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A machine learning approach 
to seizure detection in a rat model 
of post‑traumatic epilepsy
Robert J. Kotloski 

Epilepsy is a common neurologic condition frequently investigated using rodent models, with seizures 
identified by electroencephalography (EEG). Given technological advances, large datasets of EEG 
are widespread and amenable to machine learning approaches for identification of seizures. While 
such approaches have been explored for human EEGs, machine learning approaches to identifying 
seizures in rodent EEG are limited. We utilized a predesigned deep convolutional neural network 
(DCNN), GoogLeNet, to classify images for seizure identification. Training images were generated 
through multiplexing spectral content (scalograms), kurtosis, and entropy for two‑second EEG 
segments. Over 2200 h of EEG data were scored for the presence of seizures, with 95.6% of seizures 
identified by the DCNN and a false positive rate of 34.2% (1.52/h), as compared to visual scoring. 
Multiplexed images were superior to scalograms alone (scalogram‑kurtosis‑entropy 0.956 ± 0.010, 
scalogram 0.890 ± 0.028, t(7) = 3.54, p < 0.01) and a DCNN trained specifically for the individual animal 
was superior to using DCNNs across animals (intra‑animal 0.960 ± 0.0094, inter‑animal 0.811 ± 0.015, 
t(30) = 5.54, p < 0.01). For this dataset the DCNN approach is superior to a previously described 
algorithm utilizing longer local line lengths, calculated from wavelet‑decomposition of EEG, to 
identify seizures. We demonstrate the novel use of a predesigned DCNN constructed to classify 
images, utilizing multiplexed images of EEG spectral content, kurtosis, and entropy, to rapidly and 
objectively identifies seizures in a large dataset of rat EEG with high sensitivity.

Abbreviations
CCI  Controlled cortical impact
DCNN  Deep convoluted neural network
TBI  Traumatic brain injury

Epilepsy is a common neurologic disease characterized by an enduring predisposition to spontaneous seizures. 
Epilepsy has a prevalence of ~ 1% of the  population1, and despite extensive efforts in research and clinical care, 
up to half of people with epilepsy continue to have  seizures2. These continued seizures result in significant reduc-
tions in quality of  life1, 3 and substantial  cost4, with direct medical costs related to epilepsy reaching $24.4 billion 
($12.5 billion in 1995) per year in the  US5. Electroencehpalography (EEG) plays a significant role in the diag-
nosis and quantification of seizures in both clinical care of people with epilepsy and in research studies utilizing 
animal models of epilepsy. Technological advances allow for collection of vast amounts of EEG data, providing 
potential benefits albeit with analytical challenges. While EEG is traditionally analyzed by visual inspection aided 
by quantitative signal analysis  tools6, this approach is not practical for large datasets both due to efficiency and 
highly variable inter-observer  agreement7–9. Therefore, novel methods are needed.

Traumatic brain injury (TBI) is a common cause of epilepsy (post-traumatic epilepsy, PTE), accounting for 
10–20% of symptomatic  epilepsy10, 11. In a rodent model of post-traumatic seizures utilizing a unique inbred 
strain of rats selected for susceptibility to neuroplasticity (Perforant Path Kindling Susceptible, PPKS rats), 
frequent spontaneous recurrent seizures are noted in approximately half of injured  animals12. Using chronic 
recordings of video-EEG over the course of 5–6 months, extensive collections of EEG data are produced that 
capture the development and progression of PTE. While classification of animals as having PTE can be easily 
accomplished by visual review of the recordings at a late time point following TBI, processing the entire dataset 
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by visual inspection is not practical. Conversely only reviewing a subset of the data would result in loss of infor-
mation and selection bias which may preclude valuable insights.

Machine learning approaches have been used previously to study EEG in both research and clinical 
 settings13–15. While several machine learning approaches have been used successfully for human EEG, typically 
scalp  EEG16–21, the use of these powerful techniques for rodent EEG is very  limited22. Feature extraction from 
EEG typically involves time–frequency spectral content, either using a Fast Fourier Transform (FFT) or Wavelet 
Transformation (WT). Additional features such as the “sharpness” of waveforms as represented by kurtosis, and 
spectral entropy, a measure of the information content of a signal that normally decreases during a seizure, can 
also be extracted. These approaches allow both the ability to summarize large amounts of data visually and to 
demonstrate patterns which may not be easily recognizable from visual inspection.

These features may be studied using a broad range of machine learning approaches, including convolu-
tional neural networks. Convolutional neural networks have been successful addressing classification in many 
 situations15, in part due to the network’s ability to function without human intervention to identify critical 
features, though these critical features used for classification are not readily extracted from the trained network. 
Additionally, it has been recognized that pre-existing networks may be repurposed (transfer learning), saving 
computational effort and avoiding the need for large sets of training data. Specifically, networks designed to 
discriminate images, such as GoogLeNet, AlexNet, and SqueezeNet, can be used to classify EEG, typically using 
images of spectral information representing a seizure segment or a baseline, non-seizure segment. GoogLeNet is 
a 22-layer deep convolutional neural network developed by researchers at Google to solve computer vision tasks 
including object detection and image  classification23. GoogLeNet differs from many other deep convolutional 
neural networks (DCNNs) as it creates a deeper architecture through features including 1 × 1 convolutions in 
the middle of the architecture and global average pooling.

We hypothesize that a machine learning approach will facilitate seizure identification in a large dataset of 
EEG collected from rats with PTE. By identification of a large percentage of all seizures from the dataset using an 
objective, algorithmic method, a more complete understanding of the development and progression of epilepsy 
in this model will result. This improved understanding is expected to lead to greater insight into the pathologi-
cal processes underlying post-traumatic epileptogenesis, helping to identify targets for therapeutic intervention 
and defining biomarkers for evaluating interventions. The use of DCNN with multiplexed images may provide 
a useful tool for seizure detection and other classification problems.

Results
PPKS rats develop PTE following a moderate‑to‑severe TBI
Following TBI (Fig. 1), rats were recorded on average a total of 138 h 13 min (range 118 h 56 min to 166 h 
25 min). Spontaneous seizures were detected in 53.3% (16 of 30) of PPKS rats. Seizures were evidenced by rhyth-
mic spikes on the electrographic recording and a clinical correlate of behavioral arrest with subtle oral automa-
tisms and chewing (Fig. 2A). Lack of responsivity to external stimulation (e.g., tapping on glass chamber) during 
the seizure was documented at least once in each animal demonstrating ictal electrographic activity, confirming 
that the episode of spike-wave discharges met conventional criteria defining seizures, i.e., abnormal synchronous 
EEG activity accompanied by clinical impairment consisting of altered responsiveness (Supplementary material 
video). A range of different electrographic seizure patterns were noted (Fig. 2B–D). Several months after TBI 
seizures occur frequently (95% CI 10.8–17.5 seizures per hour).

Generation of a DCNN to classify multiplexed scalograms for seizure identification
To utilize a machine-learning approach to seizures identification in EEG recordings, we repurposed a predesigned 
DCNN, GoogLeNet, originally created to classify  images23 (Fig. 3A). Scalograms were generated from the EEG 
for each of the four channels, utilizing 2-s segments (Fig. 3B). Scalograms were multiplexed with kurtosis and 
the inverse of spectral entropy as scalars multiplied to the scalogram and using equal weighting. To support use 
of these measures in the DCNN, a generalized linear model with a nominal logistic fit examining factors associ-
ated with differentiating ICTAL from BASELINE segments revealed significant effects from entropy (β − 46.4, 
LogWorth 39.080, p < 0.01) and kurtosis ((β 0.28, LogWorth 6.359, p < 0.01), but not line length ((β − 3.68 ×  10–5, 
LogWorth 0.485, p = 0.32) (Supplemental material figure). Therefore entropy and kurtosis were multiplexed to 
the scalogram, while line length was not.

For identification of seizures, when the trained DCNN classified ≥ 2 consecutive segments as ICTAL in the 
same channel (Fig. 3A and RA in Fig. 4C), those time periods were scored as a seizure. Other channels may 
demonstrate either ICTAL or BASELINE images within that same time periods, allowing for focal seizures to be 
captured (Figs. 3A, 4C). Isolated segments classified as ICTAL were not scored as a seizure to exclude excessive 
false positives and isolated interictal epileptiform activity or artifact (Fig. 3A and the third segment for RA in 
Fig. 4B).

Visual inspection by experienced electroencephalographers was used as the gold standard. Seizure onset 
and termination by visual inspection are denoted by vertical red dotted lines when applicable (Fig. 4A,C). A 2-s 
segment was considered ICTAL by visual inspection if more than half (> 1 s) of the segment fell within a seizure 
marked by visual inspection. Only events with ictal electrographic activity lasting ≥ 4 s were marked by visual 
inspection. For seizure detection accuracy, a DCNN seizure detection overlapping with a seizure marked by 
visual inspection was considered a true positive.
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Figure 1.  Traumatic brain injury. (A) A controlled cortical impact (CCI) is targeted to the posterior cortex, 
with a depth (3mm) chosen to abut the hippocampus. Epidural electrodes are placed bilaterally anterior 
and posterior, with a reference electrode in the posterior skull. (B) CT imaging with coronal sections and 
reconstruction demonstrating a representative lesion at 6 months following CCI.
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Multiplexed scalograms including kurtosis and spectral entropy produce superior accuracy to 
scalograms alone
Comparison of DCNNs trained on multiplexed scalograms including kurtosis and spectral entropy (scalogram-
kurtosis-entropy) to scalograms alone demonstrated superiority for the multiplexed images, most importantly 
in the accuracy for seizure detection. For a subset of animals (n = 8), the network was trained from a 2-h seg-
ment of a recording with high frequency of seizures (1–10% of recording) and of good technical quality, using 
either images constructed from the scalogram alone or the scalogram-kurtosis-entropy multiplexed image. The 
trained DCNN was then used to classify the remaining 6 h of the same EEG record. No statistically significant 

Figure 2.  Post-traumatic seizures. (A) Seizures seen in rats with PTE typically consist of a behavioral arrest and 
impaired response to external stimulation (e.g., tapping on cage). Electrographically rhythmic spikes are noted. 
(B) EEG of a focal seizure seen best in the right frontal (RF) electrode. (C) EEG of a seizure seen most clearly 
over the right posterior region, but also in other channels. (D) EEG of a seizure seen equally in all channels.
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difference was found in overall accuracy compared to scoring by visual inspection between the two training sets 
(scalogram 0.969 ± 0.0061, scalogram-kurtosis-entropy 0.970 ± 0.0058, t(7) = 1.14, p > 0.05) (Fig. 5A). Similarly, 
the rate of false positives did not differ between DCNNs trained using images constructed from the scalogram 
alone or the scalogram-kurtosis-entropy multiplexed image (scalogram 1.23 ± 0.38/h, scalogram-kurtosis-
entropy 1.52 ± 0.31/h, t(7) = 0.778, p > 0.05) (Fig. 5B). However, comparison of accuracy for ICTAL segments 
(percentage of images classified as ICTAL within a seizure detection) was significantly improved by use of multi-
plexed scalogram-kurtosis-entropy images (scalogram 0.541 ± 0.073, scalogram-kurtosis-entropy 0.797 ± 0.022, 
t(7) = 3.58, p < 0.01) (Fig. 5C). Similarly multiplexed scalogram-kurtosis-entropy images resulted in a significant 
improvement in detection of seizures as compared to images from scalograms alone (scalogram 0.890 ± 0.028, 
scalogram-kurtosis-entropy 0.956 ± 0.010, t(7) = 3.54, p < 0.01) (Fig. 5D).

Figure 3.  Deep Convolutional Neural Network (DCNN). GoogLeNet is a deep CNN originally designed to 
classify images into 1000 categories. Each of the 22 layers of the network responds to features of the image, 
becoming increasing specific with each layer and finally producing a classification. (A) Training was performed 
using a 2-h segment of a recording later (5–6 months) in the recording period, with a high frequency of seizures 
and good technical quality. The segment was scored by visual inspection and each 2-s block from each channel 
was classified as ICTAL or BASELINE. For each 2-s block of each channel, a scalogram (1–24 Hz), kurtosis, and 
entropy are calculated and multiplexed to generate a 224 × 224 × 3 RGB image. Classified images were used for 
training of the DCNN. The trained DCNN is then used to score multiplexed images from 2-s blocks of other 
recordings. ICTAL segments isolated in time are scored as interictal, while ICTAL segments with a neighboring 
ICTAL segment in the same channel are scored as seizures. (B) Examples of EEG segments, scalogram, kurtosis, 
entropy, and multiplexed images. (C) Weights of the initial layer respond to low-level features such as edges and 
colors. (D) An example image for ICTAL and BASELINE blocks, with the strongest weight from the layer and 
resultant activation.
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Figure 4.  Seizure and baseline recordings. Electrographic recordings from Left Anterior (LA), Left Posterior 
(LP), Right Anterior (RA), and Right Posterior (RP) and associated multiplexed scalogram images in a PPKS 
rat that developed recurring seizures after CCI. The horizontal axis is marked in seconds. Seizure beginning 
and end by visual scoring is marked by vertical dotted red lines in (A) and (B). (A) Example of a generalized 
spike wave seizure. The trained DCNN identified all except 3 images (marked with *) as ICTAL. (B) An epoch 
of recording from the same animal as in A which demonstrated no spike-wave discharges and was regarded 
as normal baseline by visual inspection. The trained network identified all except 1 image (marked with *) as 
BASELINE. (C) Example of a generalized spike wave seizure with anterior dominance. Ictal electrographic 
activity is seen more clearly in some channels (e.g., RA > RP, LA > LP). The trained DCNN identified 14 of 20 
images as ICTAL.
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A limited exploration of the effect of changing the weights used for kurtosis and inverse of entropy was 
performed (n = 5), training the DCNN on a 2-h segment of a recording with a high frequency of seizures and 
evaluating the trained model on the remaining 6 h of the same recording, as above. For this group, using the 
standard equal weights for kurtosis and entropy, ICTAL segments were correctly identified with an accuracy of 
0.785 ± 0.0335. Including only kurtosis (kurtosis weight 1 and entropy weight 0) resulted in a significant decrease 
in accuracy (0.657 ± 0.0626, p < 0.05). A strong trend toward a decrease in accuracy was seen when including only 
entropy (kurtosis weight 0 and entropy weight 1) (0.676 ± 0.0482, p = 0.06) and weaker trends toward a decrease 
in accuracy when kurtosis is weighted 5:1 over entropy (0.704 ± 0.103, p = 0.21) or entropy is weighted 5:1 over 
kurtosis (0.712 ± 0.0676, p = 0.28).

DCNN trained for each animal (intra‑animal) is superior to DCNN used across animals 
(inter‑animal)
Comparison of DCNNs trained on a single animal and used for evaluation of recordings for that same animal 
(intra-animal) to DCNNs trained on the recordings of one animal and used to classify other animals (inter-
animal) demonstrated superior accuracy for seizure detection with intra-animal trained networks. For a subset 

Figure 5.  Performance of Multiplexed scalogram versus scalogram alone. (A) Using multiplexed scalograms, 
scaled by kurtosis and the inverse of entropy, did not significantly alter overall accuracy of the DCNN for 
both ICTAL and BASELINE blocks (scalogram 0.969, scalogram-kurtosis-entropy 0.970, p > 0.05). (B) The 
false positive rate did not significantly differ between scalograms and multiplexed scalograms (scalogram 
1.23 per hour, scalogram-kurtosis-entropy 1.52 per hour, p > 0.05). (C) Multiplexed scalograms resulted in a 
significant improvement in ICTAL segments (scalogram 0.541, scalogram-kurtosis-entropy 0.797, p < 0.01). 
(D) Multiplexed scalograms resulted in a significant improvement in detection of seizures (scalogram 0.890, 
scalogram-kurtosis-entropy 0.956, p < 0.01).



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15807  | https://doi.org/10.1038/s41598-023-40628-1

www.nature.com/scientificreports/

of animals (n = 8), the network was trained from a 2-h segment of a recording with high frequency of seizures 
(1–10% of recording) and good technical quality using scalogram-kurtosis-entropy images. The trained network 
was then used to classify images from additional recordings, either from the same animal (intra-animal) or from 
a different animal (inter-animal).

The difference in overall accuracy between a DCNN trained on the same animal used at different timepoints, 
and a DCNN trained on one animal and used to classify the recording of a different animal was not statistically 
significant (intra-animal 0.962 ± 0.0053, inter-animal 0.951 ± 0.0041, t(30) = 1.46, p > 0.05) (Fig. 6A). However, 
when comparing accuracy for ICTAL segments, intra-animal networks had greater accuracy than inter-animal 
networks (intra-animal 0.641 ± 0.089, inter-animal 0.478 ± 0.029, t(30) = 2.56, p < 0.05) (Fig. 6B). Most impor-
tantly, for seizure detection intra-animal networks also had greater accuracy than inter-animal networks (intra-
animal 0.960 ± 0.0094, inter-animal 0.811 ± 0.015, t(30) = 5.54, p < 0.01) (Fig. 6C).

DCNN demonstrates superior accuracy and false positive rate as compared to a wavelet 
decomposition algorithm
Using a subset of recordings from the later period (5–6 months after TBI) in which seizures were more fre-
quent, a DCNN trained with multiplexed images and used intra-animal was compared to an algorithm which 
utilized total variation in line length following wavelet decomposition, previously developed by Bergstrom and 
 colleagues22. The wavelet decomposition algorithm utilized a baseline period without seizures, selected from the 
same recording that was scored by the algorithm. Wavelet decomposition levels of 2–5 and window lengths of 
125 ms, 250 ms, and 500 ms were examined, and the parameters with the highest accuracy for seizure detection 
used for comparison to the DCNN. In comparison to visual scoring the DCNN identified 94.2 ± 1.1% of seizures, 
as compared to 39.2 ± 3.5% for the wavelet decomposition algorithm (t(11) = 13.79, p < 0.01) (Fig. 7A). For the 
same dataset the false positive rate was found to be 34.2 ± 2.2% for the DCNN and 54.2 ± 6.4% for the wavelet 
decomposition algorithm (t(11) = 3.21, p < 0.01) (Fig. 7B).

Discussion
We hypothesized that a machine learning approach would be able to facilitate seizure identification in a large 
dataset of EEG recorded from rats. We demonstrated that (1) a predesigned DCNN (GoogLeNet) could be trained 
to detect seizures by classifying images representing statistical features of the EEG, (2) multiplexed images com-
bining information from the scalogram, kurtosis, and spectral entropy produced superior results as compared to 
images generated from the scalogram alone, (3) using a DCNN within an animal was superior to using a DCNN 
across animals, and (4) the DCNN was superior in percentage of seizures detected and in rate of false positives as 
compared to an algorithm utilizing total variation in line length following wavelet  decomposition22. We believe 
that this novel method will advance the analysis of large electrographic datasets.

While identification of rats with post-traumatic seizures is achievable by the gold standard of visual inspec-
tion of the EEG, given the extensive duration of video-EEG recordings (2211 h 33 min total for all 16 rats with 
post-traumatic seizures) and high frequency of seizures at later times following TBI, identification of a high 
percentage of all the seizures is not easily achievable. Furthermore, identifying seizures by visual inspection 
involves considerable  subjectivity7–9, 24, 25 which may introduce bias into analysis. Therefore, an algorithmic 
approach was sought. A machine learning approach to identify seizures can avoid both these issues through its 
ability to rapidly process large amounts of data and to identify seizures in an objective, algorithmic manner. We 
have demonstrated that a predesigned DCNN (GoogLeNet) can be trained using images representing multi-
plexed statistical features of the EEG to identify seizures and validated this approach by comparison to seizure 
identification by conventional visual inspection. Using this approach, we were able to identify a high percentage 
(~ 95%) of all seizures from a dataset of more than 2000 h of EEG.

Figure 6.  Comparison of intra-animal and inter-animal networks. (A) The difference in overall accuracy 
between a DCNN trained on the same animal (intra-animal) but used across recordings at other times and 
DCNN trained on a different animal (inter-animal) was not statistically significant (intra-animal 0.962, inter-
animal 0.951, p > 0.05). (B) Intra-animal networks had greater accuracy for ICTAL segments than inter-animal 
networks (intra-animal 0.641, inter-animal 0.478, p < 0.05). (C) Intra-animal networks had greater accuracy for 
seizure detection than inter-animal networks (intra-animal 0.960, inter-animal 0.811, p < 0.01).



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15807  | https://doi.org/10.1038/s41598-023-40628-1

www.nature.com/scientificreports/

We demonstrated that multiplexing kurtosis and spectral entropy with the scalogram significantly improved 
the identification of ICTAL images and in the detection of seizures, without a significant increase in the rate 
of false positives. The incorporation of these scalar features into training images of the DCNN suggests that a 
similar multiplexing approach could be useful in other situations in which both images and scalar features may 
be useful for classification by a machine-learning approach. Furthermore, the weighting of the scalars, provides 
an additional level of tuning for the model, and a limited evaluation of relative weighting suggested equal weight-
ing of kurtosis and inverse of spectral entropy performed better than using a single scalar or over-weighting 
one by 5 over the other.

While various measures are taken to generate uniform EEG recordings in humans and animals, several 
difficult-to-control factors can alter the recorded EEGs. Most importantly in these experiments, even using CCI 
which is produces a reproducible impact to the brain, the resultant brain injury and subsequent seizures in a 

Figure 7.  Comparison of DCNN and wavelet decomposition approaches. (A) The DCNN identified a 
significantly higher percentage of seizures as compared to the wavelet decomposition algorithm (DCNN 0.942, 
wavelet decomposition 0.392, t(11) = 13.79, p < 0.01). (B) The false positive rate was found to be significantly 
lower for the DCNN than for the wavelet decomposition algorithm (DCNN 0.342, wavelet decomposition 0.542, 
t(11) = 3.21, p < 0.01). (C–E) Examples of false negatives from the wavelet decomposition algorithm identified by 
the DCNN. (F) Example of false negatives of the DCNN identified by the wavelet decomposition algorithm.
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subset of animals develop as a cascade of a plethora of mechanisms, each with individual variability. Therefore, it 
is unsurprising that the electrographic correlate of the seizures is subtly different for each animal. Furthermore, 
the epidural electrodes likely vary slightly in electrical resistance and location, which while inconsequential for 
visual inspection produces differences which impact quantitative analysis. While using a DCNN across animals 
produced fair accuracy for the detection of seizures (81.1 ± 1.3%) and would be expected to be adequate for 
identification of animals with post-traumatic seizures, using a DCNN trained for the specific animal resulted in 
a statistically significant improvement in accuracy for seizure detection (96.0 ± 2.3%, p < 0.01).

Machine learning and other algorithmic approaches to detecting seizures in large EEG datasets has been 
used previously, the majority of these approaches have been designed for human  EEG16–21, typically acquired 
in a clinical setting. The analysis of EEG acquired from rodent models of epilepsy differs in several important 
respects, including fewer channels, lack of a standardized placement of electrodes, and greater artifact. The pre-
sented methodology produces superior to an algorithmic approach utilizing total variability following wavelet 
decomposition (Fig. 7). This finding may have been expected as this algorithm utilizes line length and line length 
was not found to be a significant predictor for seizures in this dataset (Supplemental material figure). Another 
approach utilized a Random Forest approach in a model of post-traumatic seizures had an accuracy of 91%, 
sensitivity of 97%, and specificity of 87%26, though detailed methods for this approach are not available to allow 
for direct comparison. Notably both of these approaches required intra-animal adjustments. DCNN approaches 
have been used for the detection of seizures in human EEGs, generally using feature extraction rather than raw 
EEG and most commonly frequency  distribution27. Accuracy for detection of brain states from the EEG, often 
including pre-ictal states for seizure prediction, is typically > 90%21, 27, 28.

Several limitations impact the current work. A wide variety of machine learning approaches could be taken 
and even for predesigned DCNNs developed for image classification many alternatives are available (e.g., AlexNet 
and SqueezeNet). Furthermore, many signal analysis techniques are available to summarize the EEG and many 
methods could be used for multiplexing. Therefore achieving the optimal approach is not easily accomplished. 
Additionally, while most seizures are unambiguous on EEG, an ictal-interictal spectrum exists and any cut-off 
for the definition of seizure is necessarily arbitrary. Many algorithms and computations approaches based on 
analysis of waveform morphology are limited by the frequent occurrence of artifacts in EEG recordings. Some 
of these challenges are obviated by use of a DCNN trained to detect seizures based on validated conventional 
ictal EEG patterns. Finally, while training and using the DCNN within an animal was feasible for the goals of 
the current study, it would limit use in cases in which it is not known if the animal has seizures or in which the 
frequency of seizures was low enough to preclude identification of a training set. Efforts towards pre-processing 
of EEG recordings to produce greater uniformity are underway.

In conclusion, our results demonstrate an effective and efficient machine learning approach to the identifi-
cation of seizures from a large dataset of EEG recorded from freely behaving rats. A high proportion (> 95%) 
of all seizures from a large data set of EEG spanning multiple animals over months were identified. While few 
algorithmic approaches have been presented in sufficient detail to allow reproduction, the DCNN demonstrates 
superior to an approach utilizing total line length variability following wavelet  decomposition22. Collection of this 
data in an objective, algorithmic fashion avoids biases associated with identification by visual inspection and loss 
of information inherent in reviewing only a subset of the data. This approach allows for a more comprehensive 
study of this animal model and facilitates efforts to understand processes such as progression in epilepsy. Given 
the dearth of such tools for analysis of rodent EEG, this machine learning approach is an important addition. 
As technologies increasingly allow for collection of large amounts of electrographic data in both research and 
clinical settings, new methods are needed to process and summarize information. As these problems are not 
unique to electrographic recordings, solutions generated for other circumstances, such as image classification, 
can be repurposed, as this approach demonstrates.

Materials and methods
The novel Perforant Path Kindling Susceptible (PPKS) strain of rats used in this study were bred (> 15 genera-
tions) from a colony at the University of Wisconsin-Madison29. Animals were maintained under 12 h light: 
12 h dark cycles, with ad libitum food and water, in a vivarium under the care of the University of Wisconsin-
Madison veterinarians. All animal handling and procedures were performed according to the NIH Guide for 
the Care and Use of Laboratory Animals and the experiments were conducted under a protocol approved by 
the University of Wisconsin Institutional Animal Care and Use Committee. The study is reported in accordance 
with ARRIVE guidelines.

Surgical procedure
Rats were 3–4 months of age at the time of surgery. Surgical anesthesia was achieved with isoflurane, with brief 
induction at 5% and then maintenance at 1–5% (monitored by assessment of withdrawal to paw pinch and cor-
neal reflexes), delivered in 100% oxygen. The rats received atropine (0.02–0.05 mg/kg IM) to reduce respiratory 
secretions and bupivacaine subcutaneously to pressure points for the stereotaxic stage (external ears bilaterally), 
at the site of the surgical incision at the midline scalp, and spritzed on the skull prior to drilling. After achieving 
surgical anesthesia, the hair was shaved over the operative site and the skin was cleaned with povidone-iodine. 
An incision was made in the scalp to expose the cranial surface and bleeding was controlled by electrocautery.

Controlled cortical impact (CCI)
Isoflurane was maintained at 1–2% for at least 5 min prior to delivery o the CCI. The craniotomy was made over 
the right posterior quadrant with the dura left intact (Fig. 1A) with a sterile, circular 5 mm diameter trephine. 
A Leica Impact One Stereotaxic Impactor delivered the CCI with a 3 mm diameter impactor, blunt tipped. CCI 
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is delivered to a depth of 3 mm, with an impact velocity of 6 m/s and a dwell time of 500 ms, targeting the pos-
terior cortex and extending through cortex but not directly into hippocampus (Fig. 1A). The craniotomy was 
then covered by Gelfoam (Pfizer).

Electrode implantation
Following the CCI, four burr holes were drilled into the epidural space in each quadrant, and screw electrodes 
were placed into the burr holes, as well as in a blind hole into the skull overlying the cerebellum used as a 
ground and reference electrode (Fig. 1A). Following placement of the electrodes, hemostasis was achieved and 
the electrodes attached to the skull by a dental acrylic cap. The remaining scalp wound was closed, as needed, 
with suture (Ethicon 4-0 dissolvable chromic gut). The surgical site was treated with triple antibiotic ointment. 
The usual duration of surgery was 20–30 min. With the exclusive use of isoflurane inhalation anesthesia, rats 
typically resumed ambulation within minutes of returning to normal ambient air. While recovering, all rats were 
warmed with an incandescent lamp. The lamp was kept 8″ or more above and at the edge of the cage to prevent 
burns. Postoperative analgesia was administered, with rats receiving flunixin (2 mg/kg IM daily) immediately 
following the surgical procedure and once daily for the first three post-operative days. Rats were followed for 
signs of pain such as weight loss, poor grooming, or decreased movement.

Video‑EEG recording
In vivo neurophysiological recordings were conducted on freely behaving rats. The rats were connected by 
a recording cable through the chronic headstage to record spontaneous EEG and animals were housed in 
10″ × 12″ × 22″ glass chambers to allow recording of simultaneous video. Video-EEG was recorded using an 
XLTEK EEG system (Neuroworks, 8.5.1) with a Connex Brain Monitor amplifier (sampled at 1024 Hz). Four 
channels of EEG were recorded, labeled Left Anterior (LA), Left Posterior (LP), Right Anterior (RA), and Right 
Posterior (RP), with each of the epidural electrodes referenced to the electrode placed in a blind hole in the 
posterior skull (Fig. 1A). The recording sessions lasted 4–8 h and occurred 1–2 times per week and were directly 
observed by laboratory staff. At the conclusion of the recording period rats were returned to their regular hous-
ing. Video-EEG recordings began 1–2 weeks after CCI and continued for 5–6 months. Video-EEG recordings 
were monitored for quality control and preliminarily screened for the presence of seizures during the chronic 
recording period.

Visual inspection of the recorded EEG was initially used to identify rats experiencing post-CCI seizures 
defined by conventional criteria for seizure classification including trains of rhythmic generalized spike-waves, 
focal spike/spike-wave discharges, and focal spike/spike-wave with secondary generalization (Fig. 2). Isolated 
spikes, sharp waves, and other isolated interictal patterns were not considered as evidence of posttraumatic 
seizures. At the end of the recording period (5–6 months after CCI) rats were definitively classified as having or 
not having post-traumatic seizures based on visual review of the video-EEG recordings.

Video-EEG recordings were scored for seizures by visual inspection through a tiered approach in which 
reviewers with a basic level of training and experience performed the primary scoring. The primary scoring 
was assessed by a reviewer with an advance level of training and experience, and the second-level scoring was 
reviewed by an experienced epileptologist (RJK, TPS, PAR).

Classification of EEG by deep convolutional neural network (DCNN)
To objectively and rapidly analyze the large EEG dataset, an approach utilizing a predesigned deep convolutional 
neural network (DCNN) devised to classify images (GoogLeNet) was chosen to identify seizures (Fig. 3A). For 
each rat with post-traumatic seizures as identified and classified by visual review described above, a recording 
of 2 h duration and good technical quality near the end of the recording period (at least 5 months since TBI) 
was chosen for training of the DCNN. Recordings at this time interval after CCI in the subset of rats which 
developed seizures typically demonstrated a high frequency of seizures. The duration of episodes of ictal activity 
was determined by visual inspection, with the onset marked as the earliest spike initiating a rhythmic train of 
spike discharges, in any of the 4 channels, and cessation of ictal activity identified when spike discharges were 
not noted in any channel. Post-ictal electrographic slowing was not scored as seizure. The entire recording was 
divided into 2-s segments and a segment was classified as ICTAL if > 1 s was marked as seizure by visual inspec-
tion, else the segment was classified as BASELINE.

Analysis was performed in MATLAB (R2021a) and was developed from a MATLAB  example30. For each 2-s 
segment of each channel continuous wavelet transformation was used to generate a scalogram from 1 to 24 Hz 
(12 voices per octave) to produce a 224 × 224 × 3 RBG image (scalogram). The scalogram was multiplied by 
the kurtosis and the inverse of spectral entropy, each calculated for the 2-s segment, to produce a 224 × 224 × 3 
multiplexed image (scalogram-kurtosis-entropy) (Fig. 3B).

Training the DCNN was performed utilizing a 2-h segment of EEG with a high frequency of seizures (1–10% 
of recording), with the remainder of the recording used as validation. GoogLeNet (Deep Learning Toolbox, 
MATLAB) was chosen as the predesigned network (Fig. 3C). Training utilized a batch size of 15, a maximum 
of 20 epochs, and an initial learning rate of 0.000130. The trained network was then used to classify images from 
additional recordings as ICTAL or BASELINE (Fig. 3D). For seizure detection, a 2-s segment was classified as a 
seizure when two or more consecutive ICTAL segments were identified in a channel, while isolated 2-s classified 
as ICTAL were scored as interictal activity. Seizures identified by the DCNN were reviewed by visual inspection 
to exclude false positives.
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Statistical analysis
All results are presented as mean ± SEM. All statistical tests were performed by JMP Pro 15 (SAS Institute, Inc). 
A generalized linear model utilizing a nominal logistic fit for kurtosis, entropy, and line length for either ICTAL 
or BASELINE 2-s EEG blocks. Accuracy for the DCNN was compared to scoring by visual inspection. Paired 
t-tests were utilized for comparison of training utilizing the scalogram images or the multiplexed scalogram-
kurtosis-entropy images. The exploration of weights for kurtosis and entropy was analyzed by an ANOVA with 
post-hoc analysis by Dunnett’s method with equal weights as the control. A pooled t-test was utilized to compare 
accuracy of the DCNN trained and applied within a single animal (intra-animal) or trained and applied across 
animals (inter-animal).

Data availability
All data related to the DCNN and its application are included in this published article (and its Supplementary 
material). The EEG datasets analysed during the current study are not publicly available due to ongoing analysis 
and subsequent publications but are available from the corresponding author on reasonable request.
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