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Enhancing the accuracies 
by performing pooling decisions 
adjacent to the output layer
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Learning classification tasks of (2n × 2
n) inputs typically consist of  ≤ n(2× 2 ) max-pooling (MP) 

operators along the entire feedforward deep architecture. Here we show, using the CIFAR-10 
database, that pooling decisions adjacent to the last convolutional layer significantly enhance 
accuracies. In particular, average accuracies of the advanced-VGG with m layers (A-VGGm) 
architectures are 0.936, 0.940, 0.954, 0.955, and 0.955 for m = 6, 8, 14, 13, and 16, respectively. The 
results indicate A-VGG8’s accuracy is superior to VGG16’s, and that the accuracies of A-VGG13 and 
A-VGG16 are equal, and comparable to that of Wide-ResNet16. In addition, replacing the three fully 
connected (FC) layers with one FC layer, A-VGG6 and A-VGG14, or with several linear activation FC 
layers, yielded similar accuracies. These significantly enhanced accuracies stem from training the most 
influential input–output routes, in comparison to the inferior routes selected following multiple MP 
decisions along the deep architecture. In addition, accuracies are sensitive to the order of the non-
commutative MP and average pooling operators adjacent to the output layer, varying the number 
and location of training routes. The results call for the reexamination of previously proposed deep 
architectures and their accuracies by utilizing the proposed pooling strategy adjacent to the output 
layer.

Classification tasks are typically solved using deep feedforward architectures1–6. These architectures are based 
on consecutive convolutional layers (CLs) and terminate with a few fully connected (FC) layers, in which the 
output layer size is equal to the number of input object labels. The first CL functions as a filter revealing a local 
feature in the input, whereas consecutive CLs are expected to expose complex, large-scale features that finally 
characterize a class of inputs1,7–10.

The deep learning (DL) strategy is efficient only if each CL consists of many parallel filters, the layer’s depth, 
which differ by their initial convolutional weights. The depth typically increases along the deep architecture, 
resulting in enhanced accuracy. In addition, given a deep architecture and the ratios between the depths of 
consecutive CLs, accuracies increase as a function of the first CL depth.11.

The deep learning strategy resulted in several practical difficulties, including the following. First, although 
the depth increases along the deep architecture, the input size of the layers remains fixed. The second difficulty 
is that the last CL output size, depth × layer input size, becomes very large, serving as the first FC layer input, 
which consists of a large number of tunable parameters. These computational complexities overload even pow-
erful GPUs, limited by the accelerated utilization of a large number of filters and sizes of the FC layers. One 
way to circumvent these difficulties is to embed pooling layers along the CLs1. Each pooling reduces the output 
dimension of a CL by combining a cluster of outputs, e.g., 2× 2 , at one, and n such operations along the deep 
architecture reduce the CL dimension by a factor 4n . The most popular pooling operators are max-pooling 
(MP)12, which implements the maximal value of each cluster, and average pooling (AP)13,14, which implements 
the average value of each cluster; however, more types of pooling operators exist12,15–17.

The core question in this work is whether accuracies can be enhanced depending on the location of the 
pooling operators along the CLs of a given deep architecture. For instance, VGG16 consists of 13 CLs, three FC 
layers, and five (2× 2) MP operators located along the CLs2 (Fig. 1A). The results indicate that accuracies can be 
significantly increased by a smaller number of pooling operators adjacent to the last CL with optionally larger 
pooling sizes, for example, the advanced VGG16 (Fig. 1B). The optimized accuracies of these types of advanced 
VGG architectures with m layers (A-VGGm) are first presented for selected m values ( 6 ≤ m ≤ 16 ). Next, the 
underlying mechanism of the enhanced A-VGGm accuracies is discussed.
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A‑VGGm accuracies
A-VGG16 consists of (4× 4) average pooling (AP) and (2× 2) MP after the 7th and 13th CL, respectively (Fig. 1B 
and Table 1), with a maximal depth of 512 as in VGG16. The maximum average accuracy, 0.955, is superior to 
the accuracy, 0.935, obtained for the standard VGG1611,18 and the fine-tuned optimized accuracy 0.9410 (Fig. 1A) 
and is comparable with the Wide-ResNet4,5 median accuracy consisting of 16 layers with widening factor 10 
(WRN16-10).

Note that the replacement of the pair of pooling operators, [AP(4× 4),MP(2× 2)] along A-VGG16 (Fig. 1B), 
by several other options, for example, [MP(2× 2),AP(4× 4) ] and [AP(2× 2),MP(8× 8) ], also yielded an aver-
age accuracies > 0.95 , indicating the superior robustness of A-VGG16 accuracies over VGG16. Removing the 
last three CLs (the fifth block of A-VGG16) resulting in A-VGG13, with an average accuracy of 0.955 , identical 
to that of A-VGG16 up to the first three leading digits (Table 1). One possible explanation to the same accuracies 
is that the receptive field19 of the last three CLs of A-VGG13 is 7× 7 saturating the 8× 8 layers’ input size. It also 
suggests that accuracies are only mildly affected by m > 13.

The A-VGG8 architecture that consists of only 8 layers, results in 0.940 averaged accuracy, exceeding the 
optimized VGG8 accuracy of 0.915 , which consists of 5 MP(2× 2) one after each CL2,20, and also exceeds the 
average accuracy of VGG16. Here again, AP(2× 2) and MP(4× 4) were placed after the 3rd and the 5th CLs, 

Figure 1.   VGG16 and A-VGG16 architectures. (A) VGG16 architecture (13 (3× 3) CLs and in between 5 
(2× 2) MP operators, followed by 3 FC layers) for the CIFAR10 database consisting of 32× 32 RGB inputs. 
A CL is defined by its square filters with dimension K and depth D, (K ,D) . (B) A-VGG16 architecture for 
CIFAR10 inputs consisting of 7 (3× 3) CLs, (4× 4) average pooling (AP), 6 (3× 3) CLs, (2× 2) MP and 3 FC 
layers.
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respectively (Table 1). This result indicates that a shallow architecture, with fewer pooling operators adjacent 
to the output, can imitate the accuracies of a deeper architecture with double the number of layers, while the 
receptive field covers a small portion of the layers’ input size.

Using only one FC layer reduces the number of layers by two, from A-VGG16 to A-VGG14, and from A-VGG8 
to A-VGG6 (Table 1). The results indicate that accuracies are only mildly affected by such modifications, where 
A-VGG6 achieves an average accuracy of 0.936, which slightly exceeds that of VGG16 and A-VGG14 exceeds 
0.954 (Table 1). We note that this type of architectures with only one FC layer consists of fewer parameters and 
can be mapped onto tree architectures (unpublished)21.

Similarly, the A-VGG13 and A-VGG16 architectures with linear activation functions for the FC layers 
achieved similar averaged accuracies of 0.954 and 0.955 , respectively, both with small standard deviations (Sup-
plementary Information). The three linear FC layers can be folded into one in the test procedure22, minimizing 
its latency; however, training must be performed with three separated FC layers.

The gap between the average accuracies of A-VGG8 and A-VGG6 ( ∼ 0.004 ) was slightly greater than that 
between the enhanced accuracies of A-VGG16 and A-VGG14 (Table 1), indicating that the gap decreases with 
m . Nevertheless, the comparable average accuracies of A-VGG13 and A-VGG14 with A-VGG16 indicate that 
removing two out of three FC layers or removing three out of the thirteen CLs does not affect accuracies. Hence, 
it is interesting to examine the average accuracies of VGG11 where two FC layers as well as the last three CLs 
are removed.

Optimized learning gain using pooling operators
The backpropagation learning step23 updates the weights towards the correct output values for a given input. 
Typically, such a learning step can add noise and is destructive to a fraction of the training set24–27. However, the 
average accuracy increases with epochs and asymptotically saturates at a value that identifies the quality of the 
learning algorithm for a given architecture and database.

One important ingredient of DL is downsizing the input size as the layers progress. This can be done by 
either pooling operators or using the stride of the CLs. Although both reduce the size of the input, the pooling 
operators transfer specific output fields, such as maximal field in the MP operators. It aims to select the most 
influential field from a small cluster on a node in the successive layer, for example, MP (2× 2) . Its underlying 
logic is to maximize the learning step gain for the current input while minimizing the added noise by zeroing 
other routes; maximize learning with minimal side-effect damage. However, this local maximization does not 
ensure a global one.

Commonly, several MP operators are placed among the CLs, for example, five times in the case of VGG16 
(Fig. 1A), and apparently solve simultaneously the following two difficulties. First, although the depth, D , 
increases along the CLs (Fig. 1A), the input size, K , of the layers shrinks accordingly such that the output sizes 
of the CLs, K × D , do not grow linearly with depth. Second, successive MP operators appear to select the most 
influential routes on the first FC layer, which is adjacent to the output layer. However, these local decisions fol-
lowing consecutive MP operators do not necessarily result in the most influential routes in the first FC layer, as 
elaborated below using a toy model.

Assume a binary tree, where its random nodal values are low, medium, or high (Fig. 2A). The tree output is 
equal to the branch with the maximal field, which is calculated as the product of its three nodal values. The first 
strategy is based on local decisions, similar to MP operators. For each node the maximal child, among the two, is 
selected (gray circles in Fig. 2A), and the selected route is the one composed of gray nodes only, where its value 
is M ·M ·M (the brown branch in Fig. 2A). However, a global decision among the eight branches results in a 
maximal field H ·H · L(green branch in Fig. 2A). This toy model indicates that a global decision differs from 
local decisions; however, the probability of such an event is unclear.

A more realistic model, imitating deep architectures (Fig. 1), is Gaussian random (1024× 1024) inputs fol-
lowed by ten (3× 3) CLs with unity depth (Fig. 2B). Two scenarios, local decisions and a global decision, are 

Table 1.   Architectures and accuracies of A-VGGm. A-VGGm architectures, m = 6, 8, 13, 14, and 16, and 
their maximized average accuracies obtained from 10 samples (detailed parameters and accuracies’ standard 
deviations are presented in the Supplementary Information).

A-VGG6 A-VGG8 A-VGG13 A-VGG14 A-VGG16

Conv.1–64 Conv.1–64 Conv.2–64 Conv.2–64 Conv.2–64

Conv.1–128 Conv.1–128 Conv.2–128 Conv.2–128 Conv.2–128

Conv.1–256 Conv.1–256 Conv.3–256 Conv.3–256 Conv.3–256

AP 2 × 2 AP 2 × 2 AP 4 × 4 AP 4 × 4 AP 4 × 4

Conv.2–512 Conv.2–512 Conv.3–512 Conv.6–512 Conv.6–512

MP 8 × 8 MP 4 × 4 MP 4 × 4 MP 2 × 2 MP 2 × 2

FC × 10 FC 8192 FC × 2048 FC × 10 FC × 4096

FC 8192 FC × 2048 FC × 4096

FC × 10 FC × 10 FC × 10

Avg. Accuracy

 0.936 0.940 0.955 0.954 0.955
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discussed. In the first, (2× 2) MP operators are placed after each of the first n CLs (Fig. 2B top, exemplified 
n = 4 ), where in the second one a single (2n × 2n) MP operator is placed after the ten CLs (Fig. 2B bottom, 
exemplified n = 4 ). For both scenarios, there are (210−n × 210−n) non-negative (ReLU) outputs, denoted by OSP 
(Sequence Pooling), representing local decisions and OTP (Top Pooling), representing a global decision. For a 
given n , the 210−n × 210−n ratios, OSP/OTP , were calculated and averaged over many Gaussian random inputs 
and several sets of ten randomly selected convolutional filters, which were identical for both scenarios. The 
probability P( OSP

OTP
> 1) indicates that local decisions, n consecutive MPs, result in a larger output than a global 

decision, a single (2n × 2n) MP (Supplementary Information). This probability rapidly decreased with n , possibly 
exponentially (Fig. 2C), and even for n = 2 it was below 0.1.

The increase in CLs depth beyond unity does not qualitatively affect the probability P
(

OSP

OTP
> 1

)

, as indicated 
by simulations of VGG8 with five consecutive (2× 2) MP operators after each CL and a single (32× 32) MP after 
five CLs. The same five random (3× 3) convolutions were used for both architectures, and the 512 ratios, OSP

OTP
 for 

the single output of each filter, were calculated. Averaging over CIFAR10 training inputs and several selected 
sets of fixed random convolutions results in O

(

10−3
)

 for probability P( OSP

OTP
> 1) .

The results clearly indicate that a global decision selects the most influential routes to the first FC layer. Hence, 
pooling adjacent to the output layer, is superior to the selection following consecutive local pooling decisions. 
This supports that using larger pooling operators adjacent to the output of the CLs enhances accuracies (Table 1). 
It is expected that using pooling operators solely after the entire CLs will enhance accuracies even further; 
however, its validation in simulations of A-VGGm architectures is difficult. The running time per epoch of such 
large K × D deep architectures is several times longer, and the optimization of accuracies is currently beyond 
our computational capabilities.

A simpler architecture is the LeNet528,29, with much lower depth and total number of CLs, consisting of two 
CLs followed by (2× 2) MP each and three FC layers (Fig. 3A). The optimized average accuracy on the CIFAR10 
database is 0.7711. Advanced LeNet5 (A-LeNet5) architectures consist of pooling operators only after the second 
CL (Fig. 3A). In particular, the two pooling options, (2× 2)AP ◦ (2× 2)MP and (2× 2)MP ◦ (2× 2)AP were 
examined (examples a and b in Fig. 3A), imitating the dimensions of the two (2× 2) MP of LeNet5. Indeed, 
these A-LeNet5 architectures enhance average accuracies by up to ~ 0.02, in comparison to LeNet5 (Fig. 3B), as 

Figure 2.   Comparison between several small MP operators along CLs and a large one at their end. (A) A binary 
tree where the random nodal values are low (L), medium (M), or high (H), e.g., 1, 10 , and 1000 . A local decision 
selects the path to the maximal nodal child (gray), resulting in the brown route connecting three gray nodes. 
A global decision selects the green route, maximizing the product of its nodal values. (B) Gaussian random 
(1024× 1024) input followed by ten (3× 3) CLs, where (2× 2) MP is placed after the first four CLs (Top), and 
similar architecture where a single (16× 16) MP is placed after the 10 CLs. The (64× 64) output values are 
denoted by OSP (Top) and OTP (bottom) (Supplementary Information). (C) The probability P( OSP

OTP
> 1) as a 

function of the number, n , of (2× 2) MP ( n = 4 is demonstrated in B).



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13385  | https://doi.org/10.1038/s41598-023-40566-y

www.nature.com/scientificreports/

predicted by the abovementioned argument. Similarly, using either (4× 4) MP or (4× 4) AP after the second 
FC layer resulted in ∼ 0.79 maximized average accuracies (not shown). The shift of the MP by only one CL, from 
the first to the second, improves the accuracies, and an enhanced effect might be expected by skipping over more 
CLs in deeper architectures (Fig. 2C). An interesting aspect of A-LeNet5 is that accuracies improved although 
the receptive field covers only a small portion of the input, in contrast to A-VGG16.

Another type of A-LeNet5 is a combination of a pair of (2× 2) and (3× 3) pooling operators after the two CLs 
( c , d and e in Fig. 3A). Although the input size of the first FC layer decreased from 400 in LeNet5 to 256 , the aver-
age accuracies was enhanced by ∼ 0.011 ( d in Fig. 3B). This result exemplifies the improved A-LeNet5 accuracies 
even when the input size of the first FC layer decreases. Examples d and e (Fig. 3A) consist of the same pooling 
operators, (2× 2)AP and (3× 3)MP , but with the exchanged order of the operators. Their average accuracies 
differ by ∼ 0.016 (Fig. 3B), indicating that these pooling operators do not commute with the exchanged order. 
Another possible class of commutation is the exchanged type of operation (color) while maintaining their size; 
exchanged MP and AP ( c and d  or a and b in Fig. 3A). Average accuracies indicate that pooling operators do not 
necessarily commute with exchanged colors.

The two non-commutative classes, order and type of operations, stem from different numbers and locations 
of the backpropagation active routes in the lower layers (Fig. 3C). The number of locally active backpropagation 
routes in a (6× 6) window is 9 for (3× 3)AP ◦ (2× 2)MP , whereas for (3× 3)MP ◦ (2× 2)AP is 4 . For the 
exchanged order of operators ( d and e in Fig. 3A), the number of backpropagation active routes is the same, 4 , 
in both cases. However, these 4 routes were localized in  (2× 2) ( e in Fig. 3B, C), but delocalized over (6× 6) ( d 
in Fig. 3B, C). Hence, the non-commutation of pooling operators can stem either from the different numbers of 
active backpropagation routes or from their different locations.

Discussion
The aim of pooling operators, is downsizing the input size as the layers progress while transferring specific output 
fields, such as maximal field in the MP operators. It selects the most influential local field, but does not ensure 
a most influential global field on the output. The proposed enhanced learning strategy is based on updating the 
most influential routes, that is, the maximal fields, on the output units. This is supported by the A-VGGm and 
A-LeNet5 simulations, where the average accuracies are enhanced using pooling operators placed closer to the 
output layer (Figs. 1 and 3, Table 1). Its underlying mechanism is aimed at maximizing the learning gain for the 
current input, while simultaneously minimizing the average damage on the current learning of the entire train-
ing set. Each learning step for a given input induces noise on the learning of other inputs. Hence, increasing the 
signal-to-noise ratio (SNR) of a learning step, average over the training set, requires updating the most influential 
routes of the current input; maximize learning with minimal side-effect damage.

The realization of the proposed advanced learning strategy entails a discussion of the following three theoreti-
cal and practical aspects. First, the selection of the most influential routes on the first FC layer is not necessarily 
equivalent to the selection of the most influential routes on the output units. However, a backpropagation step 

Figure 3.   A-LeNet5 accuracies’ architectures and the role of non-commutative pooling operators. (A) A-LeNet5 
architectures, where the pooling layers (exemplified in the dashed rectangle) are placed after the second CL. 
(B) Detailed architectures and average accuracies for the five schemes of A-LeNet5 in A (see Supplementary 
Information for detailed parameters and standard deviations). (C) Non-commutative pooling operators, 
where the number of active backpropagation routes is 9 for (3× 3)AP ◦ (2× 2)MP , 4 delocalized routes for 
(3× 3)MP ◦ (2× 2)AP and 4 localized routes for (2× 2)AP ◦ (3× 3)MP.
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initiated at the most influential input weight on an output unit, updates all the CLs’ routes since the spatial struc-
ture disappears within the one-dimensional FC layers. Hence, the proposed strategy approximates only the most 
influential routes on the outputs. The exceptional architectures were A-VGG6 and A-VGG14 (Table 1), consisting 
of one FC layer, demonstrating accuracies that were only slightly below A-VGG8 and A-VGG16, respectively.

The second aspect concerns the computational complexity of the proposed advanced learning strategy. Select-
ing the most influential routes after all CLs with their fixed depth overloaded even advanced GPUs since the depth 
increases while the layer’s dimension does not decrease. For instance, the running time per epoch of (32× 32) 
MP placed after all CLs of A-VGG16 was slowed down by a factor of ∼ 10 . To circumvent this difficulty, the 
advanced learning strategy was approximated by placing the first pooling operator before the CLs with maximal 
depth and the second operator after all CLs (Fig. 1 and Table 1). Nevertheless, it is interesting to examine, using 
advanced GPUs, whether placing pooling operators after all CLs further advances accuracies.

The third aspect is the selection of the types, dimensions, and locations of pooling operators along the 
deep architecture to maximize accuracies. For a given A-VGGm, several pooling arrangements result in similar 
accuracies, and we report only the one that maximizes the average accuracies under a given number of epochs. 
Nevertheless, the maximized average A-VGGm accuracies hint at preferred combinations where the AP is placed 
before CLs with maximal depth and the MP operates after all CLs (Table 1 and Fig. 1), which might stem from the 
following insight. MP after all CLs carefully selects only one significant backpropagation route among a cluster 
of routes, whereas an AP close to the input layer spreads its incoming backpropagation signal to multiple routes. 
This arrangement was found to maximize accuracies for several A-VGGm architectures (Table 1). However, 
A-LeNet indicated an opposite trend, where AP at the top of two adjacent pooling operators maximized accura-
cies (Fig. 3). The role is not yet clear and may depend on the database and details of the training architecture.

We present an argument indicating that pooling decision adjacent to the output layer enhances accuracy 
(Table 1). However, one might attribute this improvement to the increase in the number of parameters in the 
first FC layer, where the number of parameters in the rest of CLs and FC layers remain the same. In order to 
pinpoint the accuracy improvement to the location of the pooling operators, we obtained ~ 0.954 for A-VGG16 
with 4× 4 AP after the 7th CL and with 8× 8 MP operator after the 13th CL. In this architecture the size of the 
first FC layer is the same as in VGG16, and therefore the number of parameters in both remain the same, yet 
there is a clear improvement in the accuracy.

The non-commutative pooling operator features exemplify the sensitivity of the maximal average accu-
racies to their order and type, and significantly enrich the possible number of pooling operators with 
a given dimension. For (8× 8) pooling dimension, for instance, one can find 8 possible pooling operators; 
(2× 2)XP ◦ (2× 2)YP ◦ (2× 2)ZP , where X,Y  and Z equal either to M (Max) or A (Average). Similarly, the 
number of pooling operators with dimension (2n × 2n) is 2n , and exponentially increases when more than two 
types of (2× 2) pooling operators are allowed. The results for A-LeNet indicate that enhanced accuracies can 
be achieved using combinations of consecutive pooling operators after the second CLs (Fig. 3). However, the 
identification of preferred combinations to maximize the accuracies in general deep architectures deserves 
further research.

The non-commutative features of pooling operators also stem from their different number of backpropaga-
tion downstream updated routes (Fig. 3C). For instance, A-VGG16 with (32× 32) MP, before the first FC layer, 
consists of a single backpropagation downstream updated route per filter, whereas for (32× 32) AP there are 
1024 routes. Nevertheless, the preferred pooling operators to maximize accuracies need to be determined. The 
most influential route is favored to correct the output of the current input; however, it induces output noise on 
other training inputs, resulting in a low SNR. Similarly, updating 1024 downstream routes using AP, including 
the weak ones, increases the correct output of the current input in comparison to MP; however, with enhanced 
side-effect, noise on other training inputs, resulting in a possibly low SNR. Hence, for a given architecture and 
dataset, the selection of pooling operators that maximize the averaged SNR per epoch is yet unclear.

The accuracies of A-VGG6 and A-VGG14 with only one FC layer were only slightly below those of the three 
FC layers, A-VGG8 and A-VGG16, respectively (Table 1). Architectures with only one FC layer are character-
ized by lower learning complexity and number of tunable parameters. In addition, these architectures can be 
mapped onto tree architectures30,31, generalizing recent LeNet mapping into tree architecture without affecting 
accuracies but with lower computational learning complexity31. Tree mapping of architectures comprising more 
than two CLs, inspired by dendritic tree learning30–35, is beyond the scope of the presented work and will be 
discussed elsewhere21.

It was observed that shallower architectures can yield the same accuracies as deeper ones, for instance, 
A-VGG13 and A-VGG16. This result can be attributed to fact that the last CLs’ receptive field completely covers 
the input, suggesting that the last three CLs are redundant. Another example, is A-VGG8 which achieves the 
same accuracy as VGG16. In this case the last CLs of A-VGG8, the receptive field does not fully cover the CLs’ 
input. Hence, the enhanced accuracy is attributed to the advanced location of the pooling operators. Similarly, 
A-LeNet5 enhances the accuracies of LeNet5, while the receptive field covers a small portion of the input, in 
contrast to A-VGG16.

The extension of the proposed idea to deeper architectures on CIFAR-10, e.g. DenseNet36 and EfficientNet37, 
results in the following several difficulties which at the moment are beyond our computational capabilities. 
The accuracy of deeper architectures approaches one and thus the enhancement of the accuracy by preforming 
pooling decisions adjacent to the output is expected to be in a sub-percentage increase. The observation of such 
minor accuracy improvements will require fine-tuned optimization in high resolution on the hyper-parameter 
space as well as large statistics. We note that the running time per epoch even for A-VGG16 where a (32× 32)MP 
was placed after all CLs was slowed down by a factor of ∼ 10, which made its optimization beyond our compu-
tational capabilities.
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Using datasets with higher complexity, more classes and a lesser number of training examples per class, e.g., 
CIFAR-10038 and ImageNet39, result in significant fluctuated accuracy among samples. These fluctuations make 
observing the effect of the pooling operators adjacent to the output layers much more difficult, and deserves 
careful further examination using more advanced computational capabilities.

The original VGG architectures were constructed for large input image sizes of 224× 224 . The presented 
work demonstrates enhanced accuracies using A-VGGm architectures on small input image sizes, 32× 32 . 
Extrapolating these enhancements on large images is much beyond our computational capabilities. Nevertheless, 
preliminary results using online learning (one epoch) on images of size 128× 128 indicate a slight improvement 
of the average accuracies of A-VGG16 in comparison to VGG16. In general one might expect that the kernel size 
in A-VGGm might require scaling with the size of the input images in order to have the entire input covered by 
the receptive field.

Finally, the reported average accuracies for A-VGG16 and A-VGG13 approach Wide-ResNet16 (widening 
factor of 10) median accuracies, consisting of an architecture with three main ingredients: skip connections, CLs 
with stride = 2 and (8× 8) AP after all CLs. This similarity hints that the ingredient dominating the enhanced 
accuracies, among the three, is a pooling operation after all CLs.

Data availability
Source data were provided in this study. All data supporting the plots within this paper, along with other findings 
of this study, are available from the corresponding author upon reasonable request.

Code availability
The simulation code is provided in this study, parallel to its publication in GitHub.
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