analyses were performed using R software (version 4.2.2). Wilcoxon 
test was used to compare the differences between groups. The log-rank test was used to compare Kaplan–Meier 
survival curves. Univariate and multivariate Cox analyses were performed to establish independent prognostic 
factors. All P values were two-sided and less than 0.05 were considered statistically significant.

Results
Identification of Tex‑related genes and functional analysis. WGCNA analysis was conducted 
according to the expression of LUAD mRNA in the TCGA cohort (Fig. 1A). We choose a soft threshold of 4, 
which met the scale-free network rule (Fig. 1B). Figure 1C–E showed that the purple module was the most 
significantly related to T-cell exhaustion (Tex) (cor = 0.5, P = 7.3e-25) and T cell dysfunction (cor = 0.75, P = 3.2e-
68). Therefore, the purple module (n = 371) was characterized as Tex-related genes. GO and KEGG enrichment 
analysis revealed possible biological processes involved in Tex-related genes (Supplementary file 2: Fig. S1).

Identification of Tex subgroups. Tex subgroups were identified by using an unsupervised clustering 
approach based on the expression levels of Tex related genes in TCGA. Based on the consensus CDF curve 
(Fig. 2A), the relative change in area under the CDF curve (Fig. 2B), and the consensus matrix (Fig. 2C), we 
finally selected k = 2 as the best cluster. Two different subgroups were identified, including 375 patients in clus-
ter 1 and 155 patients in cluster 2. It is clear that patients in cluster 1 had a better OS than those in cluster 2 
(P = 0.039, Fig. 2D). Two significantly different subgroups were further confirmed by the results of PCA as well as 
PCoA analysis (Fig. 2E–F). In addition, we compared the differences in clinical characteristics between cluster 1 
and cluster 2. The results in Table 1 showed that patients in cluster 2 had a higher proportion of female and older 
patients (> 65 years), and there was no difference in the tumor stage between two subgroups.

Immunological landscape of Tex subtypes. First, we calculated the composition of immune cells 
between clsuter 1 and cluster 2 by the CIBERSORT algorithm (Fig. 3A). Comparing with cluster 1, cluster 2 
had significantly more abundance of CD8 T cell and CD4 memory activated T cell. However, despite having 
higher CD4/CD8 T cell levels, patients in cluster 2 had worse prognosis than those in cluster 1. This was contra-
dictory to the fact that high levels of tumor infiltrating CD4/CD8 T cells were generally associated with better 
prognosis. Therefore, we hypothesized that these CD4/CD8 T cells in cluster 2 were prone to exhaustion. Next, 
we compared the mRNA expression levels of immune checkpoint suppressor molecules in the two clusters. The 
results showed that PDCD1 (PD1), CD274 (PD-L1), CTLA4, LAG3, TIGIT, HAVCR2 and other immunosup-
pressive molecules were upregulated in cluster 2 (Fig. 3B). Then, we assessed the TME score using an estimation 
algorithm. The results displayed that cluster 2 had higher immune, stromal, and estimate scores than those in 
cluster 1 (Fig. 3C). In addition, we also found that T-cells exhaustion as well as T-cell dysfunction scores were 
significantly higher in cluster 2 than in cluster 1 (Fig. 3D–E). Finally, we performed GSEA analysis based on the 
Tex-related genes identified by WGCNA, and the results showed that cluster 2 was enriched in IL6/JAK/STAT3 
signaling, interferon_gamma response, TNFA signaling via NFKB and inflammatory response (Fig. 4). Based 
on the above results, we inferred that cluster 2 mediated the suppressive immune microenvironment associated 
with T-cell exhaustion.

http://tide.dfci.harvard.edu
https://tcia.at/
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Machine learning identifies hub genes and functional analysis. First of all, we performed differ-
ential analysis of mRNA expression in cluster1 and cluster 2 based on the TCGA cohort to identify differen-
tial genes (Fig. 5A). Then, univariate cox regression analysis was utilized to screen differential genes that were 
associated with OS in TCGA and GSE72094 cohort. Venn diagram showed a total of 35 genes were identified 
as Tex related prognostic differential genes (Fig. 5B). Next, top 15 genes were selected using RF (Fig. 5C) and 
11 genes were selected using LASSO (Fig. 5D–E). Finally, 9 intersected genes (including CPS1, FOSL1, GJB3, 
HLA-DOB, IGF2BP1, IGFBP1, KLK11, KRT6A, KRT81) were identified as hub genes (Fig. 5F). GO and KEGG 
analysis showed that these nine hub genes were involved in response to cAMP, carbon–nitrogen ligase activity, 
MHC class II receptor activity, gap junction channel activity and so on (all adjusted P < 0.05, Supplementary file 
2: Fig. S2).

Figure 1.  WGCNA analysis in TCGA cohort. (A) The coexpression network. (B) The soft threshold power of 
WGCNA. The left one showed the analysis of the scale-free index for various soft threshold powers. The right 
one showed the analysis of the average connectivity for various soft threshold powers. (C) Heatmap displayed 
correlation between module eigengenes and T-cell exhaustion and T-cell dysfunction. (D) Identification of the 
modules most significantly associated with T-cell exhaustion. (E) Identification of modules most significantly 
associated with T-cell dysfunction.
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Construction of prognostic signature. The hub genes were enrolled in multivari-
ate cox analysis to construct the prognostic signature: riskscore = (CPS1 × 0.0376) + (FOSL1 × 

Figure 2.  Unsupervised consensus cluster analysis for LUAD patients in the TCGA cohort based on T-cell 
exhaustion related genes. (A) Consensus CDF from k = 2–9. (B) Delta area under the cumulative distribution 
function (CDF) curve of different clusters ranging from k = 2–9. (C) Consensus matrix for k = 2. (D) The overall 
survival (OS) probability of the patients in the two clusters. (E) The principal component analysis (PCA) and 
principal coordinate analysis (PCoA) of two clusters.
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0.0731) + (GJB3 × 0.0641)—(HLA-DOB × 0.1590) + (IGF2BP1 × 0.0732) + (IGFBP1 × 0.1072)—
(KLK11 × 0.0445) + (KRT6A × 0.0460) + (KRT81 × 0.0439)—0.2897. Patients in the TCGA cohort were classified 
as low- or high-risk group when the cutoff value was defined as the median riskscore (Fig. 6A). The Kaplan–
Meier survival curves showed showed that the median OS of the low-risk group was longer than that of the 
low-risk group (P < 0.001, Fig. 6B). The time-dependent ROC curve displayed that the risk score had a good pre-
dictive performance, with an area under the curve (AUC) of 0.718, 0.703, 0.692 at 1, 2, and 3 years, respectively 
(Fig. 6C). In addition, when the riskscore was included in multivariate cox analysis combined with age, gender, 
and stage, it still was demonstrated as an independent prognostic factor for OS (HR = 1.904; 95% CI 1.389–2.612; 
P < 0.001; Fig. 6D). To further confirmed the reliability of the riskscore, we used the same formula to calcu-
late the riskscore for patients in the GSE72094 cohort and used it for external validation. Similar to the previ-
ous results (Fig. 6E–H), the riskscore was an independent prognostic factor (HR = 1.990; 95% CI: 1.321–2.997; 
P < 0.001) as well and had good predictive power with an AUC at 1-, 2-, 3-year of 0.692, 0.709, 0.715. Moreover, 
we further stratified Tex subgroups based on riskscore and found that cluster 2 with high riskscore had the worst 
prognosis (Supplementary file 2: Fig. S3).

Correlation between the riskscore and clinical features. We explored relationships between the 
riskscore and clinical features in TCGA cohort and found that gender and TNM stage were significant corre-
lated with the riskscore. Male, T3-4 stage, more lymph node metastases, distant metastases, and advanced stage 
patients tended to have higher riskscores (Fig. 7).

Construction and evaluation of nomogram model. The above results suggested that both tumor stage 
and risk score were independent prognostic factors. Thus, a nomogram was constructed to predict survival com-
bined pathological stage with the riskscore (Fig. 8A). Calibration curves showed substantial agreement between 
the expected and actual probabilities of nomgram in predicting 1, 2, and 3-year survival (Fig. 8B). DCA curves 
showed the nomogram model had a greater net benefit in predicting the 3‐year OS (Fig. 8C). The time-depend-
ent ROC curves showed a higher accuracy of the nomogram in predicting survival, with AUC values of 0.739, 
0.716, 0.714 at 1, 2, and 3 years OS (Fig. 8D). Meanwhile, the model was validated using the GSE72094 cohort, 
and the results were similar to the results in TCGA cohort (Fig. 8E–G).

Table 1.  The clinical characteristics between cluster 1 and cluster 2.

Characteristic Cluster 1 Cluster 2 P value

Age 0.025

 ≤ 65 195 (52.8%) 62 (41.1%)

 > 65 174 (47.2%) 89 (58.9%)

 Unknown 11 (2.9%) 8 (5%)

Gender 0.004

 Female 188 (49.5%) 101 (63.5%)

 Male 192 (50.5%) 58 (36.5%)

T stage 0.276

 T1 116 (30.6%) 60 (38.2%)

 T2 214 (56.5%) 78 (49.7%)

 T3 36 (9.5%) 13 (8.3%)

 T4 13 (3.4%) 6 (3.8%)

 Unknown 1 (0.3%) 2 (1.3%)

N stage 0.047

 N0 247 (67.3%) 103 (66%)

 N1 59 (16.1%) 38 (24.4%)

 N2 60 (16.3%) 14 (9%)

 N3 1 (0.3%) 1 (0.6%)

 Unknown 13 (3.4%) 3 (1.9%)

M stage 0.431

 M0 251 (93%) 114 (95%)

 M1 19 (7%) 6 (5%)

 Unknown 110 (28.9%) 39 (24.5%)

Pathological stage 0.426

 I 209 (55.9%) 87 (55.4%)

 II 81 (21.7%) 44 (28%)

 III 64 (17.1%) 20 (12.7%)

 IV 20 (5.3%) 6 (3.8%)

 Unknown 6 (1.6%) 2 (1.3%)



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13415  | https://doi.org/10.1038/s41598-023-40662-z

www.nature.com/scientificreports/

Immunotherapeutic response prediction. To assess ability of the riskscore as a biomarker for predict-
ing immunotherapeutic response, we estimated the distribution of TME scores, IPS score, TIDE scores, TMB, 

Figure 3.  Immune analysis of different clusters. (A) Differences in abundance of tumor-infiltrating immune 
cells in different clusters based on CIBERSORT. (B) Differential mRNA expression of immune checkpoints 
in different clusters. (C) The stromal, immune and estimate scores between two clusters. (D) Differences in 
T-cell exhasution score between different clusters. (E) Differences in T-cell dysfunction score between different 
clusters. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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immune cell infiltration scores and the mRNA expression of HLA and immune checkpoint inhibitors in dif-
ferent risk groups. The results of the TME score analysis indicated that the low-risk group had higher immune 
score (P < 0.001; Fig. 9A), stromal score (P = 0.05; Fig. 9B), and estimate score (P < 0.01; Fig. 9C). Further, TCIA 
database analysis revealed the low-risk group had higher IPS (P < 0.001; Fig.  9D). We also found that TIDE 
scores and TMB were higher in the high-risk group (both P < 0.001; Fig. 9E–F). In addition, our study results 
showed that the mRNA expression of PD-1 and PD-L1 were not significantly different between the two groups, 
except for CTLA4, which was significantly upregulated in the low-risk group. (Fig. 9G–I). We also observed that 
the low-risk group had significantly higher immune cell infiltration than the high-risk group, including activated 
CD8T cells, cytotoxic cells, dendritic cells, T helper cells, and so on (Supplementary file 2: Fig. S4). Lastly, we 
investigated the relationship between high- and low-risk groups and human leukocyte antigens (HLA). Except 
for HLA-A/B/C/F/G, the expression of HLA appeared to be higher in low-risk group (Supplementary file 2: 
Fig. S5).

To further validate that the riskscore could effectively predict immune efficacy response, we also included two 
immunotherapy cohorts to evaluate the riskscore model. GSE91061, which including 109 melanoma samples 
with anti-CTLA4 and anti-PD1 therapy demonstrated patients with complete response (CR) or partial response 
(PR) had a lower riskscore than those with stable disease (SD) or progressive disease (PD) (Fig. 10A). Moreover, 

Figure 4.  Gene set enrichment analysis (GSEA) showed revealed enrichment for biological processes associated 
with immunosuppression.
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GSE135222, which including 27 advanced NSCLC samples with anti-PD-1/PD-L1 confirmed that the low-risk 
group had better PFS compared to the high-risk group (Fig. 10B).

Figure 5.  Machine learning identifies hub genes associated with involved in the regulation of T-cell exhaustion. 
(A) Volcano map shows differential genes between cluster1 and cluster 2 in the TCGA. (B) 35 intersected 
differential genes associated with OS in TCGA and GSE72094 cohort. (C) The importance of 35 genes using 
random forest (RF). (D–E) 11 hub genes using the least absolute shrinkage and selection operator (LASSO) 
regression analysis. (F) 9 intersected hub genes based on 11 genes in LASSO and 15 top genes in RF.
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Chemotherapeutic drug sensitivity prediction. The IC50 values of common chemotherapy and 
targeted drugs for LUAD were calculated to further explored the drug sensitivity between low- and high-risk 
groups. By comparing the difference in IC50 values in two risk groups (Fig. 11), we found that patients in the 

Figure 6.  The establishment and validation of the riskscore in TCGA and GSE72094 cohort respectively. (A, E) 
Risk map for prognostic signature and heat map for hub genes expression. (B, F) Kaplan–Meier curves for the 
riskscore. (C, G) The prognostic signature predict time-dependent ROC curves at 1, 2, and 3 years OS. (D, H) 
Multivariate cox regression analysis to verify the independent predictive value of the riskscore.
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low-risk group had a higher sensitivity to paclitaxel, docetaxel, doxorubicin, gefitinib, lapatinib, and tipifarnib 
while patients in high-risk group had a higher sensitivity to axitinib and methotrexate. Besides, patients in the 
high and low risk groups showed no significant difference in the sensitivity of cisplatin, etoposide, erlotinib and 
gefitinib.

Figure 7.  Correlation between the riskscore and clinical features. (A) age, (B) gender, (C) T stage, (D) N stage, 
(E) M stage, (F) pathological stage. (ns p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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Discussion
T-cell exhaustion is considered to be one of the most crucial reasons for immune  resistance32. However, it is still 
not known what regulates T-cell exhaustion in the tumor microenvironment. Therefore, an in-depth explora-
tion of key regulatory genes of T-cell exhaustion could help to understand the potential mechanisms of immune 
resistance and accordingly provide a theoretical basis for clinical decision making.

In the present study, we used WGCNA to identify the module of genes most related to T-cell exhaustion and 
T-cell dysfunction. Next, unsupervised clustering approach based on the expression levels of these genes divided 
patients into two different subgroups. Obviously, patients in Cluster 1 had better OS compared with patients 

Figure 8.  Construction and evaluation of the nomogram. (A) The nomogram combined the riskscore with 
stage for prognostic prediction of a patient with LUAD in the TCGA cohort. (B, E) Calibration curves of 1-year, 
2-year, and 3-year OS for LUAD patients in the TCGA cohort and GSE72094 cohort. (C, F) Decision curve 
analysis of 3-year survival benefit in the TCGA cohort and GSE72094 cohort. (D, G) Time-dependent receiver 
operating characteristic (ROC) curves of the nomogram to predict 1-year, 2-year, and 3-year OS in the TCGA 
cohort and GSE72094 cohort.
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Figure 9.  The distribution of immune score (A), stromal score (B), estimate score (C), IPS score (D), TIDE 
score (E), TMB (F), and the mRNA expression of immune checkpoint inhibitors (G–I) in different risk groups.

Figure 10.  (A) Differences in immunotherapy response between low- and high-risk groups in the GSE91061 
dataset. (B) Progression-free survival for patient with anti-PD-1/PD-L1 therapy between the low- and high-risk 
groups in the GSE135222 dataset.
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in cluster 2. It was intriguing that patients in cluster 2 had higher abundance of CD8 T cell and CD4 memory 
activated T cell compared to group 1. This is contradictory to the fact that high levels of tumor-infiltrating CD4/
CD8 T cells usually associated with good  outcome33,34. Therefore, we hypothesized that these CD4/CD8 T cells 
in cluster 2 maybe exhausted T cells. Research had revealed that exhausted T cells often exhibit persistent high 
expression of multiple suppressive receptors, such as PD-1, CTLA-4, and LAG-313. In our study, we found that 
PD-1, CTLA4, LAG3, TIGIT, HAVCR2 and other immunosuppressive molecules were upregulated in cluster 
2. In addition, GSEA analysis cluster 2 was enriched in IL6/JAK/STAT3 signaling, interferon_gamma response, 
TNF_alpha signaling via NFKB and inflammatory response. Studies had demonstrated that JAK/STAT signal-
ing  pathway35,36 the IFN-γsignaling  pathway37 and TNF-ɑ signaling via  NFKB38 caused immune escape by 
upregulating PD-L1 expression. Therefore, we inferred that cluster 2 might mediate the suppressive immune 
microenvironment.

Next, we further analyzed the significantly differentially expressed genes between the two groups and used 
machine learning algorithms to finally identify nine key regulatory genes, including CPS1, FOSL1, GJB3, 
IGF2BP1, HLA-DOB, IGFBP1, KRT6A, KLK11, KRT81, that may be involved in regulating T cell exhaustion. 
The enzyme carbamoyl phosphate synthetase 1 (CPS1) is a key rate-limiting enzyme in the urea cycle, involving 
in ammonium conversion and mediated arginine metabolism and pyrimidine  metabolism39. T cell is highly 
sensitive to extracellular levels of  arginine40, and arginine is essential for T cell  function41,42. It has been shown 
that low arginine mediates an immunosuppressive microenvironment, which may suppress T-cell responses by 
providing a brake on T-cell  proliferation43. In addition, CPS1 deficiency could lead to hyperammonemia, which 
impair mitochondrial function, reduce ATP synthesis, and increase free radical formation, leading to oxidative 
 stress44, thereby possibly inducing T-cell exhaustion. FOSL1 encodes Fra-1, which is initially found to be highly 
expressed in solid tumors and is the member of the FOS family in activator protein (AP-1). Studies indicate 
that the AP-1 family members, including Fra-1, have essential effects in T cell  development45. In melanoma, 
Fra-1 suppress the conversion of Treg cells into effector T cells under the regulation of Ubc13-IKK signaling 
 axis46. In addition, Fra-1 is strongly associated with Epithelial-to-Mesenchymal Transition (EMT) in cancer 
 cells46,47. It has been recently shown that EMT-related pathways could harm CD8 + T cell function, leading to 
immune  evasion48. Moreover, a study from Lee et al. found a significant correlation between Fra-1 and PD-L1 
expression, and high Fra-1 expression was associated with poorer overall  survival49. Connexin 31 encoded by 
gap junction protein Beta 3 (GJB3), is one of the major members of the connexin family. Studies have indicated 
that connexin proteins mainly serve as channels to transport metabolites such as nucleotides, glutamate and 
 glucose50. There is increasing evidence to support that metabolic changes in tumor cells affect the function of 
immune  cells52. A study from Huo et al. reported that GJB3 promoted neutrophil survival and polarization by 
forming a channel between pancreatic tumor cells and neutrophils, transferring cyclic adenosine monophos-
phate (cAMP) from cancer to  neutrophils53. Meanwhile, some studies suggested that cAMP could induce T-cell 
 senescence54,55. Therefore, we hypothesized that GJB1 might be able to transfer cAMP to T cells in the same way 
which might cause T-cell exhaustion. The RNA modification N6-methyladenosine (m6A) has a significant value 
in the immune  system56, and its dysregulation is associated with poor  prognosis57. For example, a study showed 

Figure 11.  The IC50 values of chemotherapy and targeted drugs for LUAD in different risk groups. (*p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001).
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that the m6A reader insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) could recognized the 
30-UTR of PD-L1 mRNA and thus mediated stable PD-L1  expression58. The major histocompatibility complex, 
class II, DO beta (HLA-DOB) belonged to the HLA class II beta chain paralogue. It is demonstrated that HLA-
II has antigen-presenting functions, participates in T-cell differentiation, and mediates the activation of T cells 
to provoke immune  responses59. The insulin-like growth factor binding protein 1 (IGFBP1) has a vital action in 
regulating cell  growth60. It had shown that ICFBP1 was expressed in T  cells61. A research from Han et al. sug-
gested that IGFBP1 had effects on CD4 + T cell  immunomodulation62. Moreover, high expression of IGFBP1 is 
demonstrated to be closely associated with unfavorable OS in  NSCLC63. Kallikrein related peptidase 11 (KLK11) 
is a member of the human KLK gene family, which is known to perform in a number of physiological processes, 
including extracellular matrix (ECM) remodeling, cell proliferation and  differentiation64. Many studies have 
shown that KLK11 is aberrantly expressed in tumors and significantly correlated with  survival65–67. The keratin 
6A (KRT6A) and keratin 81 (KRT81) are the member of the keratin gene family. KRT6A gene overexpression in 
LUAD promotes lung cancer cell proliferation by  EMT68. KRT81 has been identified as a promising biomarker 
for the identification of squamous cell lung  cancer69.

The nine key genes described above may involved in T-cell exhaustion. Although the specific mechanisms 
have not yet been reported, we constructed a prognostic signature based on these genes that was confirmed 
to have some clinical significance. In the TCGA cohort, the prognostic signature was associated with OS, and 
patients in the low-risk group had a good prognosis. Then we performed external validation using the GSE72094 
cohort to further confirm the general applicability of the prognostic signature. Moreover, we found that cluster 
2 with high risk scores had the worst prognosis.

Immunotherapy had improved prognosis in lung cancer, but the benefit was limited. Only a minority of 
patients did benefit from  ICIs6. One of the more widely utilized immune efficacy markers in clinical practice 
was PD-L1 expression. Numerous studies demonstrated that the expression level of PD-L1 is closely related to 
the efficacy of  immunotherapy70,71. However, PD-L1 was not completely accurate in predicting immune efficacy. 
Hence, it was necessary to discover a signature that could predict the efficacy of immunotherapy. In our study, 
the prognostic signature we constructed may be useful to predict the immune response. Patients in the low-risk 
group had higher immune, stromal, and estimate scores, higher IPS, lower TIDE score which suggested a better 
response to immune checkpoint inhibitors (ICIs) therapy in the low-risk group. In the meantime, we included 
two separate immunotherapy cohorts, GSE135222 and GSE91061, which demonstrated better immune efficacy in 
the low-risk group. Besides, chemotherapy and targeted therapy were both the major strategies for the treatment 
of advanced LUAD. We found differences in the sensitivity of chemotherapeutic and targeted agents between 
high and low risk groups, suggesting that this prognostic signature might provide assistance in the selection of 
clinically sensitive agents for LUAD. Finally, the nomogram model combined with tumor stage and the riskscore 
could effectively predict the prognosis of LUAD patients.

Although our study had been successfully validated in an external cohort. However, there are several limita-
tions in our study. Firstly, the study was based on publicly available databases and its training cohort (TCGA) 
and validation cohort (GEO) were retrospective. Therefore prospective studies are necessary to validate our 
conclusions. Secondly, there was a lack of molecular mechanism studies to investigate the functional role of 
candidate key genes, and in the future we will conduct further in vitro and in vivo experiments to confirm the 
potential regulatory mechanisms. Thirdly, in lack of a large cohort of lung cancer immunotherapy patients, our 
findings still need to be further validated by future prospective studies with larger samples.

Conclusions
In summary, we identified nine key genes (including CPS1, FOSL1, GJB3, HLA-DOB, IGF2BP1, IGFBP1, KLK11, 
KRT6A, KRT81) that may involved in the regulation of T-cell exhaustion and constructed a riskscore that could 
help predict immunotherapy response and the selection of chemotherapeutic and targeted agents. In addition, 
the nomogram built in combination with tumor stage and the riskscore may be a powerful tool for LUAD sur-
vival prediction.

Data availability
The datasets generated and analyzed during the current study are available in The Cancer Genome Atlas (TCGA) 
database (https:// portal. gdc. cancer. gov/), and Gene Expression Omnibus (GEO) database (https:// www. ncbi. nlm. 
nih. gov/). Access to both databases is not required accession number. The datasets analyzed during the current 
study are available from the corresponding author on reasonable request.
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