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Hierarchical based classification 
method based on fusion 
of Gaussian map descriptors 
for Alzheimer diagnosis using 
 T1‑weighted magnetic resonance 
imaging
Shereen E. Morsy 1, Nourhan Zayed 2,3* & Inas A. Yassine 1

Alzheimer’s disease (AD) is considered one of the most spouting elderly diseases. In 2015, AD is 
reported the US’s sixth cause of death. Substantially, non‑invasive imaging is widely employed to 
provide biomarkers supporting AD screening, diagnosis, and progression. In this study, Gaussian 
descriptors‑based features are proposed to be efficient new biomarkers using Magnetic Resonance 
Imaging (MRI)  T1‑weighted images to differentiate between Alzheimer’s disease (AD), Mild Cognitive 
Impairment (MCI), and Normal controls (NC). Several Gaussian map‑based features are extracted such 
as Gaussian shape operator, Gaussian curvature, and mean curvature. The aforementioned features 
are then introduced to the Support Vector Machine (SVM). They were, first, calculated separately 
for the Hippocampus and Amygdala. Followed by the fusion of the features. Moreover, Fusion of the 
regions before feature extraction was also employed. Alzheimer’s disease Neuroimaging Initiative 
(ADNI) dataset, formed of 45, 55, and 65 cases for AD, MCI, and NC respectively, is appointed in this 
study. The shape operator feature outperformed the other features, with 74.6%, and 98.9% accuracy 
in the case of normal vs. abnormal, and AD vs. MCI classification respectively.

One of the chronic progressive neurodegenerative diseases is AD. Alzheimer’s Disease is the sixth cause of mortal-
ity in the US in  20151. Across the broad, the people living with AD are nearly 44 million. More and above, in the 
next two decades, the estimated number of affected people will  double2. So that by 2050, one out of 85 persons 
will have  AD2. It is considered a dementia disease that is linked with some behavioral alterations and memory 
leakage because of the death of brain  cells3. Manifestations of early Alzheimer’s attack start between the age of 
thirty’s and sixtieths. The first manifestations vary from patient to patient. Memory problems are often one of 
the first cognitive impairment signs. As the disease progresses, people may be diagnosed with Mild Cognitive 
Impairment (MCI), since they experience greater memory loss as well as other cognitive difficulties. In this 
stage, patients may conduct their commonplace stirrings but with minimal adequacy. MCI is considered the 
longest stage, as it may last for 20–30 years. AD progresses in sundry stages: preclinical, mild (at times named 
early-stage), moderate, and severe (at times named late-stage). The late stage of the disease where patients may 
stay for 5 years, usually ended with patient  death4.

Since AD averages are predictable to dramatically increase in the upcoming years. Though, its early diagnosis 
and treatment act as an essential confront in modern science. In addition, the advances in neuroimaging and 
finding new biomarkers attempts are changing our understanding of AD. Structured magnetic resonance imaging 
(MRI) has a great range of soft tissue contrast that can describe the anatomy in detail, a new biomarker-based 
definition using MRI can measure neuro-degeneration4,5. Early research in the MRI images analysis for AD 
patients is focused on estimating the brain/region atrophy (or brain/region volumes)6–8, quantifying the MRI sig-
nal alterations due to the changes in tissue characteristics such as white matter hyperintensities from  T2-weighted 
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 images9. Damulina et al.10 calculated WMH load in different brain regions, comparing normal control subjects 
to AD patients confirmed elevated WMH load in AD patients, especially in the brain regions periventricular, 
parietal white matter, and subcortical frontal brain. Others emphasize atrophy, of the hippocampus and nearby 
medial temporal structures, by analyzing the regional volumetric changes in patients with AD compared to 
normal control  subjects6–8,11.

From the authors’ readings, previous work established approaches, to automatically classify the different 
stages of AD, which can be assorted into triple categories: voxel-based approaches, vertex-based approaches, 
and approaches using Region of Interest (ROI) based. In the approaches using voxels, the features are represent-
ing the probability maps of the tissue type in each voxel. The probability map is usually calculated through the 
histogram of intensities estimation of each  voxel9,12–15. In the case of vertex-based approaches, the features are 
usually extracted from the cerebral cortical surface such as the cerebral cortex thickness at each vertex of the 
cortex. The inner and outer surface of the cortex is extracted and represented as the same number of vertices, 
where further measures are extracted such as the cortical thickness (defined as the Euclidean distance between 
these linked vertices)16–18. When doing the exploration based on the volume it is called ROI-based  approaches15,19, 
Other ROI way is by exploring the shape of the most affected regions due to the progression of the  disease16,20. 
A recent study put together a complex volumetry-based analysis and vertex-based analysis to investigate the 
pattern of subregional structural changes in gray matter structures and correlated this with the clinical scores for 
AD, and MCI, compared to the normal controls. Their results showed significant atrophy in bilateral hippocampi 
and nucleus accumbens for AD patients compared to normal  controls8.

The Hippocampus and Amygdala are considered the utmost smitten part in terms of shape by Alzheimer’s ret-
rograding)6,13,20. Adding up the hippocampus important role associated with long-term memory, which includes 
all bygone awareness, and  experiences21–23. Whereas, the Amygdala plays a pivotal function in the emotional 
processing such as: memory associated with emotions, and emotional stimuli adaptive  responses24. Thus, finding 
new biomarkers is changing our understanding of AD, especially zooming out on these regions associated with 
cognitive impairment of patients, which might be confirming them to be potential target regions of treatment in 
AD. Otherwise, the existing challenge for modern neuroimaging is to help diagnose early AD and MCI patients. 
This will reflect the disease stage as well as the predictive progression of mild cognitive.

This paper employs the Gaussian Map based features, extracted from ROI to distinguish between the nor-
mal controls, MCI, and AD patients. The Gaussian Map features were extracted for both the Hippocampus and 
Amygdala separately once and once again after contaminating the two regions to study the overall changes in 
the shape than studying this for each region separately. For more assessment and understanding, two fusion 
levels were done; Feature-fusion level which was done by calculating independently each ROI extracted feature 
and then fusing both for further classification. ROI-fusion level whereas fusion of the regions before feature 
extraction was also employed. The classification process is following hierarchical criteria where, in the first 
phase, the objective is to discriminate NC from the abnormal subjects; named AD and MCI. The second step is 
to differentiate the AD and MCI subjects. The Gaussian-based extracted features were then given to the SVM 
classifier. Finally, the performance of the proposed extracted features will be evaluated calculating sensitivity, 
specificity, accuracy, and ROC  Analysis25.

Materials and methods
Dataset description. Our study includes one hundred sixty-five subjects (165), Tables 1 and 2 list the age 
range of the subjects employed in the study as well as the inclusive diagnostic criteria such as Mini-Mental State 
Exam score (MMSE) Clinical Dementia Rating (CDR). The dataset was acquired using the ADNI acquisition 
protocol, high resolution selected volumes were acquired in the transverse plane by a 3-Tesla MRI scanner, and 
a 3D MPRAGE  T1-weighted sequence. Table 3 shows all the scanning parameters. A complete description of 
ADNI is available at http:// adni. loni. usc. edu/. The enrolled normals’ and patients’ age ranged from fifty-six years 
old to eighty (inclusive) years old, who at least completed six grades of education (or had a good work history 
sufficient to exclude mental retardation) as shown in Table 1. All subjects will have clinical/cognitive assessments 
and structural MRI scan at specified intervals for two to three years. Approximately 50% of subjects will also 
have PET scans at the same time intervals and 25% of subjects (who have not been scanned using PET) will have 
MRI at 3 T.

According to the ADNI manual protocol the general inclusion/exclusion criteria points were developed to 
identify individuals with the amnestic form of MCI. Education-adjusted cut scores on logical memory were 
used to ensure that a true memory deficit existed and that the memory deficit was severe enough to ensure an 
adequate conversion rate to AD in the placebo-treated population. An adjudication committee was established 

Table 1.  Dataset breakdown age and gender.

Male Female Count/age range

Normal
28 Subjects 37 Subjects 65 Subjects

Age: 64–76 year Age: 70–80 year 64–80 year

MCI
29 Subjects 26 Subjects 55 Subjects

Age:60–80 Age:56–79 56–80 year

AD
24 Subjects 21 Subjects 45 Subjects

Age: 57–79 year Age: 57–78 year 57–79 year

http://adni.loni.usc.edu/
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to review data when a site believed that a subject had converted from MCI to AD. The general inclusion/exclu-
sion criteria for all recruiters are as follows:

All subjects must be willing and able to undergo all test procedures including neuroimaging and agree to 
longitudinal follow up. Specific psychoactive medications will be excluded. Exclusion for patients will be 
also applied if Any significant neurologic disease other than suspected incipient Alzheimer’s disease, such as 
Parkinson’s disease, multiple sclerosis, etc. or history of significant head trauma or known structural brain 
abnormalities. Any significant systemic illness or unstable medical condition which could lead to difficulty 
complying with the protocol.

All MRI and PET scans will be rapidly assessed for quality so that subjects may be rescanned if necessary. All 
clinical data will be collected, monitored, and stored by the Coordinating Center at UCSD. U Penn will collect 
biomarker samples. All raw and processed image data will be archived at LONI. Any more details about the 
inclusion/exclusion criteria can be found in the following link: https:// adni. loni. usc. edu/ wp- conte nt/ themes/ 
fresh news- dev- v2/ docum ents/ clini cal/ ADNI-1_ Proto col. pdf

Data preparation and preprocessing. FMRIB Software Library (FSL)26, created at Oxford University, is 
a software library for image analysis and statistical tools for functional, structural, and diffusion MRI brain imag-
ing data. Herein, to extract the Hippocampus and Amygdala, FSL applied through the following steps:

1. Brain Tissue Extraction: the goal of this step is to extract the brain from the skull using Brain Extraction 
Tool (BET) from FSL software. From an image of the whole head, BET deletes non-brain tissue. The inner, 
and outer skull surfaces can also be estimated, from good  T1 and  T2 images.

2. Registration to Atlas: this step is considered a crucial step for the correct segmentation of the ROIs, to over-
come the differences in size and position of the brain.

3. Segmentation of the hippocampus, and amygdala.
4. Hippocampus and amygdala region fusion: this step is done using the FSL visualization tool, based on 

Harvard Oxford subcortical structure, as shown in Fig. 1. The region fusion is calculated using the Fslmath 
command to add up the extracted hippocampus to the extracted amygdala so that to form one ROI, then it 
is treated as a new region which will be named Hippo-Amygdala ROI later to be analyzed.

Gauss map. In Euclidean space  R3, the Gauss map depicts a surface to a unit sphere  S2 while saving its shape. 
Consequently, the uniform sampling of points or vertices on the surface, the normal vector orientation of points 
is changed after rotation. Figure 2 shows the translation of the normal vector n of point p, from the original sur-
face to the unit sphere, where its origin coexists with the origin of the coordinate. Gaussian mapping is the name 
of the process, and the sphere is known as the Gaussian  sphere27,28.

The variation of the normal vector n, at any point p, is measured using the derivative of the Gauss map at the 
same point p. Based on the Gauss Map, three main feature sets were employed, in this study, named the Gauss-
ian shape operator, the Gaussian curvature, and the mean curvature. To measure how the surface bends, the 

Table 2.  Dataset inclusion guidelines. Age ranged 56–80 years old.

Dataset ADNI MMSE scores (inclusive) CDR (inclusive) Other conditions (inclusive)

AD 45 subjects 20–26 0.5 or 1.0 Meets NINCDS/ADRDA criteria for probable AD

MCI 55 subjects 24–30 0.5

A memory complaint
Have objective memory loss measured by education adjusted scores on Wechsler Memory Scale 7 Logical 
Memory II
Absence of significant levels of impairment in other cognitive domains, essentially preserved activities of 
daily living, and an absence of dementia

Normal 65 subjects 24–30 0 Non-depressed, non-MCI, and non-demented

Table 3.  T1-weighted MRI scan parameters.

Dataset ADNI

Slice thickness (mm) 1.2

No of slices 170

Scan matrix 256 × 256

TR (ms) 2300

TE Minimum full TE

Pulse sequence MPRGA 

TI (ms) 900

FOV (cm) 26

https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/clinical/ADNI-1_Protocol.pdf
https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/clinical/ADNI-1_Protocol.pdf


4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13734  | https://doi.org/10.1038/s41598-023-40635-2

www.nature.com/scientificreports/

Gaussian shape operator is constructed. It is dissipating the shape by erecting a matrix from normal and tangent 
at each point on the surface of the  curve29. The eigenvalues of the shape operator is representing the maximum 
and minimum bending of the surface at the point p, well known by the principal curvatures κ1 and κ2, measure. 
The dot product of this principle curvature, K = κ1 · κ2, is defined as the Gaussian curvature. The sign of the 
Gaussian curvature can be used to characterize the surface depending on the sign of the principal curvature. 
As shown in Fig. 3, If the principal curvatures have the same sign ( κ1 · κ2 > 0), then, the Gaussian curvature is 
positive and the corresponding surface is elliptic. If any of the principal curvatures is zero ( κ1 · κ2 = 0), then, the 
Gaussian curvature is zero and the expected surface should be following a parabolic. If the principal curvatures 

Figure 1.  Hippocampus and amygdala position.

Figure 2.  Gauss map definition. 

Figure 3.  From right to left: negative Gaussian curvature is shown as hyperboloid surface, a surface of zero 
Gaussian curvature is a cylinder, and a positive Gaussian curvature surface is a sphere.
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have different signs, the dot product is negative ( κ1 · κ2 < 0). Then, the Gaussian curvature is negative representing 
a hyperbolic or saddle point surface. Thus, the Gaussian curvature can help trace the hippocampus and amygdala 
curvature exchange from one point to another on the surface.

The mean curvature is the average of the signed curvature, as shown in the following equation:

From the stated previous mathematical background, it shows that the Gaussian Map features were extracted 
for both the Hippocampus and Amygdala. This is to understand the overall changes in the shape of each than 
studying only the volume of each. The descriptors are spherical harmonic features widely used for describing and 
detecting objects in volumetric images in a rotational invariant manner it is not only included the signal from 
a single voxel but also includes the neighboring voxels which describes the pattern of the fibers distribution in 
the different brain regions for normals, MCIs, and ADs. This Hippocampus and Amygdala shape analysis may 
be more informative than global Hippocampus and Amygdala volume changes. The shape analysis can provide 
important information on the spatial distribution of atrophy or expansion of a structure that exhibits volume 
abnormalities and based on the substructures involved and their functional role may aid in understanding the 
functional outcomes of such volume abnormalities.

Makkinejad et al. examined the amygdala shape abnormalities associated with TDP-43 pathology in  aging31. 
Transactive response DNA-binding protein 43 (TDP-43) pathology is common in old age and is strongly associ-
ated with cognitive decline and dementia. TDP-43 pathology has been reported in up to 55% of persons with 
Alzheimer’s disease (AD) pathology, TDP-43 pathology in aging has been shown to account for nearly as much 
of the variance of late-life cognitive decline as neurofibrillary tangles (hallmark pathology of AD)31. In persons 
with AD, the TDP-43 pathology is first deposited in the amygdala, followed by the hippocampus, and other 
 regions31. Makkinejad et al. shape analysis revealed a unique pattern of amygdala deformation associated with 
TDP-43 pathology, adding up that the information from the ex vivo MRI can provide similar information on 
amygdala shape as that originating from in vivo  MRI31.

As hippocampal pathology is viewed as a central landmark in AD, it has also been used as a diagnostic 
biomarker in clinical. The hippocampus composed of four sub regions which are CA1, CA2, CA3 and  CA432. 
Others study stated increased pathological burdens of P-Tau and P-Syn and associated microglia alterations are 
involved in a more severe deterioration of the CA1 in AD. A sub region that is effected during  Alzheimer33,34.

While earlier volumetric MRI studies investigated pathology by measuring the total volume loss of hippocam-
pus, recent studies attempt to identify regional pathology within the structure by analyzing the shape deformation 
of a particular sub-region, a method used in several studies of  AD35. Each of the descriptors describing certain 
characteristics like the local curvature of the smoothed fiber distribution which influenced during the different 
stages of the disease as mentioned in the literature  before15,36.The advantage of this approach that it models the 
data locally. Hence it can deal with the data where a significantly large areas differs from the prototype.

Feature selection, classification, and performance evaluation. Dimensionality reduction is an 
important step, which helps to avoid an over fitting case since the quantum of features is considered huge con-
cerning the size of data volumes used in this study. Moreover, the size of features is mainly based on the quan-
tum of vertices representing the extracted volume, which is variable from one volume to another. Dimension-
ality reduction is appointed based on a well-known feature selection approach named Fisher  Score37,38. The 
Fisher Information measures the amount of information that an observable random variable X carries about 
an unknown parameter θ of a distribution that models  X39. As a classifier, Support Vector Machine (SVM) is 
employed as a supervised learning algorithm that analyzes data used for classification. Its goal is to separate 
between different classes by learning a function that is induced from available examples. SVMs can perform 
linear and non-linear classification. In this study, an SVM- Radial Basis Function (RBF) based kernel using LIB-
SVM was utilized, a package developed by the department of computer science of National Taiwan  University40. 
To evaluate the system’s Performance, the Receiver operating characteristic (ROC) curve is employed since it 
functions well in assessing the diagnostic potency of tests to distinct the true state of subjects and comparing two 
stand by diagnostic tasks when each task is uttered on the same  subject27.

Approaches and experiments. Based on the medical understanding from the  literature9,15,34–36,41–45, dif-
ferences in the atrophy rates have been described in medial temporal lobe structures between patients with MCI 
and controls. Moreover, increased hippocampal deterioration rates have been found in patients with familial AD 
before clinical symptoms occur, and in addition more widespread declination in other cortical areas  occur9,36,40. 
This pattern of prevalent atrophy is theoretically considered as an evident in patients with MCI later progress-
ing to  AD40. Moreover, this shrinkage was considered as a biomarker in previous studies such as Alzheimer 
detection,  depression9,41. Thus this paper considered investigating the volume of hippocampus shrinkage dur-
ing Alzheimer and its decrease with the deterioration of the disease by firstly experimenting the hippocampal 
atrophy before using the Gaussian map descriptors to differentiate between normal, AD and MCI, results of this 
experiment will presented in the following section. Since hippocampus volumetry calculation and segmentation 
is a great problem and many tools were introduced to calculate it such as freesurfer, open source VolBrain. This 
article used the later tool (an open-source tool)42, was developed for hippocampus  T1-weighted MRI images, to 
segment and calculate the volume of different regions in the brain.

Thus the other method employed based on the Gaussian Map based features, extracted from ROI to distin-
guish between the normal controls, MCI, and AD patients. The Gaussian Map features were extracted for both 
the Hippocampus and Amygdala separately once and once again after contaminating the two regions to study the 

(1)H =
κ1 + κ2

2
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overall changes in the shape than studying this for each region separately. For more assessment and understand-
ing, two fusion levels were done; Feature-fusion level which was done by calculating independently each ROI 
extracted feature and then fusing both for further classification. ROI-fusion level whereas fusion of the regions 
before feature extraction was also employed. The classification process is following hierarchical criteria where, 
in the first phase, the objective is to discriminate NC from the abnormal subjects; named AD and MCI. The 
second step is to differentiate the AD and MCI subjects. The Gaussian-based extracted features were then given 
to the SVM classifier. Finally, the performance of the proposed extracted features will be evaluated calculating 
sensitivity, specificity, accuracy, and ROC analysis.

Results and discussion
Table 4 shows the results of our first experiment that investigates the hippocampal, amygdala atrophy to differ-
entiate between normal, AD and MCI. Open source VolBrain tool was used to segment and calculate the volume 
of different regions in the brain. The classification in between normal, MCI and AD based on the hippocampus, 
and the amygdala atrophy.

From Table 4 we can conclude that although the results were acceptable but still there are better results that 
can be achieved by calculating the Gaussian map descriptor features as it is depending not only on the volume size 
but also on the shape of the brain region. This result agrees with what Ahmed et al.15 presented in her research. 
They did automatically categorize individuals with AD and/or MCI from anatomical MRI using several methods. 
Depending on which MRI features are extracted, these methods can be loosely divided into three categories: 
voxel-based, vertex-based, or ROI-based  analysis39. Additionally, based on the results of her survey, ROI-based 
analysis suggests that shape rather than volume is more significant in the hippocampus.

Although, Henneman et al.44 stated there are differences in the rates of atrophy (atrophy) in the medial tem-
poral lobe structures between MCI patients and controls. Even before clinical symptoms appear, persons with 
familial AD had higher hippocampus shrinkage rates. More extensive atrophy in other cortical regions occurs in 
AD patients. Patients with MCI that subsequently advance to AD already show this pattern of extensive atrophy. 
We demonstrate that, contrary to what has previously been reported, hippocampus shrinkage (rate) does not 
distinguish patients with AD from patients with MCI. This confirms past research showing that the rate of hip-
pocampus shrinkage resembling AD is already present during the transitional stage (MCI). After this point, whole 
brain atrophy rates, which continue to rise with increasing disease severity, become a more accurate indicator of 
disease progression than assessments of hippocampal volume.

In more details, the hippocampus composed of four sub regions which are CA1, CA2, CA3 and  CA49 as shown 
in Fig. 4. The sub region that have been effected during Alzheimer is CA1. CA1 curve shape has been shrinkage so 
changes in its curvature with respect to shape will be a great indicator of Alzheimer detection. Mean curvature is 
the average of the signed curvature. As illustrated, calculating the average will not be sufficient enough as change 
happened through the same direction and a small area compared with the hippocampus  overall41.

According to Mueller et al.45, normal ageing and AD, even in its initial phases, are linked to a distinctive pat-
tern of hippocampal atrophy, i.e. ageing with volume loss in CA1 and MCI with volume loss in CA1-2 transition. 
Volume loss in the CA1-2 transition outperformed total hippocampus volume in terms of separating subjects 
with MCI from controls. In light of this, they draw the conclusion that subfield measures may be a more accurate 
method of identifying MCI and early-stage AD than measurements of the entire hippocampus.

Table 4.  Accuracies of classifier based on volumes of ROI.

Feature type Normal vs abnormal (%) AD vs MCI (%)

Amygdala atrophy 68 60

Hippocampus atrophy 72 60.5

Feature level fusion 65.2 67.8

Region level fusion 62.6 65.9

Figure 4.  The hippocampus composed of four sub regions which are CA1, CA2, CA3 and CA4, and the 
hippocampus erosion occurred due to the Alzheimer disease (b) compared with the normal subjects (a).
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From the previous discussion that shows that hippocampal atrophy (rate) was not enough to differentiate 
patients with AD from patients with MCI, as has also been reported by others. To discriminate between AD, 
MCI, and Normal cases, we applied primarily Gaussian map descriptor features such as shape operator, Gaussian 
curvature, and mean curvature on three ROIs (Hippocampus, Amygdala, and Hippo-Amygdala region based 
fusion”) separately, Region-based feature-based fusion was also calculated. Next, these features were fed to the 
SVM classifier. The Classification task was implemented through a hierarchical framework. The first step is 
discriminating between Normal and Abnormal cases, which includes both AD and MCI subjects. The second 
step is classifying the abnormal cases into AD and MCI. Table 5 shows the classifier accuracy owing to Gaussian 
map features for region fusion which shows that the shape operator gives the result of 74.6% for distinguishing 
between normal and abnormal cases with a significance p-value equal to 0.05, while Gaussian curvature and 
mean curvature give 72.2% and 73.9% respectively. All Gaussian map descriptors (shape operator, Gaussian 
curvature, and mean curvature) features give about 98.9%, 98.5%, and 98.2% of distinguishing between AD 
and MCI with significance p-value equal to 0.1, 0.3, and 0.1 respectively. The good significant results make the 
proposed system to be more stable and robust. While using the features of the hippocampus region only for 
normal/abnormal classification, it gives about 73.2%, 69.5%, and 61% respectively for shape operator, Gaussian 
curvature, and mean curvature, Table 6.

Fusion of the regions (hippocampus, amygdala), enlarging the ROI make the system able to measure the 
curvatures changes better, consequently, the results were improved. Table 5 shows the accuracy of the classi-
fier for Gauss Map features for features fusion which shows that the shape operator gives a result of 73.4% for 
distinguishing between normal and abnormal cases with a p-value equal to 0.14 to of significance while the 
Gaussian curvature feature gives about 96.2% of distinguishing between AD and MCI with a p-value equal to 
0.2 of significance.

The entire volume of the hippocampus shrinks as the disease progresses, it serves as a strong indication of AD. 
Subcortical structure segmentation using VolBrain produces different results for normal, MCI, and AD brains. 
The accuracy of Gauss Map features (Shape) for the Amygdala area is shown to be lower than that determined 
based on the volume calculation when calculating the classifier’s accuracy. A different example is the hippocampal 
region, where Gauss Map-based features perform better than those based on volume calculations, which makes 
sense given that shape provides more information than volume. Additionally, regardless of the disease stage, 
there is intra-class variability, meaning that each patient’s brain volume varies.

Since, in the belated terms of AD, an utmost attrition in the shape and the curvature of the Hippocampus. 
It can be used to describe the progression of the  disease6,9,16,20,34. Hippocampus and amygdala curve shape have 
been shrinkage so changes in its curvature from one point to another on its contour surface concerning shape 
will be a great indicator of Alzheimer’s detection. Though, a key solution might by characterizing this change 
by extracting new features.

To study the robustness of the system, ROC curves for each classifier under investigation as well as the area 
under the curves are calculated. The Amygdala region is very small and after its segmentation, it was blurred 
and has little information so its performance was very bad as its accuracies vary between 48 and 52% for the 
three features.

Based on Fig. 5a, it is observed that in the case of normal and abnormal classification for Hippo-Amygdala 
ROI, mean curvature and Gaussian curvature have a roughly equal ability of performance, with an AUC of 0.773 
and 0.754 respectively. In the case of the AD vs. MCI classifier, Based on Fig. 5b, the shape operator, mean curva-
ture and Gaussian curvature have roughly equal stability of performance, as AUC equal roughly 0.98, 0.975, and 
0.97 respectively. Figure 6a shows that in the case of normal and abnormal classification using feature fusion, the 
mean curvature, Gaussian curvature, and shape operator have roughly equal stability of performance, with an 

Table 5.  The classifier accuracy owed to Gauss map features for hippocampus and amygdala region level 
fusion, and for hippocampus features and amygdala features level fusion respectively.

Feature type

Region level fusion Feature level fusion

Normal vs abnormal (%) AD vs MCI (%) Overall accuracy (%)
Normal Vs abnormal 
(%) AD vs MCI (%)

Overall accuracy 
(%)

Shape operator 74.6 98.9 82.67 73.4 53.8 64.8

Gaussian curvature 72.2 98.5 82.6 70.4 96.2 80.6

Mean curvature 73.9 98.2 82.35 60.9 58.5 58.4

Table 6.  The accuracy of the classifier for Gauss map features for the hippocampus and amygdala regions 
separately.

Feature type

Hippocampus Amygdala

Normal vs abnormal (%) AD vs MCI (%) Overall accuracy (%) Normal vs abnormal (%) AD vs MCI (%)
Overall accuracy 
(%)

Shape operator 73.2 58.99 65.6 60.7 53.8 58.19

Gaussian curvature 69.5 98.3 81.11 65.4 54 58.13

Mean curvature 60.8 50.7 58.3 68 49.6 58.11
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AUC of 0.786, 0.783, and 0.781 respectively. Whereas, in the case of AD vs. MCI classifier, the Gaussian curvature 
performed better than the other Gaussian map descriptors features, as AUC was equal to roughly 0.98, 0.83, and 
0.76 for the Gaussian curvature, Gaussian Shape operator and mean curvature respectively, as shown in Fig. 6b.

Conclusion
This manuscript, features extracted representing Gaussian-based descriptors were appointed to differentiate 
the normal, from AD, and MCI subjects based on dissecting the shape of the hippocampus and Amygdala. FSL 
was used for brain extraction, registration, and segmentation of the hippocampus and amygdala then fusion 
between these two regions was done. Three different feature sets were extracted name: the Gaussian Shape 
operator, the Gaussian curvature, and the mean curvatures. These features are calculated for each of the hip-
pocampus and amygdala individually. Moreover, the Features extracted for each region were fused once and the 
features extracted from Hippo-Amygdala based on region fusion were employed once more. When classifying 
the AD from MCI, results are deemed very promising reaching 98% accuracy using region fusion Gaussian shape 

Figure 5.  Gaussian map descriptors features ROC curve for Hippo-Amygdala region fusion for: (a) normal vs. 
abnormal, (b) AD vs. MCI.

Figure 6.  Gaussian map descriptors features ROC curve for hippocampus amygdala feature fusion for: (a) 
normal vs. abnormal, (b) AD vs. MCI.
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operators, while the performance is as yet affronting in the case of normal/abnormal classification to attain 74.6% 
and 73.3% using the Gaussian Shape operator based system for region fusion and feature fusion respectively. 
Given that the increased hippocampal deterioration rates can be used to classify the various stages of illness 
progression and analyze the structure of the regions, the Gauss map is thought to be a very promising tool. The 
implemented research work still needs to include the following research points:

1. Growing the dataset would unquestionably provide us more space to investigate the system’s robustness 
(limitation)

2. More research needs to be done on the proposed qualities combined in a hierarchical or perhaps a three-class 
system.

3. We can use both the shape and the texture-based features in the study because we did not analyze the texture-
based characteristics at all.

In conclusion, the proposed system is considered promising. Nevertheless, the combination of the proposed 
features in hierarchical or even in a three-class system needs to be further investigates. Also the volume of these 
ROI may be added as a fourth features that can be used.

Data availability
The dataset used in this study was obtained from a third-party organization “Alzheimer’s disease Neuroimaging 
Initiative” (ADNI) database. The data are available from the ADNI database (adni.loni.usc.edu) upon registra-
tion and compliance with the data usage agreement. For up-to-date information, see www. adni- info. org. The 
proposed algorithm uses this ADNI data repository. The data that support the findings of this study are avail-
able on reasonable request from the authors. All ADNI studies are conducted according to the Good Clinical 
Practice guidelines, the Declaration of Helsinki, and U.S. 21 CFR Part 50 (Protection of Human Subjects), and 
Part 56 (Institutional Review Boards). Written informed consent was obtained from all participants before 
protocol-specific procedures were performed. The ADNI protocol was approved by the Institutional Review 
Boards of all of the participating institutions. This study was approved by the Institutional Review Boards of all 
of the participating institutions, such as the Office for the Protection of Research Subjects at the University of 
Southern California. A complete listing of ADNI investigators and affiliations can be found at http:// adni. loni. 
usc. edu/ wp- conte nt/ uploa ds/ how_ to_ apply/ ADNI_ Ackno wledg ement_ List. pdf. Informed written consent was 
obtained from all participants at each site. The investigators within the ADNI contributed to the design and 
implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. More 
details can be found at adni.loni.usc.edu.
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