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Performance analysis of channel 
estimation techniques for IRS 
assisted MIMO
Alelign Ewinetu Baye 

The need for low latency and high data rates is increasing rapidly since the advent of wireless 
communication. The current fifth-generation (5G) networks are unable to fulfill the requirements of 
upcoming technologies. So, researchers are commencing their research beyond 5G. Terahertz (THz) 
frequency is one candidate to satisfy the large bandwidth requirement and intelligent reflecting 
surface (IRS) is incorporated to mitigate signal blockage which is the main problem for communication 
at high frequencies. Channel estimation is a process of identifying coefficients of the channel matrix. 
The compressive sensing technique is of great importance as it decreases the number of pilot 
symbols required for channel estimation. As mmWave and THz signals are naturally sparse applying a 
compressive sensing technique is reasonable. Unlike other papers, this paper considers the imperfect 
IRS elements, which is the real case, by varying the value of β (amplitude perturbations). The channel 
estimation performance of the conventional least squares (LS), orthogonal matching pursuit (OMP) 
and Oracle is analyzed with respect to signal-to-noise ratio (SNR) and pilot length (T). Normalized 
mean square error (NMSE) and spectral efficiency (SE) are used as performance metrics and the OMP 
algorithm is found to perform better than LS even at a fewer number of pilot symbols.

Abbreviations
5G  Fifth generation
LS  Least squares
NMSE  Normalized mean square error
OMP  Orthogonal matching persuit
SE  Spectral efficiency
SNR  Signal to noise ratio
THz  Terahertz

As wireless communication progresses, systems are deployed which require high data rates and low latency and 
this need has been increasing and seems endless. For instance, between 2016 and 2021, a sevenfold increase is 
expected in mobile data and a threefold in video  traffic1.

Nowadays, 5G networks come into existence. However, it is challenging for 5G networks to satisfy future 
requirements such as wireless charging, extremely low latency, performance uniformity in the coverage area, and 
immunity to jamming. To achieve these requirements, researchers have been undergoing beyond 5G. Artificial 
Intelligence (AI), smart wearable devices, Internet of Everything (IoE), and 3D mapping are among the technolo-
gies which hopefully are to be supported by beyond 5G  networks2,3.

Unfortunately, the implementation of these technologies requires a very large bandwidth. THz frequency 
(0.1–10 THz), which is capable of providing an order of magnitude greater bandwidth than that of a millimeter 
wave, is a candidate attracting the attention of researchers. It is characterized by high directionality which in 
turn makes it robust for  eavesdropping4.

Passive MIMO technologies called IRS also known as software-controlled  metasurfaces2, are of great impor-
tance in avoiding blockage at a significantly low cost and power.

IRS is a physical meta-surface with many reflecting elements each of which is passive and can impose a 
phase shift on signals impinging them. The phase shifts are induced in such a way that the reflected signals add 
constructively or destructively to the desired receiver. The smart controller attached to the surface is responsible 
for arranging the reflecting  elements4–6.
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In conducting the channel estimation process, the concept of compressive sensing is applied. The Oracle (i.e., 
the benchmark), conventional LS, and OMP algorithms are used in the estimation process. A perfect reflection 
( β = 1 ) is assumed for the conventional LS and Oracle. This assumption is made for the fact that the conven-
tional LS is poor in estimation, so an imperfect assumption makes it worse. Furthermore, to show how powerful 
a technique OMP is in estimating sparse signals, the imperfect reflection assumption is applied for it. Again as 
Oracle is the benchmark algorithm, a perfect reflection assumption is considered to set it at its best performance.

Having the geometric channel model and using the poor scattering nature of the THz band,  in4, the channel 
estimation problem is converted to a sparse recovery one. Then a compressed sensing (CS) technique called 
Iterative Atom Pruning Subspace Pursuit (IAP-SP) based channel estimation is applied to perform the task of 
channel estimation for a single-user MIMO. The authors  in7 proposed the closed-form Least Squares Khatri–Rao 
Factorization (LSKRF) and an alternative Bi-linear Alternating Least Squares (BALS) channel estimation tech-
nique. Both methods are based on the tensor modeling approach of the received signal. An optimal Minimum 
Mean Square Error (MMSE) channel estimation algorithm is applied  in8 to estimate the direct BS-to-user chan-
nel and the cascaded BS-to-IRS and IRS-to-user channel. In this channel estimation technique, the channel 
estimation process is divided into three phases. In each of the phases, the IRS elements are fed with optimal 
reflect beam-forming vectors, a result of which is that the optimal reflect beam-forming vectors are chosen by 
the optimal reflect IRS elements as the columns of a Discrete Fourier Transform (DFT) matrix. Furthermore, a 
closed-form expression for cascaded BS-to-IRS and IRS-to-user channels is provided by the DFT-MMSE tech-
nique depending on the prior information of large-scale fading statistics. In the  paper9, the BS to Large Intelligent 
metasurface (LIM) and LIM to user channels are estimated separately using a two-stage algorithm with a sparse 
matrix factorization stage and a matrix completion stage. In the first stage Bilinear Generalized Approximate 
Message Passing (Bi-GAMP) algorithm is applied in recovering the LIM-user channel and the BS-LIM channel 
is estimated using joint bilinear factorization and matrix completion (JBF-MC) algorithm in the second stage. 
To reduce the pilot overhead the authors  in10 exploit the double structure sparsity characteristic of the angular 
channels among the single-antenna users. For the channel estimation process the Double Structure Orthogonal 
Matching Pursuit algorithm (DS-OMP), which consists of two stages, is applied. The row-structured sparsity of 
cascaded channels helps to estimate the completely common row support in the first stage. In the second stage, 
the partially common column support is estimated by using the column sparsity characteristic of the cascaded 
channel.  In11, mobile edge computing (MEC) assisted with IRS network architecture is suggusted to satisfy the 
low latency requirement of virtual reality (VR). The line-of-sight and non-line-of-sight statuses of VR users are 
identified through an algorithm which combines an online long-short term memory (LSTM) convolutional 
neural networks (CNN). A relationship between IRS beam pattern design and a two-dimensional finite impulse 
response filter design is establishe  by12. And the problem was solved using a fast non-iterative algorithm. An 
efficient near-field IRS-assisted channel estimation scheme was proposed  in13. The channel was estimated using 
polar-domain frequency-dependent RIS-assisted channel estimation (PF-RCE).

Mainly the main goal of this paper is to consider the non-ideal IRS case and showing its effects on channel 
estimation. Although there are many compresseive sensing based algorithms used to estimate a sparse signal, 
OMP algorithm is applied in this paper for its simplicity.

All the papers above consider a perfect IRS, ideal case, in the channel estimation process that they assumed as 
there is a perfect reflection of the impinging signals. But it is difficult to achieve such ideality in reality since there 
might be deficiencies in the manufacturing process of the metasurface. In addition, the metarials from which the 
metasurfaces are made have also their effect. Furthermore, environmental factors, such as, fog and dust affect 
the performance of IRS elements. Having this in mind, this paper shows the effect of the IRS by considering the 
non-ideal case and compares the results with the ideal (perfect reflection).

Methods
Compressive sensing. 5G and beyond communication systems operate at high frequencies in the mmWave 
and THz ranges. Signal processing in these spectra requires a very high rate of sampling. This needs high-per-
formance devices that may not be possibly manufactured or are very costly if so. This poses a need of finding a 
mechanism for representing data from many samples by taking only a few consisting of the gist of it. This is what 
compressive sensing tries to  achieve14.

CS is to become a vital component in the next-generation wireless communication systems for the fact that 
many kinds of signals in wireless applications are sparse. Unlike Shannon’s theorem which depends on the high-
est frequency available for sampling, CS depends on the sparsity of signals. Saying another way, measurement 
signals proportional to the sparsity are required for reconstruction in the CS paradigm. CS comes with benefits: 
it saves storage, is energy efficient, lowers signal processing time, and solves problems that are said to be unsolv-
able in ordinary linear  algebra15–19.

The entire process of CS consists of three steps:

• signal sparse representation;
• linear encoding and measurement collection;
• non-linear decoding (sparse recovery).

Among the greedy algorithms, OMP is one developed for sparse signal  recovery20,21. Speed and ease of imple-
mentation are its  merits20. Matching pursuit (MP) is applied in recovering a 1-sparse solution; whereas, OMP 
generalizes this for an s-sparse case. In OMP, the non-zero positions (supports) are estimated  iteratively22.

An m dimensional measurement matrix y is produced by the multiplication of an n dimensional s-sparse 
vector x by matrix �23 having a dimension of m× n . That is:
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where � is referred to as measurement matrix with columns φ1, . . . ,φn . The system represented in (1) is an 
under-determined problem since n > m in most compressive sensing scenarios. The conventional inverse trans-
form is unable to reconstruct the original signal x from � . However, having a priori information of sparsity and 
restriction on � , x can be reconstructed by solving the ℓ2-minimization  problem23:

OMP follows a simple and intuitive principle; in each iteration, the most correlated columns of � with the 
residue are selected which is called identification, then the indices of this column are added to the list called 
augmentation, finally the residual is updated by removing the vestige columns from the measurements, this is 
called residual update. The OMP algorithm is shown in Table 1.

System model. Let’s consider a MIMO communication system assisted by IRS as shown in Fig. 1. A single 
mobile user equipped with Nr antennas is considered. Additionally, the Line-of-Sight (LOS) path between the 
BS and the user is assumed blocked by local obstacles such as a building, and only the non-LOS path through the 
IRS is taken into account. The BS has Nt number of antennas and the IRS consists of NI number of passive reflect-
ing elements. G ∈ C

NI×Nt and H ∈ C
Nr×NI denote the channels from BS to IRS and IRS to user respectively.

A TDD mode of transmission is used so that the downlink channel can be estimated from the uplink channel 
due to the reciprocity property. In this research, the downlink transmission scenario is considered.

(1)y = �x

(2)min
x

�x�2 subject to �x = y

Table 1.  OMP algorithm.

Inputs: measurement vector y , sparsity s, measurement matrix φ

Output: estimated channel Ĥc , residualr, support�

Initialization: r0 = y,�0 = ∅ and iteration t = 1.

 for t < s do

Solving the optimization problem:

�t = arg maxj=1...d |�H,φj�|
Augmentation of the support:

�t = �t−1 ∪ {�t }
Estimation of the cascaded channel:

Ĥc = arg minH�y −�tH�2
Update measurement vector and residual:

yt = �t Ĥc

rt = y − yt

 end for

Figure 1.  IRS assisted communication system.
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The phase shift matrix � of the IRS is mathematically expressed  as24

where θn ∈ [0, 2π] and βn ∈ [0, 1] represent the phase shift and amplitude respectively of the reflection coefficient 
associated with the n-th reflecting element.

The channels G ∈ C
NI×Nt and H ∈ C

Nr×NI are mathematically expressed  as10,24,25

where αp represents the complex gain of the p-th spatial path between the BS and IRS. ϑp and γp are the azimuth 
and elevation angles of arrival (AoA) respectively at the IRS and ψp and φp are the azimuth and elevation angles 
of departure (AoD) from the BS. In the same way, the channel H is expressed as

where βq represents the complex gain of the q-th spatial path between the IRS and a user. ϑq and γq are respec-
tively the azimuth and elevation angles of arrival (AoA) and ψq,φq are the azimuth and elevation angles of 
departure (AoD). Furthermore, ar and at represent the receive and transmit array steering vectors respectively. 
Suppose the IRS is NI ,x × NI ,y Uniform Planar Array (UPA)

d and � represent the antenna spacing and signal wavelength respectively. And ⊗ is the Kronecker product.

As the high-frequency channels have sparse scattering nature, the propagation paths are small in number com-
pared to the dimension of the channel matrix. So, the channel G can be written  as10,24

where FL ∈ C
Nt×NtG is an over complete matrix (NtG ≥ Nt) and each of its columns has a form at(φp) , with φp 

chosen from a pre-discretized grid, Fx ∈ C
NIx×NIG,x (Fy ∈ C

NIy×NIG,y ) is similarly defined with each of its columns 
having a form of ax(u)(ay(v)) and u(v) are from a pre-discretized grid, � ∈ C

NIG×NtG is a sparse matrix with P 
non-zero entries corresponding to the channel path gains αp , in which NIG = NIG,x × NIG,y . The true AoA and 
AoD are assumed for simplicity to lie on the discretized grid. In a similar fashion the channel H is written as

where Fr ∈ C
Nr×NrG is an over complete matrix and each of its columns has a form ar(φi) , with φi chosen from 

a pre-discretized grid, Ŵ ∈ C
NrG×NIG is a sparse matrix with Q non-zero entries.

Then the received signal by the user at the t-th time instant is

where f (t) and w(t) are the combining and precoding vectors at the receiver and transmitter respectively, and 
the cascaded channel Hc is

where � = FHP �FP . In addition,

(3)� = diag(β1e
jθ1 . . . βNI e

jθNI )

(4)G =
√

NINt

P

P
∑

p=1

αpar(ϑp, γp)a
H
t (ψp,φp)

(5)H =

√

NINr

Q

Q
∑

q=1

βqar(ϑq, γq)a
H
t (ψq,φq)

(6)ar(ϑp, γp) = ax(u)⊗ ay(v)

(7)u = 2πd
cos(γp)

�

(8)v = 2πd
sin(γp)cos(ϑp)

�

(9)ax(u) =
1

√
NI ,x

[1 eju . . . ej(NI ,x−1)u]T

(10)ay(v) =
1

√

NI ,y
[1 ejv . . . ej(NI ,y−1)v]T

(11)
G = (Fx ⊗ Fy)�FHL

= FP�FHL

(12)H = FrŴF
H
P

(13)y(t) = (f H(t)Hcw(t))s(t)+ ǫ(t)

(14)
Hc = H�G = FrŴF

H
P �FP�FHL

= FrŴ��FHL
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where ⊙ is the Khatri–Rao product. D̄ = FTP ⊙ FHP ∈ C
N2
IG×NIG is a matrix which contains only NIG distinct rows 

which are exactly the first NIG rows of matrix D̄ . Then,

where D̄u = D̄(1 : NIG , :), �̄ is a merged version of J̄ = �T ⊗ Ŵ that is �̄(: i) =
∑

n∈Qi
J̄(:, n) , where Qi is a set 

of all indices associated with those rows of D̄ that is identical to the i-th row of D̄ . So,

where K = ((D̄uv
∗)T ⊗ (F∗L ⊗ Fr)) and x̄ = vec(�̄) is a sparse vector to be estimated.

Assume s(t) = 1 and denote y = [y(1) y(2) . . . y(T)]T , we have

where Wf ∈ C
T×NtNI ,Wf (t, :) = wT (t)⊗ f H(t) , and Wf (t, :) is the t-th row of Wf .

Results and discussion
In this chapter, the simulation results of channel estimation techniques are discussed. Three techniques are 
applied in the estimation process. These are Oracle, conventional least squares (LS), and orthogonal matching 
pursuit (OMP). The value of β , which indicates how well the IRS reflects impinging signals, is specified as 1 (per-
fect reflection), 0.8, 0.5, and 0.2 (poor reflection) for OMP whereas β = 1 for LS and Oracle. Furthermore, each 
IRS element is assumed to have the same value of β at a time. In the Oracle estimation technique, the positions 
of the non-zero channel matrix coefficients are assumed known prior to estimation. Since Oracle is the estimator 
with the best performance, it is taken as a benchmark for the conventional LS and OMP estimation techniques. 
Normalized mean square error (NMSE) and spectral efficiency (SE) are used as performance metrics. The vari-
ables used for evaluation are SNR, pilot length T, and number of reflecting elements (NI ).

In Fig. 2 the effect of signal-to-noise ratio (SNR) on channel estimation is shown. The number of transmit-
ter antennas, receiver antennas, and IRS elements are kept constant at values 36, 4, and 64 respectively. A pilot 
length is set to 250 for each of the three estimation techniques. As a small value of β means a high imperfection in 
reflection, NMSE is higher as compared to that when β > 0.2 . The conventional LS beats OMP when β = 0.2 . It 
also begins to exceed OMP’s performance at β = 0.5 and SNR value 5 dB. But OMP shows a better performance 
compared to conventional LS especially when there is a high level of noise (low SNR) and outperforms LS at 
values of β = 1 and 0.8 . Generally, NMSE decreases as SNR increases.

Figure 3 shows the effect of the length of the pilot signals on the channel estimation process. The values of Nt , 
Nr , and NI are respectively 36, 4, and 64. Moreover, the value of SNR at the transmitter is kept constant at 10 dB. 
As the value of T increases, the NMSE decreases as expected for all the estimation techniques. This is because 
enough pilot symbols are available so that better CSI is obtained. The poorest performance is observed for OMP 

(15)

vec(Hc) = vec(FrŴ��FHL )

= (F∗L ⊗ Fr)(�
T ⊗ Ŵ)vec(�)

= (F∗L ⊗ Fr)(�
T ⊗ Ŵ)(FTP ⊙ FHP )v

∗

(16)vec(Hc) = (F∗L ⊗ Fr)�̄D̄uv
∗

(17)
vec(Hc) = (F∗L ⊗ Fr)�̄D̄uv

∗

= ((D̄uv
∗)T ⊗ (F∗L ⊗ Fr))vec(�̄)

= Kx̄

(18)y = WfKx̄ + ǫ
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Figure 2.  The effect of SNR.
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when β = 0.2 i.e., impinging signals are not well reflected so is difficult to get accurate channel state information. 
The conventional LS is the next to perform poorly. OMP with values of β = 1, 0.8, and 0.5 beats the LS estimator.

The variation of spectral efficiency with T is shown in Fig. 4. The SNR at the transmitter, Nt , Nr , and NI are 
respectively 10 dB, 36, 4, and 64. As T increases the spectral efficiency decreases as expected. The reason for the 
decrease in spectral efficiency is that as the length of the pilot signal increases the available channel bandwidth 
for transmission of data symbols decreases.

Conclusion
In this paper, the channel estimation performance of Oracle, conventional LS, and OMP estimation techniques 
is evaluated based on NMSE and spectral efficiency. The effect of signal-to-noise ratio (SNR) and the length of 
the pilot signal (T) is shown. Imperfect reflection of signals impinging on the IRS is also considered by varying 
the value of β as 1 (perfect reflection), 0.8, 0.5, and 0.2 (poor reflection) for the OMP-based channel estimation. 
For the Oracle, which is the benchmark, and conventional LS, perfect reflection i.e. β = 1 is assumed. NMSE 
decreases as SNR and T increase. The spectral efficiency decreases as T increases as the increase in T decreases 
the available channel bandwidth which should be used for the transmission of data symbols. Generally, in both 
of the performance metrics, OMP estimator shows better performance than conventional LS especially at the 
values of β = 1, 0.8, and 0.5.
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Figure 3.  The effect of T.
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