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Immunogenic cell death‑based 
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the response to immunotherapy 
and common therapy in lung 
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Lung adenocarcinoma (LUAD) is a malignant tumor in the respiratory system. The efficacy of current 
treatment modalities varies greatly, and individualization is evident. Therefore, finding biomarkers 
for predicting treatment prognosis and providing reference and guidance for formulating treatment 
options is urgent. Cancer immunotherapy has made distinct progress in the past decades and 
has a significant effect on LUAD. Immunogenic Cell Death (ICD) can reshape the tumor’s immune 
microenvironment, contributing to immunotherapy. Thus, exploring ICD biomarkers to construct 
a prognostic model might help individualized treatments. We used a lung adenocarcinoma (LUAD) 
dataset to identify ICD-related differentially expressed genes (DEGs). Then, these DEGs were clustered 
and divided into subgroups. We also performed variance analysis in different dimensions. Further, we 
established and validated a prognostic model by LASSO Cox regression analysis. The risk score in this 
model was used to evaluate prognostic differences by survival analysis. The treatment prognosis of 
various therapies were also predicted. LUAD samples were divided into two subgroups. The ICD-high 
subgroup was related to an immune-hot phenotype more sensitive to immunotherapy. The prognostic 
model was constructed based on six ICD-related DEGs. We found that high-risk score patients 
responded better to immunotherapy. The ICD prognostic model was validated as a standalone factor 
to evaluate the ICD subtype of individual LUAD patients, which might contribute to more effective 
therapies.

Cancer is the second leading cause of death after heart disease, representing 21% of total deaths. Most cancer 
deaths are from lung cancer due to the lowest mid-term survival. Non-small cell lung cancer (NSCLC) (85% of 
patients) and small cell lung cancer (SCLC) (15% of patients) are the two main types of lung cancer. The World 
Health Organization (WHO) classifies NSCLC into three main types: adenocarcinoma, squamous cell carcinoma, 
and large cell. The most common NSCLC type is adenocarcinoma accounting for 40% of lung cancers1,2. Vari-
ous treatments are applied to cure lung adenocarcinoma (LUAD) patients, including surgery, chemotherapy, 
molecular-targeted therapy, radiotherapy, and  immunotherapy3. Chemotherapy and molecular-targeted therapy 
are two common treatment strategies for LUAD, and the first-line treatment for LUAD patients is platinum-based 
combination chemotherapy4. In the past decades, cancer treatment has shifted with further research from tumor 
cells to tumor microenvironments5. Immunotherapy is an effective method to treat LUAD and is affected by the 
tumor immune microenvironment (TME).

Immunogenic Cell Death (ICD) is a part of Regulated Cell Death (RCD)6 and is triggered by obligate intra-
cellular pathogens, therapeutic oncolytic viruses, molecules with oncolytic potential, conventional chemothera-
peutics, epigenetic modifiers, targeted anticancer agents, and physical interventions7. The TME can be reshaped 
via the emission of danger signals or damage-associated molecular patterns (DAMPs)8,9, including the cell 
surface exposure of calreticulin (CRT)10, and heat-shock proteins (HSP70)11, extracellular release of adenosine 
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triphosphate (ATP), high-mobility group box-1 (HMGB1)12, type I IFNs13, and members of the IL-1 cytokine 
family14, resulting in antitumor immunity activation in immunocompetent hosts15. Pattern recognition receptors 
can recognize most DAMPs. Extracellular ATP and surface-exposed CRT act as a “find me” and “eat me” signal 
toward immune cells. Dendritic cells mature after exposure to these molecules and activate T cells to increase 
antitumor responses16, thereby reshaping the TME.

However, Immunotherapy significantly varies between individuals, and the prognosis is uneven. Hence, 
biomarkers are urgently needed to predict patient prognosis and treatment outcomes.

Herein, we aimed to construct a predictive tool based on biomarkers found in ICD-related genes to assist in 
the fastest and best treatment regimens for patients according to their circumstances to get better therapeutic 
efficacy. First, we screened ICD-related genes correlated to prognosis. Then, we constructed and validated an 
ICD-related gene classification based on these genes. Each patient was assigned a risk score to reflect the prog-
nosis and give advice on treatment regimens using this prognostic model.

Results
DEGs differentiation and division of patients into two subtypes.  We filtered 34 ICD-related genes 
in 598 LUAD sets in 59 normal tissues and 539 LUAD samples from TCGA, according to an extensive literature 
summarized by Abhishek et al.22: ATG5, BAX CALR, CASP1, CASP8, CD4, CD8A, CD8B, CXCR3, EIF2AK3, 
ENTPD1, FOXP3, HMGB1, HSP90AA1, IFNA1, IFNB1, IFNG, IFNGR1, IL10, IL17A, IL17, RAIL1B, IL1R1, 
IL6, LY96, MYD88, NLRP3, NT5E, P2RX7, PDIA3, PIK3CA, PRF1, TLR4, and TNF. Then, the expression of 
these ICD-related genes was analyzed with the “pheatmap” R package to visualize the variance between tumor 
and normal samples. Twenty-nine genes were differentially expressed in tumor samples: 12 were upregulated 
(CD8A, BAX, EIF2AK3, HSP90AA1, CASP8, CALR, PDIA3, IFNG, FOXP3, NT5E, IL17A, and IFNB1), and 17 
were downregulated (iIL6, TLR4, PRF1, IL1B, P2RX7, IFNGR1, CASP1, NLRP3, CD4, IL17RA, IL1R1, MYD88, 
IFNA1, TNF, ENTPD1, HMGB1, and PIK3CA) (Fig.  1A). These differentially expressed ICD-related genes 
between tumor and normal samples play a crucial role in the initiation and progression of tumors. The 29 ICD-
related DEGs were used for PPI analysis via the STRING database (Fig. 1B). Then, we determined ICD-related 
clusters of LUAD by consensus clustering. LUAD samples were grouped into two subgroups that maximized 
consensus within clusters while minimizing ambiguity in cluster assignments and considering the feasibility 
of clinical prognosis analysis (Fig. 1C–F). LUAD samples were divided into two cohorts (C1 and C2), rendered 
in the landscape to present the DEGs (Fig. 1G). ICD-related genes were downregulated in C1, representing the 
ICD-low subgroup, while ICD-related genes were upregulated in C2, comprising the ICD-high subgroup. Mean-
while, most of DEGs shows differences in gene expression, CNV frequency and survival(Fig. 2A). Their gain 
copy levels are higher than loss copy levels(Fig. 2B). 16 DEGs have significant differences in survival analysis, 
among which the low expression of ENTPD1, IL17A, P2RX7, TLR4, TNF, CD4, CD8A, CXCR3, IFNG, IL1R1 
and IL10 indicate worse outcome(Fig. 2C).

Inter‑groups differentiation and enrichment analyses.  All ICD-related genes were visualized in the 
landscape (Fig. 3A), where red cubes represent overexpression, while blue ones indicate underexpression. The 
volcano plot showed the gene distribution: red plot: upregulated; dark plot: unregulated; green plot: downregu-
lated (Fig. 3B). The GO enrichment analysis comprises different classes: Biological Processes (BP), Cellular Com-
ponents (CC), and Molecular Functions (MF) (Fig. 3C). This analysis revealed that DEGs were mainly enriched 
in BP related to immune function, such as receptor-ligand activity (GO:0048018); signaling receptor activator 
activity (GO:0030546) in the MF subgroup; and collagen − containing extracellular matrix (GO:0062023) in 
CC, which might contribute to immunotherapy. The same result can be seen in the dot plot representing gene 
ratios (Fig. 3D). Cytokine-cytokine receptor interaction was significantly enriched in the KEGG enrichment 
analysis. This pathway influences immune response processes such as adaptive inflammatory host defenses and 
cell death (Fig. 3E). The GSVA indicated that eight hallmark gene sets were differentially enriched between the 
two subgroups (Fig. 4A), all upregulated in the ICD-high subgroup (Fig. 4B). These pathways contribute to the 
response to Interferon-gamma, alpha interferon proteins, tumor necrosis factor, transplant rejection, inflamma-
tory response, and KRAS17, indicating a higher level of tumor immune response in the ICD-high subgroup. The 
GSEA indicated that the cytokine-cytokine receptor interaction pathway was significantly enriched for ICD-
related genes in the high-risk subgroup, which is also related to immune response (Fig. 5A,B). Therefore, the 
ICD-high subgroup was strongly related to immune pathways.

Somatic mutation and TME.  Further, we explored the distinct somatic mutation profiles between the 
two subgroups. To evaluate the somatic mutation differences between ICD-high and low subgroups, we drew 
the oncoplot for each subgroup (Fig. 5C,D). The frequency varied, as shown in the two charts. Despite TP53 
and TTN that were high-frequency mutation genes, other genes, such as MUC16 and CSMD3, also differed. 
The ICD-high subgroup presented a lower mutation percentage than the ICD-low subgroup in different genes. 
The main mutation modes in the two subgroups are missense mutations and multi-hits. Further, we analyzed 
the tumor mutation burden (TMB) of the two subgroups. The ICD-low subgroup presented a statistically higher 
TMB than the ICD-high subgroup (Fig. 6A). Thus, upregulation of ICD-related genes might lower the TMB and 
inhibit tumor development. Then, we analyzed the immune microenvironment based on the ICD-related gene 
data. The four items differed between ICD-high and low subgroups. The estimate (Fig. 6B), immune (Fig. 6C), 
and stromal (Fig. 6D) scores were higher, and tumor purity (Fig. 6E) was lower in the ICD-high subgroup than in 
the ICD-low subgroup. Estimate scores are the sum of immune and stromal scores. These results demonstrated 
ICD’s ability to recruit immune infiltration. We obtained immune cell infiltration fractions using CIBERSORT 
to deconvolute samples from both subgroups. The content and relevance of 22 types of immune cells in ICD 
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samples are presented (Fig. 7A). The correlation analysis of immune cells is shown (Fig. 7B). Thus, we contrasted 
ICD-high and low subgroups for each immune cell (Fig. 7C). CD4 memory resting T cells, monocytes, resting 
dendritic cells and resting mast cells were upregulated, while plasma cells, CD8T cells, follicular helper T cells, 
resting NK cells, and M0 macrophages were downregulated compared to the ICD-low subgroup with different 
p values (*). In the ICD-high subgroup, resting NK cells and M0 macrophages were downregulated, implying 
the improvement of the immune microenvironment. Furthermore, all human leukocyte antigen (HLA) genes 
listed below were overexpressed (Fig. 7D), and most checkpoints were similar (Fig. 7E) in the ICD-high subtype. 
Hence, the ICD-high subgroup was associated with the immune-hot phenotype, and the ICD-low subgroup was 
linked to the immune-cold phenotype.

ICD prognostic model.  Six ICD-related genes were selected from 16 DEGs previously mentioned for the 
classification model construction by LASSO regression analysis (Fig. 8A). They were associated with the patient 
survival (p < 0.05): ENTPD1, HSP90AA1, IL17A, P2RX7, PIK3CA, and NT5E. Each of them has a coefficient. 
Thus, we developed the classification based on the algorithm : Risk score = (0.1671) * HSP90AA1 + (0.0860) * 
NT5E + (−0.1682) *ENTPD1 + (0.0107) *IL17A + (0.0830) * P2RX7 + (0.0613) * PIK3CA. Each sample received 
a Risk Score. The landscape shows the individual risk score of the six ICD-related genes in increasing total 
Risk Score order (Fig. 8B). ENTPD1, IL17A, and P2RX7 were downregulated, while HSP90AA1, PIK3CA, and 

Figure 1.   Identification of ICD-associated subtypes by consensus clustering. (A) Heatmap shows 34 ICD gene 
expression profiles among normal and LUAD samples in TCGA database. (B) Protein–protein interactions 
among the ICD-associated genes (C) Heatmap depicts consensus clustering solution (k = 2) for 34 genes in 
539 LUAD samples (D,E) Delta area curve of consensus clustering indicates the relative change in area under 
the cumulative distribution function (CDF) curve for k = 2 to 9. (F) Tracking Plot of consensus clustering 
indicates the relative change of class that samples belongs to for k = 2 to 9. (G) Heatmap of 34 ICD-related gene 
expressions in different subtypes. Red represents high expression and blue represents low expression.
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NT5E were upregulated, indicating that ENTPD1, IL17A, and P2RX7 might negatively affect tumor develop-
ment and result in better outcome. We divided them into high- and low-risk subgroups (Fig. 8C). Moreover, the 
survival distribution indicated more deaths as the risk score increased (Fig. 8D). Then, we applied the Risk Score 
for samples in TCGA LUAD (Fig. 8E) and two cohorts of GEO LUAD (GSE89571, GSE31210) (Fig. 8F,G). In 
TCGA, a high-risk score was related to poor overall survival (OS), further confirmed in the GEO cohorts. This 
corresponds to the DEGs survival analysis. To verify the independent prognostic value of this classification, we 
used univariate and multivariate Cox regression analyses, which indicated the independent prognostic value of 
the ICD risk signature (p < 0.05). The univariate Cox regression analysis showed that a high ICD risk score was 
significantly associated with poor OS (Fig. 9A). The multivariate Cox regression analysis showed that the ICD 
risk score was an independent prognostic factor for LUAD patients (Fig. 9B).

TME and therapy analysis.  ICD plays a vital biological role in anti-cancer immunological responses. 
Thus, it has a tight connection with the TME. In the immune correlation analysis, Plasma cells, T regulatory 
cells (Tregs), CD4 memory resting T cells, B cells memory, B cells naïve, endritic cells activated varied with the 
Risk Score (p < 0.05)(Fig. 9C–H). As the Risk Score increased, the concentration of Tregs decreased, and CD4 
memory resting T cells increased (Fig. 9C,D). TIDE was used to evaluate the prognostic value of the Risk Score 
in immunotherapy based on a comprehensive analysis of the tumor expression spectrum to predict the effi-
cacy of ICD therapy (Fig. 10A). The high-risk score group responded better to immunotherapy. Then, we used 
the drug information in the GDSC database to evaluate the IC50 of common chemotherapy drugs(Fig. 10B). 
We found lower IC50 for 18 chemotherapy drugs in the low-risk score subgroup than in the high-risk score 

Figure 2.   DEGs signature. (A) Box plot of genes expression in ICD-related DEGs. (B) CNV of 20 ICD-related 
DEGs. (C) Survival analysis of 16 ICD-related DEGs.
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subgroup: BIRB.0796, AZD8055, EHT.1864, PF.4708671, ATRA, GW.441756, Axitinib, X681640, Elesclomol, 
ABT.263, PD.173074, Sorafenib, BX.795, Metformin, AMG.706, X17.AAG, Pyrimethamine, and NVP.BEZ235. 
These drugs were statistically sensitive to low-risk score LUAD patients, providing basic selection advice of 
chemotherapy drugs alone or combined with immunotherapy in clinical practice.

Single‑cell analysis and experimental validation.  With the intention of deeper investigation for these 
six ICD-related genes, we performed scRNAseq analysis with 10 LUAD samsamples. After the quality control 
process(Figure S1A),we manually identified 53504 cells which were distinguished into epithelial cells, stromal 
cells, macrophages, B cells and T Cells(Fig. 11A). The cell biomarkers was used for this process(Fig. S1B). In 
order to figure out the expression details of the six ICD-related genes in cell level, FeaturePlot and vlnPlot were 
performed(Figure S1C,D). We found that HSP90AA1 has higher expression than other five genes in all five types 
of cells(Fig. 11B,C). We conducted Western blot analysis to confirm the differential expression of HSP90AA1 
between tumor and normal tissues. Tumor tissues and adjacent non-tumor tissues were obtained from three 
histologically confirmed lung adenocarcinoma patients, and the Western blot experiments were performed with 
triplicate repeats for each sample(Fig. 11D). The findings demonstrated a significant increase in the expression 
of the HSP90AA1 protein product in lung adenocarcinoma tissues compared to the levels observed in normal 
tissues, respectively(Fig. 11E,F).

Figure 3.   Identification of differentially expressed genes (DEGs) and underlying signal pathways in different 
subtypes. (A) Heatmap shows the DEG expression in different subgroups. (B) Volcano plot presents the 
distribution of DEGs quantified between ICD-high and ICD-low subtypes with threshold of |log2 Fold 
change|> 1 and P < 0.05 in TCGA cohort. (C) GO circle presents the signaling pathway enrichment analysis. 
(D,E) Dots plot presents the KEGG and GO signaling pathway enrichment analysis. The size of the dot 
represents gene count, and the color of the dot represents–log10 (p adjust-value).
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Discussion
Lung Adenocarcinoma (LUAD) accounts for 40% of lung cancer cases2. Surgery, radiotherapy, chemotherapy, 
targeted therapy, and immunotherapy are the mainstream treatment methods used for LUAD3. The efficacy 
of immunotherapy combined with classical cancer therapy, such as chemotherapy and targeted therapy, is 
remarkable18–21. However, there are significant differences between individuals in response to treatments. Hence, 
biomarkers are crucial to determine personalized treatment regimens for each patient to gain the best therapeutic 
effect. Thus, constructing an ICD-related gene classification to determine LUAD sensitivity to immunotherapy 
seems vital.

ICD is a unique RCD that works via DAMPs and danger signal emissions, triggering full antigen-specific 
adaptive immunological responses7,22,23. Dying cancer cells can activate this pathway, contributing to immu-
notherapy. Thus, ICD can be applied in cancer immunotherapy. Currently, no study has analyzed ICD-related 
prognostic genes in LUAD. Hence, constructing a prognostic model based on ICD-related prognostic genes to 
determine a risk score to predict a patient’s prognosis and treatment is of great interest.

Therefore, in the present study, we analyzed ICD-related biomarkers in LUAD and constructed an ICD 
prognostic model, which might be an easy and reliable tool for deciding treatment regimens (immunotherapy, 
other novel therapy, or combinations), leading to better outcomes.

Furthermore, we explored the genes and clinical data of 539 LUAD and 59 normal samples from TCGA and 
found 34 ICD-related DEGs. Then, we grouped LUAD samples into ICD-high and ICD-low subgroups based 
on ICD-related gene expression. These 34 ICD-related genes were previously summarized by Abhishek et al.22. 
We also used consensus clustering and selected k = 2, considering clinical factors and statistical parameters. 
The GO enrichment analysis indicated that most ICD-related genes were enriched for BP and CC. ICD-related 

Figure 4.   GSVA analysis. (A) Heatmap of GSVA enrichment analysis. (B) Violin plots show the differences in 8 
GAVA enrichment signal pathways.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13305  | https://doi.org/10.1038/s41598-023-40592-w

www.nature.com/scientificreports/

genes affected receptor ligand activity, signaling receptor activator activity, and collagen − containing extracel-
lular matrix. These pathways mainly affect the immune system. The GSVA showed that eight pathways were 
upregulated in the ICD-high subgroup, indicating a higher immune response level. These results highlighted 
the function of ICD-related genes. Cytokine-cytokine receptor interaction was also significant in the KEGG 
enrichment and GSEA. Moreover, the TMB was higher in the ICD-low subgroup, suggesting that ICD-related 
genes contributed to lower TMB. In the immune infiltration analysis, CD8 T cells presented a distinctly higher 
expression in the ICD-low subgroup. These results indicated the same outcome for TMB. The immune infiltra-
tion analysis also showed a higher infiltration in the ICD-high group, showing a lower tumor purity and higher 
stromal component in the TME analysis and the biological role of ICD. Therefore, the ICD-high group was related 
to an immune-hot phenotype and the ICD-low group to an immune-cold phenotype.

Finally, 6 of the 34 ICD-related DEGs were significantly associated with the prognosis of LUAD patients: 
ENTPD124, HSP90AA125, IL17A26, P2RX727, PIK3CA28, and NT5E29. HSP90AA1 is exposed to the cell surface 
and can be reduced by DAMPs11. These six genes were used to construct the ICD classification resulting in two 
cohorts: high- and low-risk subgroups. The survival analysis for TCGA and GEO samples supported the group-
ing efficiency using this classification. Furthermore, the high-risk score subgroup presented a poor OS in TCGA 
samples, which was confirmed in the GEO cohort. As the risk score rise, more deaths were detected in samples. 
The different components of immune cells were also positively or negatively correlated with the risk signature. 
The univariate Cox analysis indicated that tumor stage and risk score statistically influenced prognostic factors. 
Multivariate Cox analysis demonstrated that the risk score was an independent factor in predicting the clinical 
and immunotherapy outcomes for LUAD. High-risk score patients had a favorable response to immunotherapy 
and might have better therapeutic effects than low-risk score patients. Therefore, a greater use of immunotherapy 

Figure 5.   Comparison of GSEA signaling pathway and somatic mutations between different ICD subtypes. (A) 
GSEA analysis presents the signal pathway in ICD-low subtype. (B) GSEA analysis presents the signal pathway 
in ICD-high subtype. (C) Oncoplot visualization of the top twenty most frequently mutated genes in ICD-low 
subtype. (D) Oncoplot visualization of the top twenty most frequently mutated genes in ICD-high subtype.
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in high-risk scores might help improve the OS, which will be the subject of further in-depth clinical studies. 
Next, we analyzed the sensitivity to chemotherapy drugs widely used in clinical practice between two cohorts. 
The IC50 of 18 chemotherapy drugs was significantly lower in the low-risk score group than in the high-risk 
score group, indicating higher sensitivity in low-risk score LUAD patients. Thus, these drugs might be effective 
in LUAD therapy, but more clinical evidence is required to corroborate it.

We further performed single-cell analysis and observed that HSP90AA1 (Heat Shock Protein 90 Alpha Fam-
ily Class A Member 1) exhibits significant and widespread expression across multiple cell types. It is a protein 
coding gene located in 14q32.31. The protein encoded by HSP90AA1 is a molecular chaperone protein that plays 
a key role in facilitating the folding, stabilization, and functional activity of specific client proteins30. In cancer 
cells, HSP90AA1 encoded protein can form complexes with various tumor-associated proteins and participate 
in regulating their stability and activity. Elevated expression of HSP90AA1 encoded protein is closely associ-
ated with the growth, proliferation, survival, and invasive capabilities of tumor cells. It can interact with certain 
oncogenic proteins, such as kinases, transcription factors, and receptors, forming complexes that protect them 
from degradation by the protein degradation system. For other types of cells in lung adenocarcinoma tissues, the 
expression of HSP90AA1 elevated due to the complexity of tumor tissue and alterations in the tumor microen-
vironment. Thus, HSP90AA1 increases the potential for our ICD-related progonstic model to generalize well to 
different adenocarcinoma samples. By validating the expression levels of this gene through wet lab experiments, 
it becomes possible to further evaluate the model’s generalization ability and prediction accuracy. As a result, 
Western Blot experiment revealed its evaluated expression in adenocarcinoma tissues. This further confirmed 
the generalization ability and prediction accuracy of our model. However, only the western blot experiment for 
validation seems not enough. We are aimed to perform further wet-lab experiments to support our findings.

In conclusion, we constructed a prognostic model based on 6 ICD-related genes. They all influence the sur-
vival outcome. HSP90AA1,NT5E, PIK3CA have the negative influences while ENTPD1, IL17A, P2RX7 have 
the positive influences. Our current results demonstrated that the ICD-based classification was an independent 
prognostic value to provide reliable guidance for treating LUAD patients, especially immunotherapy, contributing 
to individualized treatment. These findings might help in the precise treatment and fine management of LUAD 
patients, reducing the overall mortality of lung cancer patients based on the rational use of anti-cancer drugs.

Materials and methods
Datasets.  The RNA-seq data of 598 LUAD patients (59 normal tissues and 539 LUAD samples) and clinical 
phenotype data (survival status, grade, gender, and age) of 522 LUAD patients were retrieved from The Cancer 
Genome Atlas (TCGA) (https://​portal.​gdc.​cancer.​gov/) as the training cohort. TCGA-LUAD simple nucleotide 
variation (SNV) (Masked Somatic Mutation proceed by VarScan) and copy number variation (CNV) (Masked 
Copy Number Segment) data were retrieved from TCGA GDC. Transcriptome and survival data of 96 patients 
were retrieved from the Gene Expression Omnibus (GEO) as the independent validation cohort (accession 

Figure 6.   Tumor mutation burden difference and ingredient differences of tumor microenvironment between 
ICD-high and ICD-low subtypes. (A) Violin plots show p value, the median, and quartile estimations for tumor 
mutation burden between ICD-high and ICD-low subtypes. (B) Violin plots show p value, the median, and 
quartile estimations for estimate score between ICD-high and ICD-low subtypes. (C) Violin plots show p value, 
the median, and quartile estimations for immune score between ICD-high and ICD-low subtypes. (D) Violin 
plots show p value, the median, and quartile estimations for stromal score between ICD-high and ICD-low 
subtypes. (E) Violin plots show p value, the median, and quartile estimations for tumor purity between ICD-
high and ICD-low subtypes.

https://portal.gdc.cancer.gov/
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number: GSE68571; https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE68​571). The “R” language (v. 
4.2.1) and STRING database [functional protein association networks (string-db.org)] were used for analysis.

Identification of differentially expressed genes (DEGs) and clustering.  ICD-related DEGs 
between LUAD and normal tissues were determined using the “limma” R package31 with absolute values of log 
fold change (FC) > 1 and false discovery rate (FDR) adjusted-p < 0.05. Protein–protein interaction (PPI) network 
analysis was conducted using the STRING database [STRING: functional protein association networks (string-
db.org)] to determine protein interactions and reveal the connections between these ICD-related genes. The 
“ConcensusClusterPlus” R package32 was used to identify ICD subtypes by unsupervised consensus clustering 
with k ranging from 2 to 10. To guarantee clustering stability, we repeated the process 1000 times. The optimal 
cluster number comprised the two maximized consensus within clusters while minimizing ambiguity in clus-
ter assignments considering the feasibility of clinical prognosis analysis. The cluster landscape was represented 
using the “pheatmap” R package33. The ICD-DEGs landscape was also visualized with this package.

Figure 7.   Immune landscape of ICD-high and ICD-low subtypes. (A) Relative proportion of immune 
infiltration in ICD-high and ICD-low subtypes. (B) Presentation of the correlation analysis of immune cells. 
(C) Violin plot visualizes significantly different immune cells between different subtypes. (D) Box plots present 
differential expression of HLA genes between ICD-high and ICD-low subtypes. (E) Box plots present differential 
expression of multiple immune checkpoints between ICD-high and ICD-low subtypes.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68571
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DEGs signature and enrichment analysis.  We analysed DEGs differences in gene expression, copy 
number variationa(CNV) frequency and survival. Gene Ontology (GO)34 and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses35–38 were used to evaluate differences between ICD-high and ICD-low 
subgroups regarding signaling pathways and biological processes with q- and p value thresholds of  < 0.05. We 
applied Gene Set Variation Analysis (GSVA) with the “GSVA” R package29. Based on expression profiles, Gene 
Set Enrichment Analysis (GSEA)39 was performed by the “clusterProfiler” R package with a curated gene set 
retrieved from MsigDB. An adjusted-p < 0.05 was considered statistically significant for the phenotype analysis.

Somatic mutation analysis.  Somatic mutations are linked to tumor cell sensitivity and anti-chemother-
apy mechanisms. These mutations also affect antitumor drug response prediction40. ICD-related somatic muta-
tion data in LUAD patients were analyzed using the “maftools” R package41 and visualized using “oncoplot”.

Figure 8.   Construction and validation of ICD-related classification. (A) Lasso Cox analysis identified 6 genes 
most associated with OS in TCGA dataset. (B) Heatmaps of prognostic 6 gene signature in TCGA database. (C) 
Risk scores distribution of each patient in TCGA cohort. (D) Survival status of each patient in TCGA cohort. 
(E) Kaplan–Meier analyses demonstrate the prognostic significance of the risk model in TCGA cohort (F) 
Kaplan–Meier analyses demonstrate the prognostic significance of the risk model in GEO89571. (G) Kaplan–
Meier analyses demonstrate the prognostic significance of the risk model in GEO31210.
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Tumor microenvironment (TME) and immune infiltration analysis.  We analyzed the TME with 
the “estimate” R package. The relative content of immune cells in each LUAD sample was analyzed using the 
“CIBERSORT” R package42. Subsequently, immune cell differences in ICD-high and low groups were evaluated. 
Moreover, the expression of HLA and immune checkpoint genes were compared between ICD-high and low 
subgroups.

Prognostic model construction and validation.  Gene expression data combined with clinical out-
comes for each sample in TCGA and GEO datasets were used to develop and validate an ICD-based prognostic 
model. The model was constructed with LASSO Cox regression analysis. With the available Risk Score from 
the model, its prognostic value for LUAD was further determined via Kapla-Maier (KM) analysis. We also per-
formed univariate and multivariate Cox regression analyses to confirm the independent prognosis value of the 
Risk Score.

ICD therapy.  We analyzed the immune relevance and response to immunotherapy based on the Risk Score 
obtained from the prognostic classification model. For patients insensitive to immunotherapy, we explored their 
sensitivity to common chemotherapy drugs. Tumor immune dysfunction and exclusion (TIDE) (http://​tide.​dfci.​
harva​rd.​edu/) analysis was conducted to evaluate the immunotherapy response. TIDE is an analytic technique 
that predicts immunotherapy response using two major tumor immune evasion mechanisms: T cell dysfunction 
and T cell infiltration inhibited in tumors with low CTL levels43.

Figure 9.   The association of ICD risk signature with tumor microenvironment. (A,B) Univariate and 
multivariate Cox analyses evaluate the independent prognostic value of ICD risk signature in LUAD patients. 
(C–H) Scatter plots show the correlation of risk score with the infiltration of T cells CD4 memory resting, Tregs, 
B cells memory, B cells naïve, Dendritic cells activated and Plasma cells.

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
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Single‑cell analysis.  We performed Single-cell analysis with single-cell RNA sequencing (scRNA-seq) data 
retrived from Code Ocean. The R package “Seurat”44was utilized to preprocess scRNA-seq data of 10 LUAD sam-
ples. After normalization by the “NormalizeData” function with the normalization method set as “LogNormal-
ize”, we then converted the normalized data into a Seurat Object. Samples with gene counts below 200 or above 
3000, as well as those with a ribosomal RNA proportion exceeding 20% were filtered out to ensure the quality 
control. We identified the top 3000 genes with the highest variability with the “FindVariableFeatures” function in 
“seurat” and then reduced the dimensionality of the scRNA-seq data using principal component analysis (PCA). 
JackStraw analysis identified significant principal components (PCs). The first 15 PCs were utilized for cell clus-
tering analysis according to the proportion of variance explained. Cells were visualized using uniform manifold 
approximation and projection (UMAP) dimensionality reduction techniques for cell classification. We identified 
Marker genes using adjusted p value < 0.01 and |log2 (fold change)|> 1 as threshold values. A manual annotation, 
as described in the study by Maynard et al. was used to identify and classify different cell types in scRNA-seq 
data. Finally, visualization of the cellular distribution for independent prognostic genes in the scRNA-seq dataset 
was performed with FeaturePlot and vlnPlot functions in “Seurat” package.

Western blot.  All specimens were obtained from the Department of Thoracic Surgery, The Second 
Affiliated Hospital of Harbin Medical University, with the approval from its Ethics Committee (approval 
number:KY2023-042). Lung adenocarcinoma tissues and adjacent normal lung tissues used in the experiment 
were obtained after surgical resection and stored in liquid nitrogen for subsequent protein extraction and west-
ern blot. In brief, then, the cells tissues were washed three times with pre-chilled PBS buffer. Total cellular 
proteins were extracted using RIPA lysis buffer (Beyotime Biotechnology, Shanghai, China) supplemented with 

Figure 10.   immunotherapy response and predicted treatment efficacy of common chemotherapy drugs. (A) 
Box plot presents the association of ICD risk score with immunotherapy response. (B) Predicted treatment 
efficacy of 18 common chemotherapy drugs.
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a protease inhibitor cocktail (Beyotime Biotechnology, Shanghai, China) and PMSF (Beyotime Biotechnology, 
Shanghai, China). The BCA protein assay kit (Thermo Fisher Scientific; CA, USA) was used to determine the 
protein concentration. Appropriate SDS-PAGE loading buffer was added to prepare protein samples for West-
ern blot analysis. With a protein ladder (Thermo Fisher Scientific; CA, USA) serving as the molecular weight 
marker, the samples were resolved by 10% SDS-PAGE gel electrophoresis. After electrophoresis, the proteins 
were transferred onto a PVDF membrane (Millipore, USA) for subsequent antibody incubation. We used anti- 
HSP90(Proteintech, Wuhan, China, 1:2000) and anti-actin (Proteintech, Wuhan, China, 1:10000) as the primary 
antibody, and the secondary antibody used was Goat Anti-Rabbit HRP and Goat Anti-Mouse (Proteintech, 
Wuhan, China, 1:10000) in this study. Finally, the visualization of protein bands was achieved using the ECL 
detection kit (Beyotime Biotechnology, Shanghai, China).

Statistic analysis.  R software (v. 4.2.1; https://​www.r-​proje​ct.​org/) and its corresponding packages were 
used for statistical analysis and graph construction. A p < 0.05 was considered statistically significant. Wilcoxon 
rank-sum test was used to analyze differences in continuous variables between the two subgroups. Log-rank test 
was used to determine the contrast of K-M curves between the two groups.

Ethical approval.  All experiments were approved by the Research Ethical Committee of the second affili-
ated hospital of Harbin Medical University, China (approval number:KY2023-042).

Data availability
Gene expression data for lung adenocarcinoma are available for download from the TCGA database (https://​
portal.​gdc.​cancer.​gov/) and GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). Gene sets used in this study 
was downloaded from the MsigDB database (http://​www.​gsea-​msigdb.​org). The scRNAseq data were retrived 

Figure 11.   Single-cell analysis and Western blot validation. (A) Cellular distribution of 53504 cells clustered 
into 5 unique subsets among 10 lung adenocarcinoma tissue samples. (B) FeaturePlot depicting the distribution 
of HSP90AA1. (C) vlnPlot showing the expression levels of HSP90 in different cell subsets. (D) Western blot 
analysis of 3 paired LUAD and adjacent normal tissues with triplicate repeats. (E) Normalized expression 
differences of 3 different paired tissues (N represents normal,T represents tumor; N1 vs. T1 p value = 0.0002, N2 
vs. T2 p value = 0.0008, N3 vs. T3 p value = 0.0004). (F) Normalized expression difference between normal and 
tumor tissues (p value = 0.0002).

https://www.r-project.org/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org
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from Code Ocean(https://​codeo​cean.​com/;​10.​24433/​CO.​01210​60.​v1.).​All data are available for download on the 
corresponding website.The western blot primary data are available in supply materials.
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