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Predicting acute clinical 
deterioration with interpretable 
machine learning to support 
emergency care decision making
Stelios Boulitsakis Logothetis 1, Darren Green 2,3, Mark Holland 4 & Noura Al Moubayed 1,5*

The emergency department (ED) is a fast-paced environment responsible for large volumes of 
patients with varied disease acuity. Operational pressures on EDs are increasing, which creates the 
imperative to efficiently identify patients at imminent risk of acute deterioration. The aim of this 
study is to systematically compare the performance of machine learning algorithms based on logistic 
regression, gradient boosted decision trees, and support vector machines for predicting imminent 
clinical deterioration for patients based on cross-sectional patient data extracted from electronic 
patient records (EPR) at the point of entry to the hospital. We apply state-of-the-art machine learning 
methods to predict early patient deterioration, based on their first recorded vital signs, observations, 
laboratory results, and other predictors documented in the EPR. Clinical deterioration in this study 
is measured by in-hospital mortality and/or admission to critical care. We build on prior work by 
incorporating interpretable machine learning and fairness-aware modelling, and use a dataset 
comprising 118, 886 unplanned admissions to Salford Royal Hospital, UK, to systematically compare 
model variations for predicting mortality and critical care utilisation within 24 hours of admission. 
We compare model performance to the National Early Warning Score 2 (NEWS2) and yield up to 
a 0.366 increase in average precision, up to a 21.16% reduction in daily alert rate, and a median 
0.599 reduction in differential bias amplification across the protected demographics of age and 
sex. We use Shapely Additive exPlanations to justify the models’ outputs, verify that the captured 
data associations align with domain knowledge, and pair predictions with the causal context of 
each patient’s most influential characteristics. Introducing our modelling to clinical practice has the 
potential to reduce alert fatigue and identify high-risk patients with a lower NEWS2 that might be 
missed currently, but further work is needed to trial the models in clinical practice. We encourage 
future research to follow a systematised approach to data-driven risk modelling to obtain clinically 
applicable support tools.

When patients deteriorate, care providers must be able to recognise their worsening condition immediately and 
intervene  accordingly1. Delayed identification of deterioration is associated with preventable hospital  deaths2, 
while delaying the transfer of critically ill patients to intensive care puts them at higher risk of morbidity and 
 mortality3. The importance of timely identification and appropriate response to clinical instability has motivated 
the development of ’track-and-trigger’ systems. These systems tie clinical observations that are antecedent to 
patient deterioration with recommended interventions to be executed by care staff or dedicated response teams 
as part of a rapid response  system4. In the United Kingdom, this system is recommended by both National 
Institute for Health and Care Excellence (NICE) and the Royal College of Physicians (RCP) to monitor all adult 
patients in acute hospital  settings5,6.

In most cases, acute clinical instability and deterioration are preceded by abnormal vital  signs7, therefore 
standard practice in acute secondary care settings is to monitor patients using basic homeostatic measures, which 
include heart rate, blood pressure, inspired oxygen, oxygen saturation, temperature, and level of  consciousness8. 
To assist this process, weighted aggregate scores of these measures, known as Early Warning Scores (EWS), have 
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been developed to characterise the patient’s  acuity9. These scores can act as the afferent component of a rapid 
response system, tying them to an escalation protocol or a set of recommended clinical  interventions4.

Historically, data pertaining to an EWS were manually recorded and tallied on paper charts. As such, they 
often fell short of including the full breadth and variety of available predictive  information10. The gradual phasing-
out of bedside paper charts has brought the transition to digital EWS solutions that draw patient data in real-time 
from Electronic Patient Records (EPR). Beyond digitising conventional EWS, EPR systems collate comprehensive 
patient data, which can be used to improve performance and clinical  utility11. In particular, the large volume 
of available data makes it feasible to develop a purely or partly data-driven solution using machine learning. 
AI-based systems have already demonstrated suitability for assisting in medical imaging tasks, which makes 
AI-powered prognostic modelling a key research area of  interest12. Our study concentrates on analysing EPR data 
to model clinical risk, as we use machine learning methods to potentially identify acute clinical deterioration in 
patients presenting to the Emergency Department (ED).

Prior work has used machine learning to model inpatient admission, deterioration, critical care admission, 
cardiac arrest, and mortality, among other  outcomes13. In a systematic review of studies published from 
2009–2017, Goldstein et al. identified 107 applications of EPR data to training statistical and ML  models11. 
Recently, Klug et al.14 used gradient-boosted decision trees (GBDT) on a single-centre cohort of approximately 
800,000 ED episodes to predict short-term mortality risk and achieved improved performance over severity 
scores such as the Shock  Index15. Romero et al.16 developed a gradient-boosting machine (GBM) model for use 
as an EWS and demonstrated superior performance compared to the National Early Warning Score 2 (NEWS2)6. 
Finally, Fernandes et al.17 investigated the predictive value of ED patients’ presenting complaints compared to vital 
signs and other measurements. They used natural language processing (vectorisation with TF-IDF normalisation) 
to encode presenting complaints and trained models on a cohort of approximately 235, 000 patients to predict 
mortality or cardiac arrest. Their findings showed improved predictive performance and calibration when 
including the chief complaint as a predictor.

This study applies state-of-the-art methods from contemporary machine learning practice to estimate risk 
of deterioration for acute medical patients in the ED. We bring together findings from prior studies to improve 
the differentiation of at-risk patients and address challenges that are prerequisites to clinical deployment for a 
proposed solution. The ED is a fast-paced environment that treats a large volume of patients with varied acuity 
and is responsible for their initial assessment and clinical  management18. Operational pressures in EDs are 
steadily  increasing19, creating an imperative to differentiate the patients with the highest risk efficiently. In our 
study setting, ’obvious cases’ of imminent critical deterioration usually bypass the acute medical team and are 
escalated immediately. By elimination, the remaining patients are ’less obvious’ cases and thus have a greater 
need for decision support. Conventional, general-purpose EWS are not optimised for specific patient populations 
or contexts, while ’off-the-shelf ’ EWS, such as the NEWS2, have variable  performance20. Recent work argues in 
favour of centre-specific, locally tailored scores and risk  models21,22; data-driven solutions deployable at scale 
can fulfil this role.

Our outcome of interest is a composite of in-hospital mortality and admission to critical care to represent 
severe and time-sensitive medical conditions requiring intervention. We ensure the models’ outputted 
probabilities are well-calibrated and reliable to fit into existing frameworks for assessing clinical  utility23. Rather 
than prescribe a specific threshold for classifying high-risk cases, we measure our models’ discriminative skill 
across sensitivities via precision-recall curves and through their daily alert rate, which expresses how they 
would operate when deployed. We compare our performance against NEWS2, the preferred EWS in the United 
 Kingdom24.

An extant practical challenge we address is models not generalising to new application environments due to 
structural differences compared to the development  environment25,26. Solutions with rigid data requirements 
unrealistically require providers to conform to a specific pattern of testing or treatment to produce all the 
requisite data  correctly25. To avoid making assumptions about data availability or its collection context (such as 
timing, reliability, or frequency), we conduct experiments using different sets of predictive features that providers 
might generate under their unique clinical workflow. Starting with vital signs, we gradually construct models 
with finer information, including manual observations, laboratory results, clinical notes, and service utilisation, 
to reveal the most influential features.

A further barrier is a requirement for models supporting the clinical workflow to be transparent, safe, fair, 
and traceable in their decision-making  process27,28. Machine learning models have conventionally operated as 
’black boxes’29, obscuring their internal reasoning and  biases28,30. Advances in interpretable machine learning 
and fairness-aware modelling allow us to address this. We incorporate methods from the fair machine learning 
 literature31,32 into our evaluation framework to ensure our constructed models do not exhibit unfair bias against 
individuals or protected demographic groups. Then, we utilise Shapely Additive  exPlanations33, a recently 
popularised model-agnostic framework for interpreting predictive models, to produce justifications for our 
models’ risk predictions on the individual patient level. These justifications reveal the best-performing models’ 
internal reasoning and allow us to examine and validate the relationships between the significant predictors and 
the outcome. In addition to predicting a patient’s risk, our interpretable models can justify their prediction to 
the user by isolating the relevant characteristics of the patient that led them to that  result33,34.

The aim of this study is to systematically compare the performance of various learning algorithms based 
on logistic regression (LR), gradient-boosted decision trees (GBDT), and support vector machines (SVM) 
for predicting imminent clinical deterioration for patients admitted to the emergency admissions unit based 
on cross-sectional patient data extracted from EPR at the point of entry to hospital. We compare predictive 
performance to NEWS2. While this study is not designed to test novel predictors of acute deterioration, using 
interpretable machine learning to model multiple patient-related variables does allow a comparison of these 
variables and their contribution to identifying adverse outcomes.
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Results
Our selected data comprised 118,886 presentations to the Emergency Admissions Unit (EAU) at Salford Royal 
Hospital, Manchester, UK, corresponding to 61,611 distinct patients over the study period of January 2015 to 
March 2022. We identified 8286 critical deterioration events, of which 2885 occurred within 24 hours after 
admission. Table 1 summarises the dataset and presents the stratification of samples across the three data subsets 
we used in our analysis: we partitioned the samples chronologically 2:1 into a model development set and a 
validation set and additionally extracted two subsets of the validation set. The ’unseen’ validation subset excludes 
the 8054 patients ( 13.07% , making up 42.14% of the validation set’s records) that had prior admission records in 
the training set, and the ’pre-Covid’ subset only includes validation admissions that occurred prior to March 1st, 
2020. The rates of critical care admission, mortality, and composite critical deterioration were uniform across 
the chronological split.

We compared numerous modelling pipeline variations as described in the "Methods" section. From this 
comparison, we identified LightGBM, a variant of GBDT, as the best-performing learning algorithm overall 
and logistic regression with L2 penalty (LR-L2) as the best linear model. We summarise their performance in 
Table 2. Figure 1 compares the average precision (AP) and area under the receiver operating curve (AUROC) of 
the best predictive models across classifier types on the complete validation set against the measured performance 
of the reference model (NEWS2) on this patient cohort. The groups in each plot correspond to incrementally 

Table 1.  Summary statistics of the study sample.  Numerical patient characteristics of EAU admissions, 
chronologically partitioned into training and validation sets. “Test (Unseen)” corresponds to the 
chronologically split validation set but excluding patients who had any prior admissions in the training set. 
Binary variables are reported as “number of positives (%)”, while numerical variables are reported as quartiles.  
*Lying down refers to the patients’ position when their blood pressure was recorded. By default, patients not 
lying down are assumed to be sitting.

Group Variable Total Train Valid  (complete) Valid  (unseen) Valid  (pre-covid)

Episode

Records 118,886 79,653 39,233 22,701 9613

Patients 61,611 44,323 25,342 17,288 7672

LOS (days) 2.29 (0.66–7.14) 2.06 (0.63–6.67) 2.93 (0.73–8.57) 2.27 (0.58–7.59) 2.85 (0.73–7.87)

Outcomes

30-day mortality 3908 (3.29%) 2545 (3.20%) 1363 (3.47%) 685 (3.02%) 313 (3.26%)

Critical care 3982 (3.35%) 2794 (3.51%) 1188 (3.03%) 717 (3.16%) 347 (3.61%)

Critical event 2885 (2.43%) 2008 (2.52%) 877 (2.24%) 519 (2.29%) 256 (2.66%)

In-hospital 
mortality 5092 (4.28%) 3213 (4.03%) 1879 (4.79%) 959 (4.22%) 363 (3.78%)

Vitals

AVCPU-A 117,324 (98.69%) 78,563 (98.63%) 38,761 (98.80%) 22,449 (98.89%) 9492 (98.74%)

Assisted breathing 12,116 (10.19%) 7785 (9.77%) 4331 (11.04%) 2254 (9.93%) 1053 (10.95%)

NEWS2 1 (0–2) 1 (0–2) 1 (0–2) 1 (0–2) 1 (0–2)

Pulse (beats/min) 80 (70–90) 80 (70–90) 80 (70–90) 80 (70–90) 80 (70–90)

RR (breaths/min) 17 (16–18) 17 (16–18) 18 (16–18) 17 (16–18) 17 (16–18)

SpO2 (%) 97 (96–98) 97 (96–98) 97 (96–98) 97 (96–98) 97 (96–98)

Systolic BP 
(mmHg) 124 (113–139) 122 (112–138) 125 (114–140) 125 (114–140) 124 (114–138)

Temperature (oC) 36.70 (36.40–37) 36.70 (36.40–37) 36.70 (36.40–37) 36.70 (36.40–37) 36.70 (36.40–37)

Supplemental obs. 
& phenotype

Age (years) 69 (50–82) 69 (50–82) 69 (50–81) 64 (44–79) 69 (49–82)

Diastolic BP 
(mmHg) 70 (60–80) 70 (60–78) 70 (62–80) 70 (62–80) 70 (60–79)

Female 62,355 (52.45%) 42,029 (52.77%) 20,326 (51.81%) 11,395 (50.20%) 5021 (52.23%)

FiO2 (%) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

Lying down* 55,950 (47.06%) 35,750 (44.88%) 20,200 (51.49%) 11,310 (49.82%) 4666 (48.54%)

Nausea 1911 (1.61%) 1390 (1.75%) 521 (1.33%) 274 (1.21%) 116 (1.21%)

Pain 18,201.0 (15.31%) 13,117.0 (16.47%) 5084.0 (12.96%) 3149.0 (13.87%) 1092.0 (11.36%)

Vomiting 598 (0.50%) 411 (0.52%) 187 (0.48%) 105 (0.46%) 35 (0.36%)

Labs

Creatinine 
(mmol/L) 78 (63–104) 77 (62–102) 79 (64–105) 77 (63–100) 79 (63–104)

Haemoglobin 
(g/L) 130 (115–143) 130 (115–143) 130 (115–143) 132 (117–145) 130 (115–143)

Potassium 
(mEg/L) 4.20 (3.90–4.50) 4.20 (3.90–4.50) 4.20 (3.90–4.50) 4.20 (3.90–4.50) 4.20 (3.90–4.50)

Sodium (mmol/L) 138 (135-140) 138 (135–140) 138 (135-140) 138 (135-140) 138 (135–140)

Urea (mmol/L) 6.30 (4.60–9.50) 6.30 (4.60–9.30) 6.40 (4.60–9.60) 6 (4.50–8.90) 6.20 (4.50–9.30)

Service utilisation
Readmission 14601 (12.28%) 10,278 (12.90%) 4323 (11.02%) 1719 (7.57%) 1119 (11.64%)

SDEC 27,979 (23.53%) 20,488 (25.72%) 7491 (19.09%) 5332 (23.49%) 2063 (21.46%)
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augmenting the training data - the leftmost groups of each section present models using only vital signs as 
predictors, and subsequent groups give the results when we concatenated the indicated feature set (as described 
in Methods Table 4) to the previous training inputs. We test these sets of features in order of ’centre-specificity’, 
so that the most clinically standardised predictors, such as vital signs, are considered first. We provide the actual 
measurements with bootstrapped confidence intervals and the performance on the ’unseen’ and ’pre-covid’ 
validation sets in Supplementary Tables 4 and 5.

Data-driven modelling matched or outperformed the reference model across all feature sets, with the com-
plete feature set (rightmost group in each section of Fig. 1) giving the best performance. Both AP and AUROC 
trended upward as the number of predictors grew, though phenotype and supplemental observations (“& Obs”), 
laboratory results (“& Labs”), and clinical notes (“& Notes”) had a greater impact on the average precision while 
the AUROC remained more stable. Including triage and service utilisation (“& Services”) yielded the largest 
singular boost in AP (increase from 0.326 → 0.513 for LightGBM). Figure 2 illustrates the alert rate vs sensitiv-
ity and precision-recall curves for LightGBM across different feature sets and for all classifier types trained on 
the complete feature set. LightGBM produced fewer alerts per day on average compared to the reference model 
up to very high sensitivities (0.967), and all classifiers maintained an improved alert rate up to moderately high 
sensitivities ( > 0.80 ). The largest reduction of alert rate was at sensitivity 0.871, where LightGBM yielded 9.429 
daily alerts, 21.165% less than NEWS2’s 11.961. The positive predictive value (PPV) of LightGBM-Vitals behaves 
similarly to the reference model as we vary sensitivity. Performance was stable between the “Complete”, “Unseen”, 
and “Pre-Covid” validation sets, as shown in Supplementary Tables 4 and 5. Removing the ’known’ validation 
patients yielded a median increase of 0.036 for AP and 0.007 for AUROC, while validating only on admissions 
prior to March 1st, 2020 yielded an AP difference < 0.001 and a median increase of 0.008 for AUROC. All models 

Figure 1.  Average precision (a) and Area under receiver operating curve (b) achieved by the best predictive 
models per learning algorithm across tested sets of data features. Each group corresponds to independent 
models trained with the indicated feature set concatenated to all the previous feature sets to its right. The error 
bars represent 95% bootstrapped confidence intervals. Obs: Supplemental observations & phenotype, Labs: 
Laboratory results, Notes: Clinical notes, Services: Triage & service utilisation. We detail the contents of the 
feature sets in Methods Table 4.
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had satisfactory calibration, though with a tendency to underestimate the probability of critical deterioration, 
as illustrated in Supplementary Fig. 3.

To examine the suitability of these models for supporting track-and-trigger, we measure their performance 
at various cutoff points for triggering an alert. Table 3 draws comparisons with NEWS2 by fixing the models’ 
sensitivity at three levels (0.602, 0.396, and 0.220) that match the observed sensitivity of NEWS2 in this cohort 
at cutoffs 3, 5, and 7, respectively. We focus on the NEWS2 cutoff of ≥ 5 points for triggering an emergency 
response, that is often adopted instead of the stricter recommended threshold of ≥ 7  points35. At this operating 
point, LightGBM yields a PPV of 0.638, meaning we expect 63.8% of patients the model deems high risk will 
deteriorate within 24 hours, compared to 18.13% of patients occupying this NEWS2 threshold. The number 
needed to evaluate (NNE) for LightGBM at this sensitivity is 1.568, compared to 5.514 for NEWS2, a difference 
of ∼ 4 . This corresponds to requiring four fewer urgent assessments to detect one deterioration. We report the 
complete comparative measurements in Supplementary Table 9.

The feature interactions induced by SHAP for LightGBM allow us to compare their contribution to identifying 
the tracked adverse outcome. Figure 3a ranks all the included predictors by their mean absolute impact towards 
positive predictions (deterioration) and negative ones (no deterioration) across the validation set, (b) illustrates 
the patient-individual impact of each feature, and Supplementary Fig. 5 breaks down the relative impact of the 
values taken by categorical data features. The presenting complaint ranked the highest and contributed similarly 

Figure 2.  Alert Rate vs Sensitivity (a,c) and Precision-Recall curves (b,d). Top Row (a,b): All learning 
algorithms trained on the complete feature set (equiv. “& Services”). Bottom Row (c,d): LightGBM (GBDT) 
across feature sets (concatenated incrementally). In (a,c), the Alert Rate curve plots the arithmetic mean of 
daily positive predictions (alerts) across the validation period for a given sensitivity value (y-axis) against that 
sensitivity value (x-axis). The point where two lines intersect corresponds to the maximum achievable sensitivity 
for which the model with the lower line maintains a lower daily alert rate than the model with the upper line. 
In (b,d), the Precision-Recall (PR) curve presents the positive predictive value (PPV, or precision) on the y-axis 
against sensitivity on the x-axis. On the PR curve, an unskilled model giving random outputs would yield a 
horizontal line at y = P/(P + N) , where P and N are the numbers of positive and negative samples in the data, 
respectively, while a theoretical ‘perfect’ model would yield a single point (1, 1) in the upper-right corner of the 
plot. The curves are plotted from each model’s outputted predictions for the complete validation set.
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towards positives (“diabetes”, “GI bleeding”) and negatives (“back pain”, “facial problems”). The model captured 
a non-linear relationship between risk and indicators of kidney function, such as creatinine and urea levels, 
which is consistent with clinical findings differentiating the mortality risk of acute kidney injury versus chronic 
 disease36. Triage decisions were heavily influential, with same day emergency care (SDEC) invariably reducing 
the estimated risk, while certain clinical specialities, such as respiratory medicine, geriatric medicine, and general 
medicine (a catch-all for non-specialty cases), strongly contributed towards positives.

Similarly, we record the coefficients of the logistic regression models in Supplementary Tables 6 and 7 and 
find them to be consistent across the penalised models. SDEC, higher sodium levels, and specific presenting 
complaints (e.g. “facial problems”, “ear problems”) reduce the estimated risk. Conversely, elevated respiratory 
rate, potassium levels, lying down (patients flagged at the point of admission as definitely requiring a bed prior 
to senior review), and certain clinical specialities and breathing devices yield increased risk estimates. It is 
interesting to notice that age is assigned a negative coefficient. Figure 3 reveals that LightGBM also identified 
age as a strong predictor, with advanced age driving the model towards negative predictions rather than positive 
ones. We explore this non-intuitive and potentially spurious association in Fig. 4a,b which compares the two 
models’ patient-individual SHAP values for the age feature. We theorise this relationship is partly due to high-
frailty patients (aged ≥ 80 years), having the lowest proportion of 24-hour critical deterioration events out of all 
age groups (as shown in Supplementary Fig. 1) despite being very frequent attendees at the ED.

As an additional test, we trained logistic regression and LightGBM models with vital signs encoded into 
integers 0− 3 per the NEWS2 severity  scales6. We compared the results with the classifiers’ performance when 
using the original vital sign values to investigate how each model type captures the non-linear relationship 
between vitals and clinical outcomes in Fig. 5. We observe that the ’handcrafted’ scales boosted the perfor-
mance of logistic regression across feature sets, while LightGBM’s performance either dropped or remained 

Table 2.  Summary of model performance.  Average precision (AP) and Area under receiver operating curve 
(AUROC) of LightGBM and logistic regression with L2 penalty (LR-L2) for predicting 24-hour critical 
deteriorations on the three validation sets: ‘Complete’, the full validation set; ‘Unseen’, which includes only 
patients who had no admissions in the training dataset; and ‘Pre-Covid’, which includes only validation set 
patients admitted prior to March 1st, 2020. Each column corresponds to independent models trained with the 
indicated feature set concatenated to all the previous feature sets to its right.

Metric Estimator Dataset Vitals & Obs & Labs & Notes & Services

AP

LR-L2

Complete 0.156 0.259 0.260 0.264 0.480

Pre-covid 0.163 0.262 0.257 0.266 0.535

Unseen 0.172 0.311 0.302 0.311 0.489

LightGBM

Complete 0.173 0.311 0.314 0.326 0.513

Pre-covid 0.194 0.322 0.318 0.355 0.571

Unseen 0.198 0.371 0.364 0.373 0.525

AUROC

LR-L2

Complete 0.808 0.837 0.845 0.855 0.899

Pre-covid 0.800 0.828 0.829 0.845 0.903

Unseen 0.820 0.845 0.852 0.858 0.901

LightGBM

Complete 0.834 0.862 0.884 0.888 0.920

Pre-covid 0.826 0.860 0.868 0.873 0.916

Unseen 0.843 0.870 0.893 0.895 0.921

Table 3.  Summary of model performance compared to the NEWS2.  Sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), accuracy, F2 score, and numbers needed to evaluate (NNE) of 
NEWS2, GBDT (LightGBM) and logistic regression with L2 penalty (LR-L2) trained on the complete feature 
set. We fix the sensitivity of the models at three levels (0.602, 0.396, and 0.220) that match the observed 
sensitivity of NEWS2 at thresholds 3, 5, and 7, respectively.

Estimator Cutoff Sens. Spec. PPV NPV Accuracy F2 NNE

NEWS2

≥ 3 0.6021 0.8545 0.0865 0.9895 0.8489 0.2746 11.5663

≥ 5 0.3968 0.9590 0.1813 0.9858 0.9465 0.3206 5.5144

≥ 7 0.2201 0.9867 0.2749 0.9822 0.9696 0.2292 3.6373

LightGBM

≥ 0.167 0.6021 0.9735 0.3417 0.9907 0.9652 0.5225 2.9261

≥ 0.432 0.3957 0.9949 0.6379 0.9863 0.9815 0.4282 1.5677

≥ 0.810 0.2189 0.9996 0.9231 0.9824 0.9821 0.2583 1.0833

LR-L2

≥ 0.114 0.6009 0.9633 0.2726 0.9906 0.9552 0.4843 3.6679

≥ 0.360 0.3968 0.9946 0.6259 0.9863 0.9812 0.4281 1.5977

≥ 0.788 0.2155 0.9993 0.8832 0.9824 0.9818 0.2539 1.1323



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13563  | https://doi.org/10.1038/s41598-023-40661-0

www.nature.com/scientificreports/

stable. Figure 4c,d presents an example of a diverging relationship learned by LightGBM and LR from the same 
feature, temperature. Note that the presented results thus far assume 24 hours after admission as the cut-off 
point for identifying deterioration events. Supplementary Fig. 4 illustrates how the AUROC of LightGBM and 
LR-L2 varied when we increased the (cumulative) time threshold gradually from 24 hours to 30 days. Across all 
feature sets, the AUROC peaked at the first 24–48 hours and then trended downwards as the cut-off widened 
and the on-admission measurements for each newly included sample became more distant from the outcome.

Finally, Fig. 6 presents the generalised entropy index vs sensitivity for LightGBM across the tested feature 
sets and all models trained on the complete feature set. Supplementary Fig. 6 isolates the between-group fairness 
component of the generalised entropy index when we consider the population groups defined by the protected 
demographic characteristics of age group and sex (as specified in Supplementary Fig. 1). All models except 
for LightGBM-Vitals achieve an improved fairness score compared to the reference model across sensitivity 
thresholds. NEWS2 produces a better between-group fairness and, correspondingly, a more significant unfairness 
within the demographic groups, under the complete feature set above sensitivities of ∼ 0.85 . To account for 
potential pre-existing inequalities in the cohort, we record the differential bias amplification of the models in 
Supplementary Table 8. These measurements corroborate the generalised entropy findings, with a positive bias 
amplification under the vital signs feature set when considering age groups. However, this diminishes when 
considering intersectional protected groups of both age and sex. Bias amplification values across all other feature 
sets are strongly negative - indicating removal of bias - or near zero. We theorise that this unusual amplification 
of inequality with respect to age is due to the vital signs feature set containing insufficient information to predict 
our tracked outcome correctly for patients of all ages.

Discussion
In a large cohort of ED admissions, we developed and validated predictive models that can differentiate patients 
likely to deteriorate shortly after admission. GBDT methods received the most focus as they are state-of-the-art 
for sparse classification tasks (even compared to deep neural  networks37), they can capture non-linear interac-
tions such as those present in clinical data, and they natively incorporate missing values, which are inevitable 
under typical clinical workflows. Using our trained models’ coefficients and the extracted global justifications, 
we can identify which characteristics of our cohort were most predictive of the tracked clinical outcome both 
on the patient level and across the studied population. Features that encode the clinical context of the patient’s 
condition, presentation, and comorbidities stood out as the most useful. These included presenting complaints, 
triage decisions such as the utilisation of SDEC, and the assigned clinical speciality, among others. Patient age 

Figure 3.  Induced feature importances for LightGBM in decreasing order of mean absolute impact. In (a), the 
bar lengths represent the mean absolute impact of each feature on the model’s predictions for the validation set. 
In (b), each point represents a value from one admission record. The points’ colour corresponds to numerical 
value, and their position on the x-axis represents the magnitude of their contribution towards increasing the 
predicted risk (if x > 0 ) or reducing it (if x < 0).
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stood out for being inversely correlated with our tracked outcome, against clinical  intuition38, which we theorise 
results from the low prevalence of the outcome within the highest age band. While it did not result in the model 
amplifying unfair bias, it presents a clear example of model interpretability revealing spurious associations that 
might require correcting prior to deployment.

Our cohort of patients with varied acuity and conditions reflects a typical real world ED acute medical work-
load. Frontline staff collected the patient data under everyday conditions, where operational pressures affect 
the timeliness and reliability of data entry. We excluded little data since, although comprehensive manual data 
curation is helpful for model development, it conflicts with scalable deployment and real-time use of data-driven 
 systems27 and can lead us to discard valuable information for uncommon  cases39. We did not carry out a priori 
feature selection but instead used all available data and employed modelling methods that perform intrinsic 
feature selection and can differentiate useful features based on evidence. Healthcare digitalisation is an ongoing 

Figure 4.  Feature-specific importances extracted by SHAP from LightGBM (a,c) and LR-L2 (b,d). The top 
section (a,b) presents the importances of patient age, while the lower section (c,d) presents body temperature. 
Each point represents a value from one validation set record. The points’ position on x-axis represents the 
numerical feature value, while the y-axis indicates their contribution to the prediction for that patient, with 
values above y = 0 (indicated in red) contributing towards making the prediction positive and values below 
y = 0 (indicated in blue) contributing towards making the prediction negative.
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 process40, so we made no assumptions about the level of EPR integration. Instead, through our experiments with 
different feature sets, we accommodate different levels of data availability. The lack of a standardised benchmark 
dataset makes direct comparisons between studies on this topic challenging, so we minimised centre-specific 
assumptions and standardised our modelling pipelines’ structure to establish reproducibility.

We similarly designed our assessment methodology around the extant practical challenges and presented 
results with the context of their resource cost. We used a temporal split of the study data to assess performance 
but retained the records where the patient had presented to the same ED during the training period as frequent 
repeat attendees reflect the reality of clinical practice. To strengthen our results, however, we also examined 
removing these records and still demonstrated good performance. Calibration is often  underappreciated10, and 
alert frequency deserves attention as alert fatigue is a key critique aimed at existing solutions from frontline 
 staff21. We focused on measuring discriminative skill and avoided setting a threshold for positive or negative clas-
sifications, as setting it carries clinical, operational, and ethical complications. Directing care where it is needed 
promptly is vital and far outweighs the cost of false positives. However, excessive false alarms are detrimental 
to a model’s utility due to alert  fatigue41–43. Balancing clinical risk against available capacity is a well-researched 
problem beyond the scope of our  study23,44; instead, we argue that early-stage researchers should aim to maximise 

Figure 5.  Average precision (AP) of (a) LR-L2 and (b) LightGBM. Each pair of bars corresponds to 
incrementally including the indicated feature sets (from Methods Table 4) as training data. For a given feature 
set, we measure the AP of two independently trained models, one using the direct measurements of vital signs 
(blue), and one with the vital signs encoded using the NEWS2 severity scales (red). The error bars represent 95% 
bootstrapped confidence intervals.

Figure 6.  Generalised Entropy vs Sensitivity curves of (a): LightGBM across the tested feature sets, and (b): All 
classifier types trained on the complete feature set. We plot each model’s generalised entropy index for a given 
sensitivity value (y-axis) against that sensitivity value (x-axis). A lower value on the y-axis indicates a more fair 
distribution of ’benefit’, i.e. of receiving a positive prediction. A theoretical ’perfect’ model would yield a single 
point (0, 1) in the lower-right corner of the plot.
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the discriminative skill of their model, as might be measured by AUROC or the highest achievable sensitivity 
while preserving acceptable specificity.

Our predictive models have the potential to positively impact clinical practice. Track-and-trigger systems’ 
intended purpose is to identify patients at imminent risk of deterioration, leading to mortality, admission to 
critical care, or cardiac  arrest9. However, limited resources lead to a conflict when trying to direct care to the right 
patient at the right  time45; the nominal NEWS2 trigger threshold of 7 does not capture the majority of patients 
at imminent risk of an adverse outcome, while physiological decline has been found to commence at a NEWS2 
threshold of  346. Consequently, studies have aimed to augment the standard NEWS2 with additional predictors, 
such as  biomarkers47,48. Modified EWS are typically compared with the NEWS2 via their AUROC. Although 
they often show statistical improvements in performance, their practical and clinical benefit remains open to 
debate. Our proposed model includes multiple and varied predictors, providing a more comprehensive patient 
assessment. In a deployment setting, if the decision threshold for identifying high-risk patients is set to match the 
NEWS2, our models would flag fewer cases, reducing the resources needed to maintain the same level of care. If 
the decision cutoff is softened to match the NEWS2’s observed alert rate, the sensitivity increases, allowing our 
models to identify cases currently missed by the NEWS2. If incorporated into EPR, they could provide clini-
cians with automatic alerts, flagging high-risk patients for urgent clinical review and highlighting the patients’ 
characteristics that led to that assessment. The next developmental step is to trial our models in clinical practice 
and assess their real-world performance, practical feasibility, and acceptability to clinicians.

Our observational dataset is limited to one acute secondary care centre, but many measured parameters and 
outcomes vary between providers. Even near-universal predictors such as vital signs may be measured differ-
ently. For example, manual measurement of respiratory rate is less precise than an electronic  recording49, provi-
sion of supplemental oxygen is subjective and depends on operational constraints, availability, guidelines, and 
 expertise50, and the same oxygen saturation may represent different levels of clinical risk depending on whether 
it was measured before or after commencing  oxygen51. Furthermore, we recorded symptoms, vital signs, and 
laboratory results from the point of admission. This information gives a cross-sectional view of the patient’s con-
dition as seen by the admitting clinician but excludes longitudinal information, which prior work has collected 
via continuous vital sign monitoring and used to train highly effective  models33,52. Finally, we investigated unfair 
bias and group inequalities in the models to the best of our ability but limited our assessment to the available 
protected characteristics. While patients face divergent clinical risks depending on characteristics such as sex, 
age, or ethnic  background53, finer data such as economic stability, education, community context, and other social 
determinants of health are also strong predictors of clinical  risk54. We recommend that researchers investigate 
fairness thoroughly, especially if the models they construct are intended to autonomously screen or prioritise 
patients’ access to care, to ensure healthcare inequalities are not  perpetuated55.

There are key considerations researchers should take into account before adopting similar modelling method-
ologies. It is essential to consider the validity of jointly modelling outcomes and the reliability of any composite 
outcome as a surrogate for clinical deterioration. We considered critical care admission and mortality as a single 
outcome because we expect both to be preceded by deranged physiology, and the clinical response to both, in 
terms of urgency and skill, is  similar8. The joint outcome served as a surrogate for any severe and time-sensitive 
medical condition encountered at the ED; this is a common modelling choice in the  literature10,56 and one we 
find reasonable, as our focus is on clinical escalation, which is the primary purpose of an  EWS9. However, critical 
care and mortality represent competing outcomes as the former intends to prevent the  latter57. Future studies may 
prefer to avoid such assumptions and investigate multiclass modelling or compositing multiple binary classifiers, 
each trained to identify a single measurable outcome. Some features we utilised, such as triage outcomes, directly 
represent clinical decision-making. Their inclusion is in contrast with the ’one-size-fits-all’ approach taken by the 
 NEWS258 or their explicit exclusion by some studies to avoid capturing and amplifying human-originated  bias27. 
If the purpose of a system is to ’sense-check’ clinical decisions, its input data should ideally be as isolated as pos-
sible from those decisions. However, our findings show that these features efficiently stratify patient risk, making 
them valuable for producing reliable clinical risk estimates as long as the risks are made clear and considered.

In conclusion, we demonstrated the development of predictive models on a large, real-world sample of general 
ED patients. Considering the high and rising pressures EDs face and the potential for missed diagnoses, models 
built from continuing our work could be clinically valuable for decision support. We contend that this study 
demonstrates the power of machine learning for modelling or adapting to patient populations for this task. By 
incorporating modularised modelling pipelines from contemporary machine learning practice and leveraging 
the advances in interpretable modelling, we encourage future research to follow a systematised model-building 
approach and help obtain clinically useful prognostic tools.

Methods
Data collection and preparation. Methodology.  This is a retrospective observational study of routinely 
collected patient-level data. As this study concerns the development of a predictive model, we follow the guidance 
set out in the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis 
(TRIPOD)  statement59. We provide the TRIPOD model development checklist in Supplementary Table 10.

Study setting.  Salford Royal Hospital is a digitally mature, ’paper light’ NHS secondary care hospital with over 
100, 000 Emergency Department attendances and ∼ 40, 000 unplanned admissions annually. The Hospital’s EPR 
captures clinical episode data in real-time from arrival at the ED until discharge. Selected data are exported 
pseudonymously to an internal data warehouse to drive local quality improvement and service development 
projects. Our study considered all such records from 1st January 2015 to 31st March 2022. This starting date 
reflects the first calendar year after the introduction of electronic NEWS recording in the Hospital. We selected 
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all patients aged ≥ 18 years admitted to the Emergency Admissions Unit (EAU) that had a sufficiently long stay 
for their first NEWS/NEWS2 to be recorded. The EAU predominantly treats patients admitted to a conventional 
Acute Medical Unit (AMU) but also accepts patients from all specialties. Our data include patients who received 
ambulatory emergency care (AEC) and same-day emergency care  (SDEC60) but exclude planned admissions, 
day case reviews, and maternity cases. We further exclude a small subset of patients that received critical care 
interventions at the ward on-arrival, such as invasive ventilation or cardiac pulmonary resuscitation, without 
being moved to critical care or admitted under critical care medicine. Supplementary Fig. 2 summarises our 
exclusion criteria and subsequent data splitting. We present summary statistics of the dataset in Table 1, and 
further details of the collected categorical features in Supplementary Table 3.

Data collection.  Most acute admissions arrive to the ED, while a smaller minority are admitted directly to 
the EAU or via ambulatory emergency care. Therefore, initial observations and investigations are taken at the 
point of entry to hospital. As a routine part of EAU admission, the responsible staff member (nurse or support 
worker) records the patient’s vital signs within a target of 30 minutes of arrival. The vital signs that make up 
the  NEWS26 are measured in a standardised manner using Dinamap monitors, and manually transcribed into 
EPR. These data are body temperature ( ◦C ), heart rate (beats/min), systolic (and diastolic) blood pressure 
(mmHg), and peripheral oxygen saturation ( % ). Other parameters are measured using manual observation and 
direct questions. These are the patient’s level of consciousness (AVCPU), presence of pain, nausea, or vomiting, 
whether the patient was receiving oxygen at the time of SpO2 measurement and, if applicable, the oxygen flow 
rate and mode of delivery.

Independent of this, blood test results are automatically recorded in the laboratory information management 
system (LIMS) and copied to EPR in real time. Whether a patient receives routine blood tests depends on opera-
tional pressures and considerations at the ED, not on the patient’s presentation. Other information available upon 
arrival at the EAU includes identifier data such as the unique patient number; basic phenotypic information, such 
as their age and sex; admission pathway (e.g. ED, emergency GP referral); arrival time; and unstructured notes 
indicating their presenting complaint and the ED staff ’s primary diagnosis. For patients with prior hospital visits, 
significant comorbidities and previous admission events are available from the point of admission.

Following initial collection, our data are supplemented with downstream administrative and outcome infor-
mation. Final admission diagnoses and treatment are measured using ICD-10-CM, OPCS-4, and HRG codes, 
alongside service utilisation records. The ICD-10-CM diagnoses are compiled after discharge by a clinical coding 
team, drawing form information recorded in the EPR. Procedures and service utilisation are similarly recorded in 
EPR and coded retrospectively using OPCS-4. We do not use the retrospectively coded diagnoses or procedures 
as model training inputs, but instead for data filtering or delineating subpopulations in the cohort for more 
detailed model evaluation. Each ward transfer and length of stay (LOS) per ward are provided in chronological 
order. Outcome parameters include inpatient and post-discharge community mortality, 30-day readmission, 
date and time of discharge, and total LOS.

Ethical approval.  All data used in this study is collected as part of routine clinical care. In keeping with 
Health Research Authority guidance, an application to the Integrated Research Application System (IRAS) 
and Confidentiality Advisory Group (CAG) approval were not required as the data controller (The Northern 
Care Alliance NHS Foundation Trust) deemed that the use of non-identifiable and anonymised patient level 
data did not contravene a breath of confidentiality. Local approval to undertake the study was granted by the 
Trust’s Research and Innovation Department (R &I internal reference 21HIP13). All methods were carried out 
in accordance with relevant guidelines and regulations.

Feature engineering.  Some of the collected data is not directly clinically relevant or may be unsuitable for 
modelling under a realistic use case. However, we can use it to engineer useful features. Other features are 
relevant but first require cleaning or modification. We derive the following features:

• 30-day readmission. We mark as readmissions those patient records that are preceded by a record bearing 
the same unique patient ID if the two records’ admission dates are ≤ 30 days apart.

• Unstructured clinical (ED) notes. The presenting complaint and ED diagnosis are unstructured text and thus 
could hold any string value. We cluster presenting complaints into a categorical variable representation since 
the 50 most frequent values account for nearly all records ( 97.58% ), and we assign the remainder a sentinel 
value. In contrast, the ED diagnosis varies greatly between records, so we compile a list of clinically relevant 
word stems and abbreviations based on expert opinion and construct a boolean Bag-of-Words vector for 
each record indicating which ones are present. We provide the prevalent presenting complaint values and 
diagnosis stems in Supplementary Table 3.

• Vital signs. We investigate training models directly on vital sign readings or encoding them into integers 
0− 3 per the NEWS2 severity  scales6. The former approach forces models to form evidence-based weightings 
for values that correlate with adverse patient outcomes, while the latter allows us to incorporate the domain 
knowledge embedded in the NEWS2 into the models. Recorded vitals must be checked for spurious values 
as they are the only parameters transcribed into EPR manually under a typical workflow. We check each 
record against fixed ranges (e.g. 0–100% for SpO2) and soft thresholds based on the range of physiologically 
possible values determined by expert clinical opinion. We provide further details on filtering these values in 
Supplementary Table 1.
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Data labelling.  Our tracked outcome is a composite of in-hospital mortality or admission to critical care from 
the ward within a specified time threshold after presenting to the ED. The criteria to identify patient episodes 
that belong in the positive class are are:

• The discharge/end-of-episode record indicates the patient died in the hospital AND the record’s timestamp 
is within 24 hours of the admission timestamp, OR.

• Their service utilisation indicates admission to critical care or provision of critical interventions on the ward 
AND this occurred within 24 hours of the admission timestamp.

We identify critical care based on recorded admission into the hospital’s critical care unit (CCU) or the high-
dependency medical unit (H1). We use the length-of-stay per ward to determine how long after the patient’s 
arrival they were admitted to critical care. A smaller subset of patients received critical care interventions without 
being moved to these wards, and we can detect most such cases through specific entries in their recorded pro-
cedures - OPCS-4 codes E85.1 (invasive ventilation), X50.3 (advanced cardiac pulmonary resuscitation), X50.4 
(external ventricular defibrillation), or X56.* (intubation of the trachea).

Model development. Modelling pipeline.  We adopt a modularised model-building approach from 
contemporary machine learning practice. We consider pipelines as sequences of distinct tasks in the model-
building process, where each task’s output becomes the subsequent task’s input. Some tasks modify the data 
samples in preparation for modelling. At least one task in each pipeline is a learning/model-building algorithm. 
Then, subsequent post-processing tasks may alter the predictive model’s output or aggregate multiple models. 
We implement the following tasks, executed in order: 

1. Data pre-processing. Executes the data preparation tasks outlined previously to produce a vector represent-
ing each patient episode. We parameterise the processing component to include only the features we specify, 
so we may investigate selectively including features and the impact they have on performance. The sets of 
features we consider are listed in Table 4.

2. Data splitting. Partitions the data into two subsets; we use one for model construction and reserve the second 
for validation. We prefer a temporal train-test split over standard random  splitting61, and partition the dataset 
such that the first 2/3 of records chronologically serve as the training set and the latter 1/3 as the validation 
set. For some experiments we implement an additional filter that excludes any validation set records where 
the patient, as identified by their unique ID, had also appeared in the training set in a previous admission.

3. Data imputation. Supplements standard values into data samples with empty fields. We apply this only to 
those modelling algorithms that are incompatible with missing data in their inputs (logistic regression). We 
impute numerical features with the median over the training dataset and binary and categorical variables 
with appropriate constant values. The imputed values correspond to a patient in stable condition.

4. Model construction. A learning algorithm receives the data samples and produces a predictive model.
5 Calibration. As a post-processing step, we map the numerical outputs of the trained predictive model into 

well-calibrated probabilities, substituting the model’s original output C(xi) on input xi for an estimate of 
Pr(yi = 1|C(xi)) , the conditional probability of belonging to class yi . We opt for isotonic  calibration62 and 
fit a meta-estimator that learns the isotonic (monotonically increasing) mapping m that minimises a loss 
function L =

∑

i wi(yi −m(C(xi))
2.

Model training and tuning.  We construct pipelines with each combination of available components. For each 
one, we execute a single-objective Bayesian optimisation process (Tree-Structured Parzen  approach63) to sweep 
over the space of possible hyperparameter values and probabilistically settle on values that maximise our chosen 
performance metric, average precision. We construct the final models using the best-scoring hyperparameters 
after 1000 tuning iterations. We report the resultant hyperparameters in Supplementary Table  2. We avoid 

Table 4.  Dataset features and units categorised into feature sets.  In the given units, “Y/N” indicates binary 
variables, “category” un-ordered categorical variables, “text” unstructured text data, and “M/F” indicates male 
or female.

Feature set Features (units)

Vital signs (NEWS2) Body temperature ( ◦C ), heart rate (beats/min), systolic blood pressure (mmHg), peripheral oxygen 
saturation ( %)

Supplemental obs. & phenotype
Sex (M/F), Age (years), Diastolic blood pressure (mmHg), breathing device (if applicable), prescribed 
oxygen  (FiO2), presence of pain (Y/N), presence of nausea (Y/N), presence of vomiting (Y/N), lying 
down* (Y/N)

Clinical notes Presenting complaint (text), ED diagnosis (text)

Laboratory results Haemoglobin (g/L), urea (serum, mmol/L), sodium (serum, mmol/L), potassium (serum, mEq/L), 
creatinine (mcmol/L)

Service utilisation Triaged to SDEC (Y/N), readmission within 30 days (Y/N), admission speciality (category), admission 
pathway (category)
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training the calibration meta-estimator on the same data that trained the classifier and, instead, we combine 
calibration with k-fold cross-validation. We randomly separate the training dataset into k equal-sized partitions 
(setting parameter k = 5 ), train a model on four of the subsets and fit the calibrator using the remaining subset. 
We iteratively repeat this k times to such that each partition serves as the calibration set once and produce 
k independent models to serve as sub-estimators of a model ensemble. The final ’representative’ probability 
prediction of the ensemble C of sub-estimators C1, · · · ,Ck for input vector x is taken to be the arithmetic mean 
of the sub-estimators’ predictions: C(x) = 1

k

∑k
i=1 Ci(x).

Model evaluation.  We assess the discriminative skill of the models by constructing the precision-recall curve 
and measuring the average precision, which is the mean of the PPV (or precision) over the interval of sensitivity 
(TPR/recall) values from 0-1. We approximate this with the weighted mean of the measured PPV across the 
observed sensitivity thresholds, where the weight of each element is the difference in sensitivity from the 
previous  element64.

where p(r) is the PPV as a function of sensitivity r, P(k) is the precision at cut-off k in the ranked sequence of 
data samples in the validation dataset, and �r(k) is the difference in recall rk − rk−1 . We calculate the confidence 
intervals for our estimate of the AP by bootstrapping with 1000 bootstrap samples over the validation  set65. We 
construct the PR curve by plotting the PPV on the y-axis against sensitivity on the x-axis66. On the PR curve, 
an unskilled model giving random outputs would yield a horizontal line at y = P/(P + N) , where P and N are 
the numbers of positive and negative samples in the data, respectively, while a theoretical ’perfect’ model would 
yield a single point (1, 1) in the upper-right corner of the plot.

We construct the receiver-operating characteristics (ROC) curve and compute the area under the receiver 
operating curve (AUROC). We plot the false-positive rate (1 minus the specificity) on the x-axis against the 
sensitivity on the y-axis. The minimum possible area under the curve is 0.5, corresponding to a completely 
random relationship between the model’s output and the ground truth. Generally, 0.7− 0.8 indicates reason-
able discrimination, and values over 0.8 indicate good  discrimination8. We compute confidence intervals for 
the AUROC as before.

The ROC and PR curves both provide a model-wide evaluation and, while the ROC curve is more common, 
we prefer the PR curve because it better indicates the skill of the model at predicting the minority (positive) 
class correctly and is less influenced by predicting the majority (negative) class  correctly67. The PR curve further 
allows us to visually inspect how quickly PPV deteriorates as we increase model  sensitivity66, which is helpful in 
a task where it may be appropriate to value sensitivity over specificity.

Finally, we investigate how a model’s daily alert rate varies with  sensitivity16. We construct an alert rate curve 
by plotting the alert rate (the number of positive predictions divided by the number of days) on the y-axis over 
sensitivity on the x-axis. The point where two lines intersect corresponds to the maximum achievable sensitivity 
for which the model with the lower line maintains a lower daily alert rate than the model with the upper line.

Model bias.  We investigate two forms of undesirable bias: individual, representing how dissimilarly we treat 
individuals who deserve similar  outcomes68, and group-based, measuring the inequality of predictions between 
demographic groups defined by protected  characteristics69. The generalised entropy  index70 applies to both 
notions concurrently. Given a patient record xi with ground-truth outcome yi , we define the benefit experienced 
by the patient due to model prediction C(xi) as:

Under this representation, a false-positive patient experiences a large benefit ( b = 2 ), while a false-negative that 
the model missed has the heaviest penalty ( b = 0 ). Then, given the vector of benefit values over the validation 
set, b = (b1, b2, · · · , bn) , and their arithmetic mean µ(b) , we measure the generalised entropy index fairness 
score E 2

b
 , where:

Furthermore, given protected groups g ∈ G , with each comprising ng patient records with benefit vectors 
b
g = (b

g
1, b

g
2, · · · , b

g
ng ) , we decompose the generalised entropy into its between-group component E 2

β  and its 
within-group component E 2

ω  , representing group and individual fairness, respectively. We measure the between-
group component E 2

β  , where:

We define demographic groups based on the available protected characteristics - age and biological sex. We 
partition the continuous age variable into age groups, as illustrated in Supplementary Fig. 1. For both scores, 
the ideal value is 0 and higher values indicate unfair classification.

AP =

∫ 1

0

p(r)dr ≈

n
∑

k=1

P(k)�r(k),

bi = yi − C(xi)+ 1,

E
α(b) =

1

nα(α − 1)

n
∑

i=1
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µ(b)
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− 1

)
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We additionally compute the differential fairness bias amplification exhibited by our  models71. The differential 
fairness metric is defined from the standpoint of intersectionality, i.e. equally protecting population sub-groups 
defined by multiple overlapping protected characteristics. Bias amplification measures a predictive model’s 
unfairness compared to any pre-existing bias reflected in the dataset due to inequality in the real-life generative 
process of the data. Given a set of patient records x and protected groups (gi , gj) ∈ G × G , the (smoothed) 
differential fairness ε of a classifier C is defined by the relation:

where |RY |α is the Dirichlet smoothing concentration parameter (we set α = 1.0 , assuming no prior informa-
tion). Then, the bias amplification metric is defined as the difference εC − εD of the differential fairness value 
for the model C minus the value for the dataset D’s ground truth. A negative bias amplification indicates that 
the predictive model reduces differential unfairness, while a positive value means the estimator is more biased 
than the original data.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to the data sharing 
agreement between the Northern Care Alliance NHS Trust and Durham University, but are available from the 
corresponding author on reasonable request.
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