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Exact solution of the 1D Dirac 
equation for a pseudoscalar 
interaction potential 
with the inverse‑square‑root 
variation law
A. M. Ishkhanyan 1* & V. P. Krainov 2

We present the exact solution of the one‑dimensional stationary Dirac equation for the pseudoscalar 
interaction potential, which consists of a constant and a term that varies in accordance with the 
inverse‑square‑root law. The general solution of the problem is written in terms of irreducible linear 
combinations of two Kummer confluent hypergeometric functions and two Hermite functions with 
non‑integer indices. Depending on the value of the indicated constant, the effective potential for the 
Schrödinger‑type equation to which the problem is reduced can form a barrier or well. This well can 
support an infinite number of bound states. We derive the exact equation for the energy spectrum and 
construct a rather accurate approximation for the energies of bound states. The Maslov index involved 
turns out to be non‑trivial; it depends on the parameters of the potential.

The Dirac equation is a relativistic wave equation that models the behavior of spin-1/2 particles in quantum 
mechanics and quantum field  theory1–3. It is a generalization of the Schrödinger equation that takes into account 
the effects of special relativity. The Dirac equation has been used to study a wide variety of physical systems, 
including electrons, protons, neutrons, and  quarks1–3. However, finding exact solutions of the Dirac equation for 
non-trivial interaction potentials is a challenging task, as it presents a rather complicated mathematical object.

One class of potentials that has attracted considerable attention in recent years is the pseudoscalar interac-
tion  potential4–11, which has been shown to be related to supersymmetry and  integrability12–15, which are both 
important concepts in quantum mechanics. In this paper, we present the exact solution of the one-dimensional 
stationary Dirac equation for a pseudoscalar interaction potential, which is a combination of a constant and a 
term that varies in accordance with the inverse-square-root law. This potential is an exactly solvable potential 
because both of its parameters can be varied independently.

The general solution of the problem is written in terms of irreducible linear combinations of two Kummer 
confluent hypergeometric functions and two Hermite functions with non-integer indices. The effective poten-
tial for the Schrödinger-like equation, to which the problem is reduced, can be a repulsive potential or a well, 
depending on the value of the indicated constant. In the latter case, the potential supports infinitely many bound 
states, which are located in two energy intervals separated by the gap (−mc2,mc2) . We derive the exact equation 
for the energy spectrum and construct a rather accurate approximation for the energies of bound states. The 
Maslov  index16 (see  also17,18) involved turns out to be non-trivial, unlike the case of a combined vector-scalar 
interaction with the same potential  form19.

The paper is organized as follows. In Section "Potential", we review the one-dimensional Dirac equation 
with the pseudoscalar interaction potential under consideration, and the reduction of the equation to a single 
second-order differential equation. In Section "General solution", we present the exact general solution of the 
Dirac equation. In Section "Bound states", we derive the exact equation for the energy spectrum and construct 
a rather accurate approximation for it, which we compare to the exact numerical result. In Section "Discussion", 
we discuss the results of the paper and their implications. Since the applications of the pseudoscalar interaction 
potential extend to various areas of physics, we hope that this paper will be of interest to researchers in the fields 
of quantum mechanics, particle physics, and condensed matter physics.
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Potential
We consider a spin-1/2 Dirac fermion of rest mass m and energy E in the field of a pseudoscalar interaction 
potential given as

where W0 and W1 are arbitrary constants and x is a space coordinate. The stationary one-dimensional Dirac 
equation for such an interaction can be written as

where ψ = (ψ1,ψ2) is the two-component wavefunction of the particle, σ0 is the identity matrix, σ1,2,3 are the 
Pauli matrices:

c is the speed of light, and � is the reduced Planck constant. In explicit form, the Dirac equation is written as

Eliminating one of the components from this system, one can obtain a one-dimensional Schrödinger-like 
equation. For instance, resolving the second equation with respect to ψ2:

where the prime denotes differentiation, we obtain the following Schrödinger-type equation:

where we have denoted

and introduced the effective Schrödinger potential

Potential (1) is a version of the field configuration that was not discussed in previous studies of potentials 
with the same functional form, including terms that vary according to the law of inverse square root  (see19,20). 
At first glance, the modification appears insignificant, with the only difference being the addition of a constant, 
W0 . However, this constant has a dramatic effect on the behavior of the system. Without W0 , the potential does 
not support bound states. However, for a negative value of W0W1 , the potential supports infinitely many bound 
states, regardless of the values of the parameters W0 and W1 . This is because in this case the potential becomes a 
long-range well that can trap particles from a long distance away. Importantly, for a definite-parity extension of 
potential (1) to the region x < 0 , these observations hold for the entire x-axis.

For an odd-parity extension (Fig. 1), we have

and the effective Schrödinger potential is given as

The form of this potential is shown in Fig. 2. As we can see, it is symmetric with respect to the origin. As the 
origin is approached, the potential diverges as |x|−3/2 . And as x goes to infinity, the potential behaves as
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Hence, it is a long-range potential. For W1W0 > 0 , the potential forms a barrier (Fig. 2, left panel), and for 
W1W0 < 0 , the potential forms a well (Fig. 2, right panel). In the latter case, the potential supports infinitely 
many bound states.

We conclude this section by noting that the ability of the background constant pseudoscalar potential to 
significantly impact the behavior of the system has been observed in several cases (see, for  instance21,22).

General solution
The effective Schrödinger potential (11) is a particular case of the first Exton potential (see Eq. (21)  of23):

Here, V0,1,3 are arbitrary constants. This potential, in turn, is a specific case of one of the five biconfluent Heun 
potentials originally discussed by Lemieux and  Bose24 (also  see25):

In general, the solution of the Schrödinger equation for this Lemieux-Bose potential is written in terms of 
the biconfluent Heun functions, which are advanced special  functions26–28 that generalize the Kummer confluent 
hypergeometric function. This function is encountered in various branches of contemporary research, ranging 
from classical physics and quantum mechanics to general relativity and cosmology  (see29–34 and references 
therein). Although the biconfluent Heun function is generally a complicated mathematical object, it can be 
simplified and expressed in terms of simpler mathematical functions, particularly confluent hypergeometric 
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Figure 1.  Odd-parity extension of potential (1); (W0,W1) = (−1/2, 1).

Figure 2.  Schrödinger potential (11) for odd-parity extension (10) of potential (1). No bound states if 
W0 = +1/8 > 0 (left panel) and infinitely many bound states if  W0 = −1/2 < 0 (right panel). Dashed line 
presents the limiting value V(±∞) = W

2
0 /(2mc

2) . (m, c, �,W1) = (1, 1, 1, 1).
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functions, for certain specifications of its potential. Many of these cases are obtained by terminating the expan-
sion of the biconfluent Heun function in terms of the Hermite  functions35,36. The first Exton potential (13) 
represents one such case. In this case, the solution is obtained by terminating the expansion at the second term. 
This simplified solution has been discussed in several  papers37–39.

For x > 0 , the effective Schrödinger potential given by Eq. (11) represents the first Exton potential with the 
specification

With this, the general solution of the Dirac equation can be written  as39

and C1,C2 are arbitrary constants. We note that both signs for δ are applicable; however, for definiteness, below we 
apply the plus sign. From Eqs. (16) and (17), we observe that each of the two independent fundamental solutions 
is given as an irreducible linear combination with non-constant coefficients of two Kummer hypergeometric 
functions or two Hermite functions with non-integer indices.

It can be verified that the wave function ψ1 vanishes as x goes to infinity only if C2 = 0 . With this, the solu-
tion for x > 0 is simplified to

To complete this section, we recall that the second component of the wave function is

Bound states
The possibility of bound states is determined by the boundary conditions at x = 0 . Let the solution for x < 0 
that vanishes at infinity be ψL = (ψ1L,ψ2L) and it be proportional to a constant, say C3 . Then the continuity 
condition of the wave function:

presents a set of two homogeneous linear equations with respect to the constants C1 and C3 . For a non-trivial 
solution, the determinant of this system must be zero:

Since we consider the odd extension, when W(−x) = −W(x) , the Dirac equation is covariant 
under the parity transformation x → −x , and the solution for the negative x-region can be written as 
ψL(x) = C3(ψ1R(−x),−ψ2R(−x)) . As a result, Eq.  (24) reduces to ψ1R(0)ψ2R(0) = 0 , and we obtain two 
branches of bound states, generated by ψ1R(0) = 0 or ψ2R(0) = 0 . Let us consider these cases separately.

Bound states with ψ
1R
(0) = 0. The equation for the bound states’ energy spectrum is

The behavior of F as a function of energy is shown in Fig. 3.
It can be shown that, provided W0W1 < 0 , the spectrum equation has infinitely many roots, all located in 
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To construct an approximation for the spectrum, it is convenient to transform Eq. (25), using the recurrence 
relations between contiguous Hermite  functions40, into the form

The advantage of this form is that the argument y0 of the involved Hermite functions here is such that it 
belongs to the left transient region y0 ≈

√
2ν − 1 , where ν = a+ 1 or ν = a+ 2 . Then, using the Airy-function 

approximation of the Hermite function for this  region41, we arrive at an approximation of this equation as

where

It is shown that A0,1 < 1 and for the solution of Eq. (29), a > 1 . Furthermore, for large a , the energy E is close 
to E0 : E ≈ E0 . With these observations, for large a, we arrive at the approximate equation

The dependence of a on E (see Eq. (19)) shows that this is a sextic polynomial equation in E that is readily 
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Figure 3.  The behavior of function F(E) of Eq. (25) in the negative (left panel) and positive (right panel) energy 
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This is a fairly accurate approximation. It provides the spectrum with relative error of the order of 10−4 or less 
(see Table 1 for a comparison with the exact numerical result). The normalized wave function on the entire x-axis 
is shown in Fig. 4 ( n = 3 , positive energy branch). It can be observed that the wave function is anti-symmetric 
with respect to the origin, as expected, and that the derivative of ψ2(x) is discontinuous at the origin.

Bound states with ψ
2R
(0) = 0. This time, the exact spectrum equation is written as

Acting now essentially in the same way as in the previous case, we arrive at the spectrum expressed by the 
same formulas (34)–(36), with the parameter A1 given as

where u is given by Eq. (32). The obtained result again is a fairly good approximation as seen from Table 2. 
The normalized wave function on the entire x-axis is shown in Fig. 5 ( n = 3 , positive energy branch). It can be 
observed that this time the derivative of ψ1(x) is discontinuous at the origin.

As Eq. (36) shows, the Maslov index is given as

where the parameter A1 is different for the spectrum branches with ψ1(0) = 0 and ψ2(0) = 0 . An interesting 
observation is that A1 is not a constant but depends on the potential parameters W0 and W1 . Figure 6 shows 
this dependence. As we can see, the Maslov index for the energy spectrum branch with ψ1(0) = 0 starts from 
−1/6 , while that for the branch with ψ2(0) = 0 starts from −5/6  as u = 0 . We note that both indices tend to 
−1 as u → ∞.
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Table 1.  Comparison of approximation (34) with the numerical solution of exact Eq. (27). 
(m, c, �,W1,W2) = (1, 1, 1,−1/2, 1).

n 1 2 3 4 5 6 7

En(exact) 1.005715 1.038481 1.053641 1.062871 1.069239 1.073967 1.077652

En(approx) 1.005603 1.038743 1.053759 1.062937 1.069281 1.073996 1.077672

Figure 4.  Normalized wave function with ψ1(0) = 0 ( n = 3 , E3 = 1.053641 ). The solid line shows ψ1 and the 
dashed line shows ψ2/i . (m, c, �,W1,W2) = (1, 1, 1,−1/2, 1).
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Discussion
Thus, we have presented the exact solution of the one-dimensional stationary Dirac equation for a pseudoscalar 
potential consisting of an independently variable constant and a term that varies in accordance with the inverse 
square root law. Since the strength of the term that varies in accordance with the inverse square root law can 
also be independently varied, this is an exactly solvable potential. We have expressed the general solution of the 
problem as a linear combination with arbitrary coefficients of two fundamental solutions. Each of these funda-
mental solutions can be expressed as an irreducible linear combination of two functions of the hypergeometric 
class, namely Kummer hypergeometric functions or Hermite functions with non-integer indices.

A peculiarity of the potential we discussed is that the effective potential for the Schrödinger-like equation, 
to which the problem is reduced, changes its nature depending on the value of the involved constant term. With 

Table 2.  Comparison of approximation (34) with the numerical solution of exact Eq. (37). 
(m, c, �,W1,W2) = (1, 1, 1,−1/2, 1).

n 1 2 3 4 5 6 7

En(exact) 1.000000 1.036288 1.052395 1.062042 1.068638 1.073505 1.077283

En(approx) 1.000034 1.036279 1.052391 1.062040 1.068636 1.073504 1.077282

Figure 5.  Normalized wave function with ψ2(0) = 0 ( n = 3 , E3 = 1.052395 ). The solid line shows ψ1 and the 
dashed line shows ψ2/i . (m, c, �,W1,W2) = (1, 1, 1,−1/2, 1).

Figure 6.  The dependence of the Maslov index on the parameter u = W
4/3
1 /(−W0c�)

2/3 . The solid line 
shows the index for the energy spectrum branch with ψ1(0) = 0 and the dotted line stands for the branch with 
ψ2(0) = 0 . The points in the vertical axis indicate −1/6 and −5/6.
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certain values, the effective potential is a barrier, and with others, it becomes a well, supporting infinitely many 
bound states.

We have derived the exact equation for the energy spectrum and have shown that the discrete energies of the 
bound states are located in two energy intervals separated by the gap (−mc2,mc2) . We have constructed a rather 
accurate approximation for the energies of bound states and calculated the Maslov index of the spectrum. It turns 
out that this index, which is a constant addition to the quantum number n numbering the bound states and does 
not vanish at n → ∞ , is rather nontrivial. In the Schrödinger case with a potential, which varies according to 
the inverse-square-root law, this index is known to be a constant equal to −1/617,18. On the contrary, in our case, 
the Maslov index turns out to be dependent on the potential parameters and may vary over a rather large interval.

The interaction we have discussed can serve as a model for studying relativistic quantum systems in one 
dimension, providing insight into confinement effects. The non-polynomial Hermite functions involved in the 
general solution, confinement behavior, and localization of wave functions near the origin contribute to a com-
prehensive understanding of relativistic quantum systems and hold promise for diverse applications in con-
densed matter physics and quantum technology. For example, this interaction can be used to model graphene 
 nanoribbons42,43, Weyl and Dirac  semimetals44, topological insulators and  superconductors45,46, or quantum 
 dots47.
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