scientific reports

OPEN Ethnicity-specific association between *TERT* rs2736100 (A > C) polymorphism and lung cancer risk: a comprehensive meta-analysis

Xiaozheng Wu, Gao Huang, Wen Li & Yunzhi Chen[⊠]

The rs2736100 (A > C) polymorphism of the second intron of Telomerase reverse transcriptase (TERT) has been confirmed to be closely associated with the risk of Lung cancer (LC), but there is still no unified conclusion on the results of its association with LC. This study included Genome-wide association studies (GWAS) and case-control studies reported so far on this association between TERT rs2736100 polymorphism and LC to clarify such a correlation with LC and the differences in it between different ethnicities and different types of LC. Relevant literatures published before May 7, 2022 on 'TERT rs2736100 polymorphism and LC susceptibility' in PubMed, EMbase, CENTRAL, MEDLINE databases were searched through the Internet, and data were extracted. Statistical analysis of data was performed in Revman5.3 software, including drawing forest diagrams, drawing funnel diagrams and so on. Sensitivity and publication bias analysis were performed in Stata 12.0 software. The C allele of TERT rs2736100 was associated with the risk of LC (Overall population: [OR] = 1.21, 95%CI [1.17, 1.25]; Caucasians: [OR] = 1.11, 95%CI [1.06, 1.17]; Asians: [OR] = 1.26, 95%CI [1.21, 1.30]), and Asians had a higher risk of LC than Caucasians (C vs. A: Caucasians: [OR] = 1.11 /Asians: [OR]) = 1.26). The other gene models also showed similar results. The results of stratified analysis of LC patients showed that the C allele was associated with the risk of Non-small-cell lung carcinoma (NSCLC) and Lung adenocarcinoma (LUAD), and the risk of NSCLC and LUAD in Asians was higher than that in Caucasians. The C allele was associated with the risk of Lung squamous cell carcinoma (LUSC) and Small cell lung carcinoma(SCLC) in Asians but not in Caucasians. NSCLC patients ([OR] = 1.27) had a stronger correlation than SCLC patients ([OR] = 1.03), and LUAD patients ([OR] = 1.32) had a stronger correlation than LUSC patients ([OR] = 1.09). In addition, the C allele of TERT rs2736100 was associated with the risk of LC, NSCLC and LUAD in both smoking groups and non-smoking groups, and the risk of LC in non-smokers of different ethnic groups was higher than that in smokers. In the Asians, nonsmoking women were more at risk of developing LUAD. The C allele of TERT rs2736100 is a risk factor for LC, NSCLC, and LUAD in different ethnic groups, and the Asian population is at a more common risk. The C allele is a risk factor for LUSC and SCLC in Asians but not in Caucasians. And smoking is not the most critical factor that causes variation in TERT rs2736100 to increase the risk of most LC (NSCLC, LUAD). Therefore, LC is a multi-etiological disease caused by a combination of genetic, environmental and lifestyle factors.

Abbreviations

LC GWAS TERT CLPTM1L TERC SNP HWE	Lung cancer Genome-wide association studies Telomerase reverse transcriptase Cleft lip and cleft palate transmembrane protein Telomerase RNA component Single nucleotide polymorphism Hardy-Weinberg equilibrium
NOS	Newcastle Ottawa scale

Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 510025, China. [™]email: chenyunzhi270@gzy.edu.cn

1

OR	Odds ratio
95% CI	95% Confidence interval
TSA	Trial sequential analysis
SCLC	Small cell lung carcinoma
NSCLC	Non-small-cell lung carcinoma
LUAD	Lung adenocarcinoma
LUSC	Lung squamous cell carcinoma
LCLC	Large cell lung cancer

Lung cancer (LC) is one of the cancers with a high mortality rate in the world, accounting for approximately one quarter of all cancer deaths¹. And smoking is currently considered to be a major risk factor for it². In addition, exposure to environmental factors such as radon, secondhand smoke and dust, asbestos, cooking fumes and air pollution are also the main causes of LC in non-smokers³⁻⁶. However, it's not only the environmental factors but also genetic differences that contribute to LC susceptibility. Over the past two decades, multi-population Genome-wide association studies(GWAS) have identified dozens of risk loci for LC^{7,8}, and most of these loci are concentrated in 5p15.33 (Telomerase reverse transcriptase-Cleft lip and cleft palate transmembrane protein 1) TERT-CLPTMIL region⁹⁻¹². Several precise localization studies in the following years have also identified some new LC risk loci in this region¹³⁻¹⁵. Telomeres are consisted of repeated "TTAGGG" at the ends of chromosomes that gradually shorten in length with each round of cell division until cell cycle arrest is triggered, of which process is known as replicative senescence¹⁶⁻¹⁹. Telomeres can normally be elongated by the ribonucleoprotein telomerase to maintain the replication potential^{20,21}. In human cancer cells, however, telomerase has been activated to escape the initial growth arrest and continue to divide²². Unlimited cell growth and proliferation following the activation of telomerase is one of the clinical cancer phenotypes^{23–25}. It has been proved that long telomeres can promote the survival of cells with acquired oncogenic DNA alterations, thereby promoting tumorigenesis^{26–28}. Telomerase is consisted of a catalytic protein component encoded by the TERT gene and an RNA template encoded by the Telomerase RNA component(TERC). Among them, TERT is located at the short arm 15.33 of chromosome 5 (5p15.33), which is responsible for encoding the catalytic subunit of telomerase²⁹, regulating the expression level of telomerase, and maintaining telomere length, chromosomal stability and cell proliferation by adding "TTAGG" repeats at the end of the chromosomes^{30,31}.

Variations of the TERT promoter are an important prerequisite for high telomerase expression to stabilize telomere length³², and this process has been observed in cancer cells²³. Polymorphic genes in TERT and TERC have been reported to be associated with telomere length³³⁻³⁵, and longer telomere length contributes to increasing the risk of LC, especially for Lung adenocarcinoma (LUAD)³⁶⁻³⁸. In addition, the TERT gene is significantly overexpressed in LC tissues, which may also confirm the underlying mechanism of LC risk³⁹. However, the association between LC risk and telomere length is inconclusive as telomere length varies with the histological type of LC^{40,41}. Several single nucleotide polymorphisms (SNPs) in the TERT locus have been reported to be associated with cancer risk, and these SNPs are located in the exons or introns of TERT or its promoter⁴². The rs2736100 (A > C) polymorphism located in the second intron of *TERT* is the most common SNP in the *TERT* gene, and its association with cancer susceptibility, including LC, has been reported in various malignant tumors²⁹. In TERT rs2736100, the C allele upregulates TERT expression in normal and LC tissues¹⁹ and is associated with longer telomere length^{35,43}. Studies also have found that the increased telomere length of the C allele is associated with cancer⁴⁴. Some studies have also shown an increased frequency of the C allele of TERT rs2736100 in LC patients^{9,45-48}. These evidences imply that the C allele upregulates TERT expression, maintains and prolongs telomere length, and thus increases the risk of LC. In addition, some studies have conducted racial stratification analysis for different types of LC and proved that the influence of TERT variants in Asians is stronger than that in Caucasians^{45,49}. These results in turn imply that the frequency of TERT rs2736100 variants varies across ethnic populations. However, there are some studies have not found the association between the C allele and LC^{50,51}. The reasons for these different results may also be related to different ethnicities, countries, research methods, sample sizes, LC types, and linkage disequilibrium patterns. Therefore, there's inconsistency in the results of the association of TERT rs2736100 with LC. While meta-analysis is an effective way to combine data to increase the sample size, obtain sufficient power to clarify inconsistent results in genetic association studies⁵².

Several meta-analyses have reported the association of the *TERT* rs2736100 polymorphism with LC, but these meta-analyses have some shortcomings: some meta-analyses have shown an increased frequency of the C allele of *TERT* rs2736100 in LC patients but they ignored the effect of different ethnic groups^{53,54}; there are some meta-analyses of ethnic stratification of rs2736100, but most of them focused on different types of cancer, and they were not subjected to a stratified analysis of LC⁴⁸; some studies have done racially stratified meta-analyses for different types of LC, however, they are outdated⁵⁵. Therefore, there is still a lack of a unified conclusion on the association of *TERT* rs2736100 polymorphism with LC, especially the variability of this association in different ethnic populations and in different LC subtypes. This study included data from GWAS and case–control studies reporting the association of *TERT* rs2736100 (A > C) polymorphisms with LC up to date with the aim of clarifying its association with LC and the differences in this association between different ethnicities and different types of LC.

Data and methods

Inclusion and exclusion criteria. *Inclusion criteria.* ① They must be GWAS or case-control studies on *TERT* rs2736100 A/C gene polymorphism and LC susceptibility, the language should be English, and the detection methods and means should be accurately described; ② The gene frequency data can be used to calculate the Odds ratio(OR) and 95% Confidence interval(95% CI); ③ The distribution of genotype frequency of all

controls conforms to Hardy–Weinberg(HWE)⁵⁶; The score of Newcastle Ottawa scale(NOS)⁵⁷ should be no less than 7 (\geq 7).

Exclusion criteria. ① Studies without allele-related data; ② Studies of the types of reviews, meta-analyses, conference reports and case reports; ③ Studies with pedigree as the reporting object; ④ same studies have published for multiple times, only the one with the most complete data will be included, and the others will be excluded.

Outcomes. The pre-specified primary outcomes were to investigate whether *TERT* rs2736100 A/C polymorphism increased the risk of LC in the overall population. The secondary outcomes were to determine whether there were differences in the intensity of the association between the *TERT* rs2736100 A/C polymorphism and LC (including various subtypes) between different ethnic groups.

Retrieval strategy. Relevant literatures on *TERT* rs2736100 polymorphism and LC susceptibility in Pub-Med, EMbase, CENTRAL, MEDLINE databases published before May 7, 2022 were searched by theme words and keywords. The language was limited to English.

Search terms in PubMed(Table 1/Table S1 in supplemental content): "Lung cancer" OR "LC"AND "rs2736100" OR "*TERT*" AND "polymorphism". Manual retrieval and literature tracing methods were used at the same time to expand the search scope.

Literature screening and data extraction. Two relatively independent researchers (X–ZW and WL) completed literature searching and screening according to the inclusion criteria. They cross checked and discussed them afterwards. For the literatures with different opinions, the third party (Y–ZC) made the decision. For some literatures with incomplete data, they tried to contact the author by e-mail to obtain the complete data. Finally, data extraction was carried out for the literatures being chosen after the final decision. These data include: author, year of publication, country, ethnicity, smoking status of subjects, type of LC, number of cases in case and control groups, frequency of each genotype in case and control groups, and the OR and 95% CI of each genotype.

Literature quality evaluation. The quality of the included literature was evaluated in the NOS^{57} (X–ZW and WL), and those with a score of no less than 7 were considered as literatures with high-quality.

Statistical methods. The HWE of the genotypes of the controls was detected by Pearson's chi-square test in SPSS 22.0 software. All results were statistically counted and analyzed in Revman 5.3 software, including drawing forest plots and funnel plots. When there was no heterogeneity among all studies or among all subgroups (P > 0.1 or $I^2 < 50\%$), the fixed-effects model was used for statistical analysis; otherwise, the random-effects model was used for statistical analysis. The effect size and effect value of the statistical results were presented by OR value and 95% CI. Begg's Test and Egger's Test were performed in Stata 14.0 software to assess publication bias among studies, and sensitivity analysis was performed to assess the results of statistical analysis with greater heterogeneity. TSA 0.9.5.10 software was performed for the Trial sequential analysis(TSA) tests to evaluate the stability of the conclusion ((Type I error) probability = 5%, statistical test power = 80%, relative risk reduction = 20%).

Ethics and dissemination. This review does not require ethical approval because the included studies are published data and do not involve the patients' privacy. The results of this review will be reported in accordance with the PRISMA extension statement and disseminated to a peer-reviewed journal.

Results

Characteristic of eligible studies. A total of 398 literatures were initially retrieved from the 4 databases and 43 studies in 40 literatures were finally included after the screening^{10,12,14,39,45-47,50,51,58-88}, of which there were 25 GWAS in 22 literatures^{10,12,14,45,47,50,58-61,63-65,68,69,74,76,77,79,80,87,88}. And a flow chart was made according to the PRISMA statement (Fig. 1). Among these studies, 12 in Caucasians and 31 in Asians were included. There

Number	Search terms
#1	Mesh descriptor: (Lung cancer) explode all trees
#2	(LC [Title/Abstract]) OR (Lung cancer [Title/Abstract])
#3	OR 1-2
#4	Mesh descriptor: (Telomerase reverse transcriptase) explode all trees
#5	(TERT [Title/Abstract]) OR Telomerase reverse transcriptase [Title/Abstract])OR rs2736100 [Title/Abstract])
#6	OR 4-5
#7	Mesh descriptor: (polymorphism) explode all trees
#8	3 AND 6 AND 7

Table 1. PubMed search strategy.

were 99,941 LC patients (including 36,943 Caucasian patients and 62,998 Asian patients) and 131,856 controls (Tables 2, 3). All 43 studies had high NOS⁵⁷ assessment scores (\geq 7), indicating that they are all at low risk of bias (Table 4).

Quantitative analysis. LC. The allelic model (C vs. A) was used to evaluate the association of TERT 2736100 with LC susceptibility. The random effects model was used for analysis as the test results showed that there was heterogeneity after the heterogeneity test (Overall population: P < 0.00001, $I^2 = 83\%$; Caucasians: P < 0.0001, $I^2 = 73\%$; Asians: P < 0.00001, $I^2 = 74\%$) (Fig. 2a, Table 5). It was found that the C allele was associated with the risk of LC (Overall population: [OR] = 1.21, 95%CI [1.17, 1.25]; Caucasians: [OR] = 1.11, 95%CI [1.06, 1.17]; Asians: [OR] = 1.26, 95%CI [1.21, 1.30]), and Asians had a higher risk of LC than Caucasians (C vs. A: Caucasians: [OR] = 1.11 / Asians: [OR] = 1.26) (Fig. 2a, Table 5). The additive, heterozygous, dominant and recessive genetic models (CC vs. AA, CA vs. AA, CA + CC vs. AA and CC vs. AA + CA) were further used to evaluate the correlation between TERT 2736100 and LC since 29 of the 43 studies reported complete genotype frequencies. And the fixed-effects model (P > 0.1 or I² < 50%) and random-effects model (P < 0.1 or I² > 50%) were used to analyze each subgroup due to the different heterogeneity of each subgroup. Meta-analysis showed that people with "C" genotype had higher risks of LC than those with "A" genotype (P < 0.00001), and Asians had higher risks of LC than Caucasians (CC vs. AA: Caucasians: [OR]=1.33/Asians: [OR]=1.60; CA vs. AA: Caucasians: [OR] = 1.17/Asians: [OR] = 1.26; CA + CC vs. AA: Caucasians: [OR] = 1.22/Asians: [OR] = 1.34; CC vs. AA + CA: Caucasians: [OR] = 1.19/Asians: [OR] = 1.41) (Fig. 2b-e, Table 5). It's also found that carriers of the CC genotype ([OR] = 1.56) were more likely to develop LC than carriers of the CA genotype ([OR] = 1.25) (Table 5).

LC subtypes. A further stratified analysis of these LC studies was performed since there were four different disease types in LC studies: Non-small-cell lung carcinoma(NSCLC, N = 21), Small cell lung carcinoma (SCLC, N = 7), Lung adenocarcinoma(LUAD, N = 17) and Lung squamous cell carcinoma(LUSC, N = 13). Meta-analysis of the allele model (C vs. A) found that the C allele was associated with the risk of NSCLC (Overall population: [OR] = 1.27, 95%CI [1.22, 1.33]; Caucasians: [OR] = 1.19, 95%CI [1.09, 1.31]; Asians: [OR] = 1.28, 95%CI [1.22, 1.34]), and Asians had a higher risk of NSCLC than Caucasians (C vs. A: Caucasians: [OR] = 1.19/Asians: [OR] = 1.28) (Fig. S1 in supplemental content, Table 6). In SCLC patients, the C allele was associated with the risk of SCLC only in Asians (Overall population: [OR] = 1.03, 95%CI [0.98, 1.09]; Caucasians: [OR] = 1.00, 95%CI [0.94, 1.06]; Asians: [OR] = 1.11, 95%CI [1.01, 1.22]) (Fig. S1 in supplemental content, Table 6). In LUAD patients, the C allele was associated with the risk of developing LUAD (Overall population: [OR] = 1.32, 95%CI [1.26, 1.38]; Caucasians: [OR] = 1.22, 95%CI [1.16, 1.28]; Asians: [OR] = 1.34, 95%CI [1.27, 1.41]), and Asians had a higher risk of developing LUAD than Caucasians (C vs. A: Caucasians: [OR] = 1.22/Asians: [OR] = 1.34) (Fig. S2 in supplemental content, Table 6). In LUSC patients, the C allele was associated with LUSC risk in Asians but not in Caucasians (Overall population: [OR] = 1.09, 95%CI [1.06, 1.13]; Caucasians: [OR] = 1.04, 95%CI [0.99, 1.10]; Asians: [OR] = 1.13, 95%CI [1.08, 1.18]) (Fig. S2 in supplemental content, Table 6). It's also found

								Gender (male %)	Age (years)		Percentage of smokers (%)	
ID	Studies	Year	Country	Ethnicity	Type of LC	LC(n)	Controls(n)	LC	Controls	LC	Controls	LC	Controls
1	Bae ⁵⁸	2012	South Korea	Asian	LC	1094	1100	76.51%	76.36%	60.7 ± 9.3	60.6±9.3	79.10%	66.40%
2	Brenner (Phase 1) ⁵⁹	2013	Europe, North America	Caucasian	LC	4441	5194	-	-	-	-	Partial smoking	Partial smoking
3	Brenner (Phase 2) ⁵⁹	2013	USA	Caucasian	LC	5699	5818	-	-	-	-	Partial smoking	Partial smoking
4	Broderick (Phase 1) ⁶⁰	2009	UK	Caucasian	LC	1952	1438	59.76%	-	57±6	-	Partial smoking	Partial smoking
5	Broderick (Phase 2) ⁶⁰	2009	UK	Caucasian	LC	2465	3005	68.04%	49.31%	72±7	61±11	Partial smoking	Partial smoking
					LC	196	229						
6	Chen ⁵⁰	2012	China	Asian	LUAD	96	229	77 55%	73 36%	55.9 ± 10.3	54.6 + 10.2	62 76%	48.03%
	Chen	2012	Cillia	Asian	LUSC	44	229	//.55/0	75.5070	55.9±10.5	54.0 ± 10.2	02.7070	40.0370
					SCLC	16	229						
7	Cheng ⁶¹	2016	China	Asian	LC	2331	3077	73.40%	67.79%	52.34%(≥60)	53.56%(≥60)	64.05%	42.96%
8	Dong ¹⁴	2017	China	Asian	NSCLC	192	278	72.90%	71.20%	$46.90\% (\ge 60)$	48.20%(≥60)	67.20%	47.50%
9	Furuie ⁶²	2021	Japan	Asian	LC	462	379	62.10%	74.70%	68 (62–73)	58 (48-65)	66.90%	44.80%
10	Hosgood ¹²	2015	Asia	Asian	LC	1730	1349	0%	0%	52.30%(≥59)	52.8%(≥59)	Non- smoking	Non-smok- ing
					LC	2308	2321					N.	NT 1
11	Hsiung ⁴⁵	2010	Asia	Asian	LUAD	1748	2321	0%	0%	56.3-63.4	56.3-64.7	Non- smoking	Non-smok- ing
					LUSC	177	2321						Ũ
					LC	8559	9378						
					LUSC	3017	9378	69.05%	66 77%	59.11-60.08	56 51-62 45	58 36%	39.98%
	12 Hu ¹⁰ 20				LUAD	4323	9378	09.0570		55.11 00.00	50.51 02.15	50.5070	55.50%
12		2011	China	Asian	SCLC	780	9378						
					LC Smoker	5026	3815						
					LC Non smoker	3533	5563						
13	Ito ⁶³	2012	Japan	Asian	LC	716	716	74.16%	74.16%	-	-	75.20%	59.36%
14	Jaworowska ⁶⁴	2011	Poland	Caucasian	LC	855	844	73.70%	73.70%	61 (28-88)	61 (28-88)	87.50%	49.90%
					NSCLC	1212	1339						
					LUAD	711	1339	74.40%	74.70%	48.50%(>60)	48.10%(>60)	64.40%	44.50%
15	Jin ⁶⁵	2009	China	Asian	LUSC	374	1339						
15		2009	Cinna	Asiali	NSCLC Smoker	786	598						
					NSCLC Non smoker	425	746						
16	Kohno ⁶⁶	2011	Japan	Asian	LUSC	370	320	90.19%	56.92%	62.7 ± 7.6	62.5±11.3	97%	45%
17	Lan ⁶⁷	2013	China	Asian	LC	193	197	0%	0%	58.14%(≥60)	59.07%(≥60)	7.44%	4.65%
18	Lan ⁶⁸	2012	Asia	Asian	LC	5505	4543	0%	0%	58.8±11.2	55.1±13.7	Non- smoking	Non-smok- ing
					LC	5739	5848						
					LUAD	1730	5848	_	_	_	_	93.69%	76.03%
	. 1.60				LUSC	1400	5848						
19	Landi	2009	USA, Europe	Caucasian	SCLC	678	5848						
					LC Smoker	5356	4425						
					LC Non smoker	362	1402						
20	Li ⁷⁰	2012	China	Asian	LC	2283	2785	73.72%	73.21%	60.09 ± 10.29	60.56 ± 9.58	64.91%	45.53%
21	Li ⁵¹	2016	China	Asian	LC	391	337	67.52%	67.66%	58.63±8.8	38.8±10.7	No descrip- tion	No descrip- tion
22	Liu ⁷¹	2015	China	Asian	LC	288	317	48.36%	49.22%	59.63±10.82	43.06±15.02	No descrip- tion	No descrip- tion
23	Machiela ⁷²	2015	Asia	Asian	LC	5457	4493	0%	0%	63.00%(≥50)	63.00%(≥50)	Non- smoking	Non-smok- ing
Conti	nued												

								Gender (male %)	Age (years)		Percentage of smokers (%)	
ID	Studies	Year	Country	Ethnicity	Type of LC	LC(n)	Controls(n)	LC	Controls	LC	Controls	LC	Controls
					LC	40	40						
					NSCLC	36	40]					
24	Mandour ⁷³	2020	Egypt	Caucasian	SCLC	2	40	50%	22.50%	44.13 ± 16.18	34.45 ± 9.98	Non- smoking	Non-smok- ing
					LUAD	26	40]					0
					LUSC	4	40						
25	McKay ⁷⁴	2008	USA, Europe	Caucasian	LC	2971	3746	-	-	-	-	Partial smoking	Partial smoking
26	Miki ⁷⁵	2010	Japan, South Korea	Asian	LUAD	2086	11,034	53.35%	68.42%	64.8-58.9	50.5-58.9	49.10%	59.47%
27	Myneni ⁴⁶	2013	China	Asian	LC	352	447	50.60%	50.20%	61.10%(≥55)	52.40%(≥55)	55.10%	38.80%
28	Pande ⁷⁶	2011	USA	Caucasian	LC	1681	1235	59.50%	40.50%	63.5±11	57.2±13.2	72.52%	58.87%
29	Seow ⁷⁷	2017	Asia	Asian	LUAD	7505	7070	0%	0%	57.9-64.6	44.2-62.0	Non- smoking	Non-smok- ing
30	Shiraishi ⁷⁸	2016	Japan	Asian	LUAD	6830	15,155	52.29%	56.30%	64.1	47.7	54.36%	50%
					LUAD	4648	12,364	46.92%	56.54%	58.8-63.3	44.5-56.6	48.71%	48.63%
31	Shiraishi ⁷⁹	2012	Japan	Asian	LUAD smoker	2269	6012						
					LUAD Non smoker	2368	5182						
					LC	1686	2101	50.00%	42.00%	87.00%(≥50)	77.00%(≥50)	59.62%	37.53%
32	Truong ⁸⁰	2010	North	Asian	LC Smoker	982	759						
			America, Asia		LC Non smoker	671	1264						
					LC	9126	11,812	58.00%	57.00%	89.00%(≥50)	89.00%(≥50)	89.47%	63.29%
33	33 Truong ⁸⁰ 2	2010	USA, Europe	Caucasian	LC Smoker	8008	6855						
		2010 USA, Europe		LC Non smoker	934	3972							
					NSCLC	1552	1605						
34	Wang ⁸¹	2014	China	Asian	LUAD	746	1605	60.89%	58.44%	55.6 (29-82)	52.3 (21-29)	73.20%	53.80%
					LUSC	596	1605						
35	Wang ⁸²	2016	China	Asian	LC	500	500	61.00%	60.40%	84.00%(≥50)	71.90%(≥50)	Partial smoking	Partial smoking
					LC	239	553						
					SCLC	39	553					Nterr	N la
36	Wang ⁴⁷	2010	UK	Caucasian	NSCLC	200	553	57.74%	18.99%	67 (26-87)	63 (21–91)	smoking	ing
					LUAD	112	553						-
					LUSC	48	553						
37	Wei ³⁹	2015	China	Asian	NSCLC	702	2520	64.29%	34.68%	56.7-58.7	60.5 ± 10.3	50.14%	19.68%
38	Xing ⁸³	2016	China	Asian	NSCLC	418	410	65.80%	61.20%	70.8 ± 16.7	71.9±16.1	53.90%	49.80%
					LC	1735	1036	51.47%	40.25%	64.4 ± 10.3	64.5 ± 10.8	81.04%	39.77%
39	Yang ⁸⁴	2010	USA	Caucasian	LC Smoker	1406	412						
					LC Non smoker	329	624						
					LC	524	524					Non-	Non-smok-
40	Yin ⁸⁵	2014	China	Asian	LUAD	365	524	0%	0%	56.1 ± 11.9	56.8 ± 11.1	smoking	ing
41	Yoo ⁸⁶	2020	South Korea	Asian	LC	699	606	100%	100%	61.1±8.0	60.6±6.7	100%	100%
					NSCLC	1425	3011						
42	Yoon ⁸⁷	2010	South Korea	Asian	LUAD	1009	3011	56.28%	60.21%	57-63	56-62	51.23%	48.25%
					LUSC	346	3011	1					
					LC	784	782						
					LUAD	360	782	73.30%	71.60%	62.33 ± 10.74	62.72 ± 10.71	68.50%	52.30%
43	Zhao ⁸⁸	2013	China	Asian	LUSC	253	782			02.35 ± 10.74			
	43 Zhao ⁸⁸ 201		China A	Asian	LC Smoker	537	409						
					LC Non smoker	224	373						

Table 2. Basic features of the included study (1). *LC* Lung cancer, *NSCLC* non-small-cell lung carcinoma, *SCLC* small cell lung carcinoma, *LUAD* Lung adenocarcinoma, *LUSC* Lung squamous cell carcinoma. Data are mean ± SD, or mean (IQR), or IQR, or n, unless otherwise stated.

												LC	Handri			
			Genotyping		LC(n)					Contro	ols(n)				OR [95% Cl]	Weinberg
ID St	studies	Year	methods	Type of LC	AA	CA	CC	Α	С	AA	CA	CC	Α	С	C vs.A	PHWE
1 Ba	3ae ⁵⁸	2012	PCR	LC	402	501	191	1305	883	422	522	156	1366	834	1.11 [0.98, 1.25]	0.79
2 Br (P	Brenner Phase 1) ⁵⁹	2013	HumanHap	LC	-	-	-	-	-	-	-	-	-	-	1.22 [1.15, 1.29]	Yes
3 Br (P	Brenner Phase 2) ⁵⁹	2013	Illumina Chips	LC	-	-	-	-	-	-	-	-	-	-	1.10 [1.03, 1.16]	Yes
4 Br (P	Broderick Phase 1) ⁶⁰	2009	Illumina Chips	LC	-	-	-	-	-	-	-	-	-	-	0.97 [0.88, 1.07]	Yes
5 Br (P	Broderick Phase 2) ⁶⁰	2009	Illumina arrays	LC	-	-	-	-	-	-	-	-	-	-	0.95 [0.88, 1.03]	Yes
				LC	45	101	50	191	201	69	112	48	250	208	1.26 [0.97, 1.66]	
6 0	`hen ⁵⁰	2012	TaoMan	LUAD	17	47	32	81	111	69	112	48	250	208	1.65 [1.17, 2.31]	0.838
	Jien	2012	ruqiviun	LUSC	14	23	7	51	37	69	112	48	250	208	0.73 [0.47, 1.14]	0.000
				SCLC	4	10	2	18	14	69	112	48	250	208	0.93 [0.45, 1.92]	
7 Cł	Cheng ⁶¹	2016	Affymetrix Genome-Wide Array	LC	-	-	-	-	-	-	-	-	_	-	1.20 [1.11, 1.30]	0.3
8 D	Dong ¹⁴	2017	Illumina Genome Analyzer	NSCLC	44	111	37	199	185	96	138	44	330	226	1.36 [1.04, 1.76]	0.631
9 Fu	² uruie ⁶²	2021	TaqMan and PCR	LC	172	216	74	560	364	137	171	71	445	313	0.92 [0.76, 1.12]	0.177
10 H	Hosgood ¹²	2015	Illumina arrays	LC	447	909	374	1803	1657	508	646	195	1662	1036	1.47 [1.33, 1.63]	0.653
				LC	599	1187	522	2385	2231	852	1132	337	2836	1806	1.47 [1.35, 1.60]	
11 H	Isiung ⁴⁵	2010	Illumina Chips	LUAD	428	922	398	1778	1718	852	1132	337	2836	1806	1.52 [1.39, 1.66]	0.211
			LUSC	60	82	35	202	152	852	1132	337	2836	1806	1.18 [0.95, 1.47]		
				LC	2393	4294	1872	9080	8038	3231	4533	1614	10,995	7761	1.25 [1.20, 1.31]	
				LUSC	896	1508	613	3300	2734	3231	4533	1614	10,995	7761	1.17 [1.11, 1.24]	0 724
12 H	-111 ¹⁰	2011	Affymetrix Genome-Wide	LUAD	1148	2155	1020	4451	4195	3231	4533	1614	10,995	7761	1.34 [1.27, 1.41]	
	iu	2011	Array	SCLC	231	405	144	867	693	3231	4533	1614	10,995	7761	1.13 [1.02, 1.26]	
				LC Smoker	1497	2490	1039	5484	4568	1327	1827	661	4481	3149	1.19 [1.12, 1.26]	0.455
				LC Non smoker	896	1804	833	3596	3470	1904	2706	953	6514	4612	1.36 [1.28, 1.45]	0.873
13 Ito	to ⁶³	2012	TaqMan and PCR	LC	248	340	128	836	596	279	329	108	887	545	1.16 [1.00, 1.35]	0.496
14 Ja	aworowska ⁶⁴	2011	TaqMan	LC	247	403	205	897	813	263	425	156	951	737	1.17 [1.02, 1.34]	0.494
				NSCLC	353	627	232	1333	1091	450	658	231	1558	1120	1.14 [1.02, 1.27]	
				LUAD	-	-	-	-	-	-	-	-	-	-	1.39 [1.13, 1.70]	0.719
15 Jir	in ⁶⁵	2009	PCR	LUSC	-	-	-	-	-	-	-	-	-	-	1.01 [0.78, 1.31]	
				NSCLC Smoker	-	-	-	-	-	-	-	-	-	-	1.11 [0.88, 1.40]	Yes
				NSCLC Non smoker	-	-	-	-	-	-	-	-	-	-	1.59 [1.21, 2.10]	Yes
16 Ko	Kohno ⁶⁶	2011	PCR	LUSC	142	175	53	459	281	116	165	39	397	243	1.00 [0.80, 1.24]	0.09
17 La	.an ⁶⁷	2013	TaqMan	LC	43	109	41	195	191	70	103	24	243	151	1.58 [1.19, 2.10]	0.137
18 La	.an ⁶⁸	2012	Illumina arrays	LC	-	-	-	5725	5285	-	-	-	5452	3634	1.38 [1.31, 1.47]	Yes

					LC(n)					Contro	ols(n)				LC vs.Controls OR [95% Cl]	Hardy- Weinberg
ID	Studies	Year	methods	Type of LC	AA	CA	CC	A	С	AA	CA	CC	A	С	C vs.A	PHWE
				LC	-	-	-	5349	6129	-	-	-	5836	5860	1.09 [1.03, 1.15]	
				LUAD	-	-	-	-	-	-	-	-	-	-	1.23 [1.13,1.33]	
10	T and :69	2000	Illumina China	LUSC	-	-	-	-	-	-	-	-	-	-	1.01 [0.93, 1.10]	- ies
19	Landi	2009	liiumina Cnips	SCLC	-	-	-	-	-	-	-	-	-	-	1.00 [0.90, 1.13]	
				LC Smoker	-	-	-	-	-	-	-	-	-	-	1.06 [1.01, 1.12]	Yes
				LC Non smoker	-	-	-	-	-	-	-	-	-	-	1.34 [1.11, 1.61]	Yes
20	Li ⁷⁰	2012	Sequenom Mass Array iPLEX	LC	-	-	-	-	-	-	-	-	-	-	1.18 [1.09, 1.27]	0.49
21	Li ⁵¹	2016	PCR	LC	109	201	81	419	363	117	159	61	393	281	1.21 [0.98, 1.49]	0.58
22	Liu ⁷¹	2015	Sequenom Mass Array iPLEX	LC	72	139	77	283	293	92	173	52	357	277	1.33 [1.06, 1.67]	0.052
23	Machiela ⁷²	2015	Illumina arrays	LC	-	-	-	5675	5239	-	-	-	5419	3567	1.38 [1.30, 1.47]	Yes
				LC	6	12	22	24	56	3	19	18	25	55	1.06 [0.54, 2.08]	
				NSCLC	5	11	20	21	51	3	19	18	25	55	1.10 [0.55, 2.21]	
24	Mandour ⁷³	2020	TaqMan	SCLC	0	0	2	0	4	3	19	18	25	55	4.14 [0.21,79.73]	0.505
				LUAD	2	8	16	12	40	3	19	18	25	55	1.52 [0.68, 3.37]	
				LUSC	2	0	2	4	4	3	19	18	25	55	0.45 [0.11, 1.97]	
25	McKay ⁷⁴	2008	Illumina Chips	LC	-	-	-	-	-	-	-	-	-	-	1.18 [1.10, 1.26]	Yes
26	Miki ⁷⁵	2010	Illumina arrays	LUAD	622	1048	416	2292	1880	4093	5246	1695	13,432	8636	1.28 [1.19, 1.36]	0.835
27	Myneni ⁴⁶	2013	PCR	LC	122	141	89	385	319	157	212	78	526	368	1.18 [0.97, 1.45]	0.659
28	Pande ⁷⁶	2011	Illumina Chips	LC	-	-	-	1567	1795	-	-	-	1230	1240	1.14 [1.02, 1.26]	0.46
29	Seow ⁷⁷	2017	Illumina arrays, Affymetrix Genome-Wide Array, TaqMan and PCR	LUAD	-	-	_	7655	7355	-	-	-	7636	6504	1.13 [1.08, 1.18]	Yes
30	Shiraishi ⁷⁸	2016	TaqMan	LUAD	2057	3386	1387	7500	6160	5723	7133	2299	18,579	11,731	1.30 [1.25, 1.36]	0.323
				LUAD	1386	2265	997	5037	4259	4650	5856	1858	15,156	9572	1.34 [1.28, 1.40]	0.838
31	Shiraishi ⁷⁹	2012	TaqMan	LUAD smoker	662	1146	461	2470	2068	2244	2837	931	7325	4699	1.31 [1.22, 1.40]	0.488
				LUAD Non smoker	722	1114	532	2558	2178	1979	2429	774	6387	3977	1.37 [1.28, 1.47]	0.52
				LC	538	836	312	1912	1460	775	1014	312	2564	1638	1.20 [1.09, 1.31]	0.506
32	Truong ⁸⁰	2010	TaqMan	LC Smoker	-	-	-	-	-	-	-	-	-	-	1.20 [1.04, 1.38]	Yes
				LC Non smoker	-	-	-	-	-	-	-	-	-	-	1.27 [1.10, 1.46]	Yes
				LC	1878	4526	2722	8282	9970	2853	5817	3142	11,523	12,101	1.15 [1.10, 1.19]	0.116
33	Truong ⁸⁰	2010	TaqMan	LC Smoker	-	-	-	-	-	-	-	-	-	-	1.13 [1.08, 1.19]	Yes
				LC Non smoker	-	-	-	-	-	-	-	-	-	-	1.22 [1.09, 1.35]	Yes
Conti	nued															

			Constrains		LC(n)					Contr	ols(n)				LC vs.Controls OR [95% Cl]	Hardy– Weinberg
ID	Studies	Year	methods	Type of LC	AA	CA	CC	Α	С	AA	CA	CC	A	С	C vs.A	PHWE
				NSCLC	455	764	333	1674	1430	549	780	276	1878	1332	1.20 [1.09, 1.33]	
34	Wang ⁸¹	2014	PCR	LUAD	200	372	174	772	720	549	780	276	1878	1332	1.31 [1.16, 1.49]	0.971
				LUSC	186	293	117	665	527	549	780	276	1878	1332	1.12 [0.98, 1.28]	
35	Wang ⁸²	2016	Mass Array	LC	131	257	112	519	481	178	242	80	598	402	1.38 [1.15, 1.65]	0.881
				LC	42	115	82	199	279	136	259	158	531	575	1.29 [1.04, 1.61]	
				SCLC	11	18	10	40	38	136	259	158	531	575	0.88 [0.55, 1.39]	
36	Wang ⁴⁷	2010	Illumina Chips	NSCLC	31	97	72	159	241	136	259	158	531	575	1.40 [1.11, 1.77]	0.146
				LUAD	13	60	39	86	138	136	259	158	531	575	1.48 [1.10, 1.99]	
				LUSC	8	23	17	39	57	136	259	158	531	575	1.35 [0.88, 2.06]	
37	Wei ³⁹	2015	TaqMan and PCR	NSCLC	190	353	159	733	671	814	1269	437	2897	2143	1.24 [1.10, 1.39]	0.13
38	Xing ⁸³	2016	TaqMan	NSCLC	216	164	38	596	240	268	124	18	660	160	1.66 [1.32, 2.09]	0.452
				LC	-	-	-	-	-	-	-	-	-	-	1.11 [0.99, 1.24]	Yes
39	Yang ⁸⁴	2010	TaqMan	LC Smoker	-	-	-	-	-	-	-	-	-	-	1.08 [0.92, 1.26]	Yes
				LC Non smoker	-	-	-	-	-	-	-	-	-	-	1.19 [0.98, 1.44]	Yes
40	Vin ⁸⁵	2014	TeaMan	LC	139	273	112	551	497	186	255	83	627	421	1.34 [1.13, 1.60]	0.777
40		2014	Taqivian	LUAD	84	196	85	364	366	186	255	83	627	421	1.50 [1.24, 1.81]	0.777
41	Yoo ⁸⁶	2020	ARRAY iPLEX assay	LC	269	321	109	859	539	241	283	82	765	447	1.07 [0.92, 1.24]	0.94
				NSCLC	467	696	262	1630	1220	1186	1406	419	3778	2244	1.26 [1.15, 1.38]	
42	Yoon ⁸⁷	2010	Affymetrix Genome-Wide Array	LUAD	313	497	199	1123	895	1186	1406	419	3778	2244	1.34 [1.21, 1.49]	0.944
			,	LUSC	128	165	53	421	271	1186	1406	419	3778	2244	1.08 [0.92, 1.27]	
				LC	-	-	-	847	721	-	-	-	938	626	1.28 [1.11, 1.47]	
				LUAD	-	-	-	-	-	-	-	-	-	-	1.98 [1.34, 2.93]	0.61
43	Zhao ⁸⁸	2013	TaqMan	LUSC	-	-	-	-	-	-	-	-	-	-	1.32 [0.79, 2.19]	
			I	LC Smoker	-	-	-	-	-	-	-	-	-	-	1.52 [1.01, 2.28]	Yes
				LC Non smoker	-	-	-	-	-	-	-	-	-	_	1.79 [1.06, 3.03]	Yes

Table 3. Basic features of the included study (2). *LC* Lung cancer, *NSCLC* non-small-cell lung carcinoma, *SCLC* small cell lung carcinoma, *LUAD* Lung adenocarcinoma, *LUSC* Lung squamous cell carcinoma, *PCR* polymerase chain reaction, *PHWE P* value of Hardy-Wenberg equilibrium.

that NSCLC patients ([OR] = 1.27) had a stronger disease association than SCLC patients ([OR] = 1.03) when the OR values were compared (Fig. S1 in supplemental content, Table 6), and LUAD patients ([OR] = 1.32) had a stronger disease association than LUSC patients ([OR] = 1.09) (Fig. S2 in supplemental content, Table 6).

Analysis of smoking status in LC patients. Among the included studies, 25 reported smoking or non-smoking in LC patients, of which 9 reported smoking history in LC patients and 16 reported no smoking history in LC patients. Therefore, a stratified analysis of smoking in LC patients in these 25 studies was conducted to clarify whether smoking caused variation in *TERT* rs2736100 and increased the risk of LC. Meta-analysis of the allele model (C vs. A) found that the C allele was associated with the risk of LC in both the smoking group and the non-smoking group (Smoking: [OR] = 1.16, 95%CI [1.09, 1.23]; Non-smoking: [OR] = 1.34, 95%CI [1.26, 1.41]),

	Sel	ect			Comparability ^a	Expos	e		
	1	2	3	4	5	6	7	8	
Studies	I	II	III	IV	v	VI	VII	VIII	Total score ^b
Bae 2012	☆	☆	☆	*	☆☆	*	*		8☆
Brenner (Phase 1)2013	☆	☆	*		☆☆	☆	*		7☆
Brenner (Phase 2)2013	☆	☆	\$		☆☆	\$	*		7☆
Broderick (Phase 1)2009	☆	☆	\$		☆☆	*	*		7☆
Broderick (Phase 2)2009	☆	☆	*	*	☆☆	\$	\$		8☆
Chen 2012	☆	☆	☆	\$	☆☆	\$	*		8☆
Cheng 2016	☆	☆	☆	*	☆☆	*	*		8☆
Dong 2017	☆	☆	☆	*	☆☆	*	*		8☆
Furuie 2021	☆	☆	☆	☆	☆☆	☆	☆		8☆
Hosgood 2015	☆	☆	☆	\$	☆☆	*	*		8☆
Hsiung 2010	☆	☆	☆	\$	☆☆	*	*		8☆
Hu 2011	☆	☆	☆	*	☆☆	*	*		8☆
Ito 2012	☆	☆	☆	*	☆☆	*	*		8☆
Jaworowska 2011	☆	☆	\$	*	☆☆	\$	*		8☆
Jin 2009	☆	☆	\$	*	☆☆	\$	*		8☆
Kohno 2011	☆	☆	☆	☆	☆☆	☆	*		8☆
Lan 2013	☆	☆	☆	☆	☆☆	☆	☆		8☆
Lan 2012	☆	☆	☆	☆	☆☆	☆	*		8☆
Landi 2009	☆	☆	☆		☆☆	☆	*		7☆
Li 2012	☆	☆	☆	☆	☆☆	☆	*		8☆
Li 2016	☆	☆	☆	\$	☆☆		*		7☆
Liu 2015	☆	☆	☆	☆	☆☆		*		7☆
Machiela 2015	☆	☆	☆	☆	☆☆	☆	*		8☆
Mandour 2020	☆	☆	☆	☆	☆☆	☆	*		8☆
McKay 2008	☆	☆	\$		☆☆	*	*		7☆
Miki 2010	☆	☆	\$	\$	☆☆	*	*		8☆
Myneni 2013	☆	☆	☆	☆	☆☆	☆	☆		8☆
Pande 2011	☆	☆	☆	☆	☆☆	☆	☆		8☆
Seow 2017	☆	☆	☆	☆	☆☆	☆	☆		8☆
Shiraishi 2016	☆	☆	☆	☆	☆☆	☆	☆		8☆
Shiraishi 2012	☆	☆	\$	\$	☆☆	*	☆		8☆
Truong (Asians) 2010	☆	☆	☆	\$	☆☆	☆	☆		8☆
Truong (Caucasians) 2010	☆	☆	☆	☆	☆☆	☆	☆		8☆
Wang 2014	☆	☆	☆	☆	☆☆	☆	☆		8☆
Wang 2016	☆	☆	☆	☆	☆☆	☆	☆		8☆
Wang 2010	☆	☆	☆	☆	☆☆	☆	☆		8☆
Wei 2015	☆	☆	☆	☆	☆☆	*	☆		8☆
Xing 2016	☆	☆	☆	*	**	*	☆		8☆
Yang 2010	☆	☆	☆	*	**	\$	*		8☆
Yin 2014	☆	☆	*	*	**	\$	*		8☆
Yoo 2020	☆	☆	*	*	\$\$	\$	*		8☆
Yoon 2010	☆	☆	*	*	☆☆	\$	*		8☆
Zhao 2013	☆	☆	*	☆	☆☆	☆	*		8☆

Table 4. Newcastle Ottawa scale (NOS). ^aTwo stars with the highest comparability; ^bFull score is 9★.1–8:Case-control studies (CC); I-VIII: Cohort studies (CS). 1: Case definition; 2: Demonstrations box; 3: Selectionof control group; 4: Definition of control group; 5: Choose the most important/second most important factor;6: Determination of exposure; 7: Methods for determining cases and control group; 8: No response rate.I: representativeness of exposure; II: selection of non-exposed persons; III: Determination of exposure; IV:proof of no interesting results at the beginning; V: comparability; VI: evaluation of results; VII: long enoughfollow-up time; VIII: adequacy of follow-up.

а					
				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.1.1 Caucasians					
Brenner (Phase 1) 2013	0.1989	0.0301	3.1%	1.22 [1.15, 1.29]	
Brenner (Phase 2) 2013	0.0953	0.0335	3.0%	1.10 [1.03, 1.17]	
Broderick (Phase 1) 2009	-0.0305	0.0497	2.7%	0.97 [0.88, 1.07]	
Broderick (Phase 2) 2009	-0.0513	0.0391	2.9%	0.95 [0.88, 1.03]	
Jaworowska 2011	0.157	0.07	2.2%	1.17 [1.02, 1.34]	
Landi 2009	0.0862	0.0289	3.1%	1.09 [1.03, 1.15]	-
Mandour 2020	0.0583	0.3441	0.2%	1.06 [0.54, 2.08]	
McKay 2008	0.1655	0.0358	3.0%	1.18 [1.10, 1.27]	
Pande 2011	0.131	0.0567	2.5%	1.14 [1.02, 1.27]	
Truong(Caucasian) 2010	0.1398	0.0227	3.2%	1.15 [1.10, 1.20]	-
Wang 2010	0.2546	0.1099	1.4%	1.29 [1.04, 1.60]	
Yang 2010	0.1044	0.0584	2.4%	1.11 [0.99, 1.24]	
Subtotal (95% CI)			29.8%	1.11 [1.06, 1.17]	•
Heterogeneity: Tau ² = 0.00;	Chi ² = 41.02, df = 1	1 (P < 0.	0001); l² :	= 73%	
Test for overall effect: Z = 4.	34 (P < 0.0001)				
1.1.2 Asians					
Bae 2012	0.1044	0.0636	2.3%	1.11 [0.98, 1.26]	
Chen 2012	0.2311	0.1335	1.1%	1.26 [0.97, 1.64]	
Cheng 2016	0.1823	0.0398	2.9%	1.20 [1.11, 1.30]	
Dong 2017	0.3075	0.1369	1.1%	1.36 [1.04, 1.78]	
Furule 2021	-0.0834	0.0975	1.6%	0.92 [0.76, 1.11]	
Hosgood 2015	0.3853	0.0511	2.6%	1.47 [1.33, 1.62]	
Hsiung 2010	0.3853	0.0434	2.8%	1.47 [1.35, 1.60]	
Hu 2011	0.2231	0.0208	3.3%	1.26 [1.20, 1.30]	
Ito 2012	0.1484	0.0757	2.0%	1.16 [1.00, 1.35]	
Jin 2009	0.131	0.0567	2.5%	1.14 [1.02, 1.27]	
Konno 2011	0 00001	0.1139	1.4%	1.00 [0.80, 1.25]	-
Lan 2012	0.3221	0.0266	3.2%	1.38 [1.31, 1.45]	
Lan 2013	0.4574	0.1446	1.0%	1.58 [1.19, 2.10]	
LI 2012	0.1655	0.0405	2.9%	1.18 [1.09, 1.28]	
LI 2016	0.1906	0.1076	1.4%	1.21 [0.98, 1.49]	
Liu 2015	0.2652	0.1156	1.370	1.33 [1.00, 1.07]	
Machiela 2015	0.3221	0.0303	3.170	1.30 [1.30, 1.47]	
Munopi 2012	0.2405	0.0372	1 6 %	1 10 [0 07 1 44]	
Rear 2013	0.1000	0.0221	2.20	1 1 2 [1 00 1 10]	+
Shirojchi 2012	0.2027	0.0231	2.2%	1 24 [1 29 1 40]	+
Chirolchi 2016	0.2624	0.02.04	2 206	1 20 [1 26 1 26]	+
Truong(Asian) 2010	0.1922	0.0401	2 7%	1 20 [1 09 1 32]	
Wang 2014	0.1823	0.0491	2 7 96	1 20 [1 09 1 32]	
Wang 2016	0.3221	0.093	1 7%	1 38 [1 15 1 66]	
Wei 2015	0.2151	0.0611	2 4 %	1 24 [1 10 1 40]	
Xing 2016	0.5068	0 1169	1.3%	1 66 [1 32 2 09]	
Yin 2014	0.2927	0.087	1.8%	1.34 [1.13, 1.59]	
Yoo 2020	0.0677	0.0771	2.0%	1.07 [0.92, 1.24]	
Yoon 2010	0.2311	0.0466	2.7%	1.26 [1.15, 1.38]	
Zhao 2013	0.2469	0.0727	2.1%	1.28 [1.11.1.48]	
Subtotal (95% CI)			70.2%	1.26 [1.21, 1.30]	•
Heterogeneity: Tau ² = 0.01;	Chi ² = 117.43, df =	30 (P < 0	0.00001);	I ² = 74%	
Test for overall effect: Z = 13	3.12 (P < 0.00001)	0			
Total (95% CI)			100.0%	1.21 [1.17, 1.25]	•
Heterogeneity: Tau ² = 0.01;	Chi ² = 244.11, df =	42 (P < 0	0.00001);	I ² = 83%	0.5 0.7 1 1.5 2
Test for overall effect: Z = 11	.27 (P < 0.00001)				Decreased risk Increased risk
Test for subgroup difference	oc: Chi2 - 16 76 df	- 1 /P +	0.0001\ 1	2 - 04 0%	

Heterogeneity: Tau² = 0.01; Chi² = 244.11, df = 42 (P < 0.00001); P = 83% Test for overall effect: Z = 11.27 (P < 0.00001) Test for subarous differences: Chi² = 16.76. df = 1 (P < 0.0001). P = 94.0%

С					
-				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.3.1 Caucasians					
Jaworowska 2011	0.01	0.1126	1.4%	1.01 [0.81, 1.26]	
Mandour 2020	-1.1394	0.7754	0.0%	0.32 [0.07, 1.46]	
Truong 2010(Caucasian)	0.1655	0.0358	14.2%	1.18 [1.10, 1.27]	•
Wang 2010	0.3646	0.2122	0.4%	1.44 [0.95, 2.18]	
Subtotal (95% CI)			16.0%	1.17 [1.09, 1.25]	•
Heterogeneity: Chi2 = 5.51,	df = 3 (P = 0.14); I ²	= 46%			
Test for overall effect: Z = 4	.58 (P < 0.00001)				
1.3.2 Asians					
Bae 2012	0.01	0.094	21%	1 01 00 84 1 211	+
Chen 2012	0.3221	0 2354	0.3%	1 38 10 87 2 191	
Dong 2017	0.5596	0 2187	0.4%	1 75 [1 14 2 69]	
Furgie 2021	0.01	0 1587	0.7%	1 01 0 74 1 38	
Hosgood 2015	0.47	0.0829	2.6%	1 60 [1 36 1 88]	
Hsiung 2010	0.3988	0.0657	4 2%	1 49 [1 31 1 69]	+
Hu 2011	0.2469	0.0329	16.8%	1.28 [1.20, 1.37]	•
Ito 2012	0.1484	0.1128	1.4%	1.16 (0.93, 1.45)	
Jin 2009	0.1906	0.0872	2.4%	1.21 [1.02, 1.44]	
Kohno 2011	-0.1393	0.1647	0.7%	0.87 [0.63, 1.20]	
Lan 2013	0.5423	0.2374	0.3%	1.72 [1.08, 2.74]	
Li 2016	0.3075	0.1724	0.6%	1.36 [0.97, 1.91]	
Liu 2015	0.0296	0.1971	0.5%	1.03 [0.70, 1.52]	
Miki 2010	0.27	0.0533	6.4%	1.31 [1.18, 1.45]	+
Myneni 2013	-0.1508	0.1669	0.7%	0.86 [0.62, 1.19]	
Shiraishi 2012	0.2624	0.0408	10.9%	1.30 [1.20, 1.41]	•
Shiraishi 2016	0.2776	0.0319	17.9%	1.32 [1.24, 1.41]	•
Truong 2010(Asian)	0.174	0.0737	3.3%	1.19 [1.03, 1.37]	+
Wang 2014	0.1655	0.0794	2.9%	1.18 [1.01, 1.38]	-
Wang 2016	0.3646	0.1468	0.8%	1.44 [1.08, 1.92]	
Wei 2015	0.174	0.0991	1.9%	1.19 [0.98, 1.45]	
Xing 2016	0.4947	0.1509	0.8%	1.64 [1.22, 2.20]	
Yin 2014	0.3577	0.1432	0.9%	1.43 [1.08, 1.89]	
Yoo 2020	0.0198	0.124	1.2%	1.02 [0.80, 1.30]	-
Yoon 2010	0.2311	0.0739	3.3%	1.26 [1.09, 1.46]	
Subtotal (95% CI)			84.0%	1.28 [1.25, 1.32]	,
Heterogeneity: Chi ² = 49.67	7, df = 24 (P = 0.002	2); I ² = 52	%		
Test for overall effect Z = 1	7.01 (P < 0.00001)				
Total (95% CI)			100.0%	1.26 [1.23, 1.30]	•
Heterogeneity: Chi ² = 62.02	2, df = 28 (P = 0.000	02); I ² = 5	5%		
Test for overall effect: Z = 1	7.42 (P < 0.00001)				U.1 U.2 U.5 1 Z 5 1U
Test for subaroup difference	es: Chi ² = 6.84. df :	= 1 (P = 0	0.009). I ^z =	85.4%	Decleased lisk incleased lisk

1.2.2 Asians 1.2.2 (1.0, 1.66) Bae 2012 0.2546 0.1299 3.8% 1.29 (1.00, 1.66) Chen 2012 0.47 0.2768 1.4% 1.60 (0.33, 2.75) Dong 2017 0.6644.3 0.2814 1.4% 1.80 (1.04, 3.22) Fundes 2021 -0.168.0 2.0% 0.83 (0.66, 1.23) Hoesendy 3015 0.7973.0 1.092 4.4% 2.181 (76, 7.70)	
Bae 2012 0.2546 0.1299 3.8% 1.29(10.01, 66) Chen 2012 0.47 0.2768 1.4% 1.60(0.93, 2.75) Dong 2017 0.6043 0.2883 1.4% 1.63(10.43, 2.2) - Functe 2021 -0.1685 0.2008 2.3% 0.83(0.56, 1.2) - Homony 0105 0.7973<0 0.1092 4.4% 1.8417.67 701	
Chen 2012 0.47 0.2768 1.4% 1.60 (0.93, 2.75)	
Dong 2017 0.6043 0.2883 1.4% 1.83 (1.04, 3.22) Furule 2021 -0.1863 0.2008 2.3% 0.83 (0.56, 1.23) Hosenod 2015 0.773 0.1002 4.4% 2.181 (7.6, 2.70)	
Furule 2021 -0.1863 0.2008 2.3% 0.83 [0.56, 1.23]	
Hosmood 2015 0 7793 0 1092 4 4% 2 18 176 2 701	
Hsiung 2010 0.7885 0.0884 5.1% 2.20 [1.85, 2.62]	
Hu 2011 0.4511 0.0441 6.5% 1.57 [1.44, 1.71]	+
Ito 2012 0.2852 0.1558 3.2% 1.33 [0.98, 1.81]	•
Jin 2009 0.2469 0.1158 4.2% 1.28 1.02, 1.61	•
Kohno 2011 0.1044 0.2426 1.8% 1.11 (0.69, 1.79)	
Lan 2013 1.0225 0.3216 1.1% 2.78[1.48.5.22]	
Li 2016 0.3577 0.2195 2.1% 1.43 (0.93, 2.20)	
Liu 2015 0.6366 0.236 1.8% 1.89[1.19.3.00]	
Miki 2010 0.4824 0.0708 5.7% 1.62 (1.41.1.86)	
Mvneni 2013 0 3853 0 1966 2 4% 1 47 10 0 2 161	
Shirajehi 2012 0.5878 0.0506 6.3% 1.80[1.63,1.99]	+
Shiraichi 2016 0.5199 0.0444 6.5% 1.69(1.54, 1.93)	+
Triona 2010(Asian) 0.3646 0.0073 4.8% 1.44[1.9.174]	
Wang 2014 0.2724 0.1042 4.6% 1.44[11:10,117]	
Wang 2014 0.5764 0.1645 4.5% 1.40[11:5,17:5]	
Wei 2016 0.4413 0.1630 2.076 1.50[1.32, 2.75]	
Viez 2016 0.04447 0.1215 4.1% 1.50 [1.25, 1.50]	
Airig 2010 0.3032 0.3016 1.376 2.02 [1.45, 4.73]	
TIR 2014 0.3933 0.1848 2.0% 1.61 [1.20, 2.00]	
TOD 2010 0.4637 0.095 4.9% 1.59[1.32, 1.92]	
Subtotal (55% CI) 87.5% 1.00 [1.48, 1.72]	•
Hererogenenty: Tau" = 0.02; Chi" = 60.43; dt = 24 (P < 0.0001); P = 60%	
lest for overall effect: 2 = 12.50 (P < 0.00001)	
Total (95% CI) 100.0% 1.56 [1.45, 1.68]	٠
Hateropenativ Tau2 = 0.02 Ch2 = 95.70 df = 29 /P < 0.000011/ P = 67%	· · ·
Theterogenetity, Tau = 0.02, Off = 03.70, u1= 20 (1 - 0.00001), 1 = 07.0	2 5
Test for everall effect: 7 = 12.01 /B < 0.00001) 0.2 0.3 1	ncreased risk
Test for overall effect: Z = 12.01 (P < 0.00001) Test for overall effect: Z = 12.01 (P < 0.00001) Decreased risk I	
Test for overall effect: Z = 12.01 (P < 0.00001)	
Test for overall effect. Z = 12.01 (P < 0.00001)	
Testfor overall effect Z = 12.01 (P < 0.00001) 0.2 0.0007), P = 91.2% Decreased risk 1 Testfor suboroup differences: ChiP = 11.42. df = 1 (P = 0.0007), P = 91.2%	
Testfor overall effect, Z = 1 2.01 (P < 0.00001) Testfor suboroud differences: ChP = 11.42. df = 1 (P = 0.0007), P = 91.2% Decreased risk 1	
Testforovenall effect Z = 12.01 (P < 0.00001) 0.2 0.00 Testfor subarouo differences: Chi [#] = 11.42. df = 1 (P = 0.0007), I [#] = 91.2% Decreased risk 1 Decreased risk 1	
Test for overall effect, Z = 12.01 (P < 0.00001) Test for subarouo differences: Chi [#] = 11.42: df = 1 (P = 0.0007), I [#] = 91.2% Decreased risk 1	
Testforovenall effect Z = 12.01 (P < 0.00001) 0.2 0.3 Testfor subarouo differences: Chi [#] = 11.42. df = 1 (P = 0.0007), I [#] = 91.2% Decreased risk 1	
Testforoverall effect Z = 12.01 (P < 0.00001) Testfor suboroud differences: Chi ^p = 11.42. df = 1 (P = 0.0007). I ^p = 91.2% Decreased risk 1	
Testforoverall effect Z = 12.01 (P < 0.00001) 0.2 0.3 Testfor subaroud differences: ChP = 11.42, df = 1 (P = 0.0007), P = 91.2% Decreased risk 1	
Testforoverall effect Z = 12.01 (P < 0.00001) 0.2 0.00 Testfor subarouo differences: ChP = 11.42: df = 1 (P = 0.0007), P = 91.2% Decreased risk 1	
Testforoverall effect Z = 12.01 (P < 0.00001) 0.2 0.3 Testfor subaroud differences: ChP = 11.42, df = 1 (P = 0.0007), P = 91.2% Decreased risk 1	
Testforovenal effect Z = 12.01 (P < 0.00001) 0.2 Testfor subarouo differences: Chi [#] = 11.42. df = 1 (P = 0.0007), I [#] = 91.2% Decreased risk 1	
Testforoverall effect Z= 12.01 (P < 0.00001) 0.2 Testfor subarouo differences: Chi [#] = 11.42. df = 1 (P = 0.0007). I [#] = 91.2% Decreased risk 1	
Testfor overall effect Z = 12.01 (P < 0.00001) 0.2 Testfor subarouo differences: Chi [#] = 11.42. df = 1 (P = 0.0007), I [#] = 91.2% Decreased risk 1	
Testforovenall effect Z= 12.01 (P < 0.00001) 0.2 Testfor subarouo differences: Chi [#] = 11.42. df = 1 (P = 0.0007). I [#] = 91.2% Decreased risk 1	
Testfor overall effect Z = 12.01 (P < 0.00001) 0.2 Testfor subarouo differences: Chi [#] = 11.42. df = 1 (P = 0.0007), I [#] = 91.2% Decreased risk 1	
Testforoverall effect Z = 12.01 (P < 0.00001) 0.2 Testfor suboroud differences: ChP = 11.42. df = 1 (P = 0.0007). P = 91.2% Decreased risk 1	

Odds Ratio

1.40 [1.07, 1.83] 0.61 [0.13, 2.86] 1.32 [1.22, 1.43] 1.68 [1.09, 2.59] 1.33 [1.24, 1.44]

SE Weight IV. Random, 95% CI

Odds Ratio

IV, Random, 95% CI

+ ٠

Church and Carl manual	In storate Detter	OF	101-1-1-4	Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.4.1 Caucasians					
Jaworowska 2011	0.1044	0.1014	3.5%	1.11 [0.91, 1.35]	
Mandour 2020	-0.7765	0.73	0.1%	0.46 [0.11, 1.92]	
Truong 2010(Caucasian)	0.207	0.0343	6.5%	1.23 [1.15, 1.32]	-
Wang 2010	0.4253	0.197	1.5%	1.53 [1.04, 2.25]	
Subtotal (95% CI)			11.6%	1.21 [1.08, 1.37]	•
Heterogeneity: Tau ² = 0.00	; Chi ² = 4.03, df = 3	(P = 0.26	5); I ² = 26	6	
Test for overall effect: Z = 3	.14 (P = 0.002)				
1.4.2 Asians					
Bae 2012	0.0677	0.0883	4.0%	1.07 (0.90, 1.27)	
Chen 2012	0.3716	0.2211	1.2%	1.45 [0.94, 2.24]	
Dong 2017	0.571	0.2112	1.3%	1.77 [1.17, 2.68]	
Furule 2021	-0.0513	0.1414	2.4%	0.95 [0.72, 1.25]	
Hosgood 2015	0.5481	0.0762	4.5%	1.73 [1.49. 2.01]	-
Hsiung 2010	0.5008	0.0624	5.2%	1 65 [1 46 1 86]	+
Hu 2011	0.3001	0.0312	6.6%	1.35 [1.27, 1.44]	-
Ito 2012	0.1823	0 1086	3 3 %	1 20 0 97 1 481	++
lin 2009	0.207	0.0856	4 1 %	1 23 [1 04 1 45]	
Kohno 2011	-0.0943	0 1562	21%	0.91 [0.67 1.24]	
Lan 2013	0.6523	0 2272	1.1%	1 92 [1 23 3 00]	
112016	0.3221	0 1643	1.9%	1 38 [1 00 1 90]	
Liu 2015	0.207	0 1826	1.6%	1 23 [0 86 1 76]	
Miki 2010	0.3293	0.0542	5.6%	1 39 [1 25 1 55]	-
Myneni 2013	0.0198	0 1501	2.2%	1 02 0 76 1 371	
Shiraishi 2012	0.3507	0.0373	6 3%	1 42 [1 32 1 53]	-
Shiraishi 2016	0.3436	0.0337	6.5%	1 41 [1 32 1 51]	-
Truong 2010(Asian)	0.2231	0.0699	4.8%	1.25 [1.09, 1.43]	+
Wang 2014	0.2231	0.0746	4.6%	1.25 [1.08, 1.45]	
Wang 2016	0 4447	0 1 3 8 1	2 4 %	1 56 [1 19 2 04]	
Wei 2015	0.2546	0.0954	3.7%	1 29 [1 07 1 56]	
Xing 2016	0.5653	0 1 4 2 9	2 3%	1 76 [1 33 2 33]	
Yin 2014	0.4187	0 1335	2.6%	1 52 [1 17 1 97]	
Yoo 2020	0.0583	0 1187	3.0%	1 06 0 84 1 34	
Yoon 2010	0.2852	0.0654	5.0%	1 33 [1 17 1 51]	-
Subtotal (95% CI)	0.2002	0.0001	88.4%	1.34 [1.27, 1.41]	•
Heterogeneity Tau? = 0.01	Chi2= 65 69 df=	74 (P < 0	00001)	= 63%	
Test for overall effect: Z = 1	0.44 (P < 0.00001)				
Total (05% CI)			100.0%	1 32 [1 26 1 30]	•
Hotorogonoity Touis = 0.01	Chil- 00.02 df-	00 /P = 0	000013	3= 660	
meterogeneity. Tau-= 0.01	, cm = 60.02, df = .	20 (P < U	.00001),	- 00%	01 02 06 1 2 6

Figure 2. Forest plots of LC. (a) Forest plot of the allele genetic model (C vs. A) (Random). (b) Forest plot of the additive genetic model (CC vs. AA) (Random). (c) Forest plot of the heterozygous genetic model (CA vs. AA) (Fixed). (d) Forest plot of the dominant genetic model (CA + CC vs. AA) (Random). (e) Forest plot of the recessive genetic model (CC vs. AA+CA) (Fixed).

b

Study or Subgroup 1.2.1 Caucasians

log[Odds Ratio]

 Study to study togy
 OppOrtain Frainty
 See Versami See Versami

 J.2.1 Caucasians
 0.3365
 0.1372
 3.6%

 Mandow 2020
 -0.4943
 0.7888
 0.2%

 Truong 2010(Caucasian)
 0.2776
 0.4943
 0.7888
 0.2%

 Study and 2010
 0.5188
 0.2207
 2.0%
 Study and (95% CI
 12.5%

 Heterogeneik, Tau² = 0.00; Ch² = 2.27, df = 3 (P = 0.52); P = 0%
 Testfor overall effect Z = 7.57 (P < 0.00001)</td>
 12.5%

е

0				Odde Patio	Odde Patio
Study or Subaroun	Ion[Odds Patio]	SE	Woight	N Eived 95% Cl	N Eived 95% Cl
151Caucasians	Tojji o dao radioj	01	mongine	Tit Title at 0011 Of	1011010301001101
Jaworowska 2011	0 3293	0 1194	1 5%	1 39 /1 10 1 761	
Mandour 2020	0.3988	0.4474	0.1%	1 49 10 62 3 591	
Truong 2010(Caucacian)	0.157	0.0215	21 7%	1 17 [1 10 1 24]	+
Nang 2010	0.137	0.0515	0.0%	1 21 10 04 1 921	
Subtotal (95% CI)	0.21	0.1000	24.0%	1 19 [1 12 1 26]	•
Haterogeneity Chi ² - 2.55	df = 2 /P = 0.47) 12	- 0%	2410/0	into [inte, into]	
Test for overall effect 7 = 5	76 (P < 0.00001)	- 0 /0			
1.5.2 Asians					
Bae 2012	0.2469	0.1158	1.6%	1.28 [1.02, 1.61]	
Chen 2012	0.2546	0.2312	0.4%	1.29 [0.82, 2.03]	
Dong 2017	0.239	0.2487	0.3%	1.27 (0.78, 2.07)	
Furuie 2021	-0.1863	0.1829	0.6%	0.83 (0.58, 1.19)	
Hosaood 2015	0.4886	0.0962	2.3%	1.63 [1.35, 1.97]	
Hsiung 2010	0.5423	0.0767	3.7%	1.72 [1.48, 2.00]	
Hu 2011	0.3001	0.0393	13.9%	1.35 [1.25, 1.46]	· · · ·
Ito 2012	0.207	0.1426	1.1%	1.23 [0.93, 1.63]	
Jin 2009	0.131	0.1039	2.0%	1.14 [0.93, 1.40]	+
Kohno 2011	0.1823	0.2264	0.4%	1.20 [0.77, 1.87]	
Lan 2013	0.6627	0.2803	0.3%	1.94 [1.12, 3.36]	
Li 2016	0.1655	0.1857	0.6%	1.18 (0.82, 1.70)	
Liu 2015	0.6206	0.2028	0.5%	1.86 [1.25, 2.77]	
Miki 2010	0.3148	0.0592	6.1%	1.37 [1.22, 1.54]	-
Myneni 2013	0.47	0.1729	0.7%	1.60 [1.14, 2.25]	
Shiraishi 2012	0.4318	0.0414	12.5%	1.54 [1.42, 1.67]	+
Shiraishi 2016	0.3507	0.0373	15.5%	1.42 [1.32, 1.53]	-
Truong 2010(Asian)	0.2624	0.0852	3.0%	1.30 [1.10, 1.54]	
Wang 2014	0.2776	0.093	2.5%	1.32 [1.10, 1.58]	
Wang 2016	0.4187	0.165	0.8%	1.52 [1.10, 2.10]	
Wei 2015	0.3365	0.1048	2.0%	1.40 [1.14, 1.72]	
King 2016	0.7793	0.2962	0.2%	2.18 [1.22, 3.90]	
Yin 2014	0.3646	0.1563	0.9%	1.44 [1.06, 1.96]	
Yoo 2020	0.1655	0.1555	0.9%	1.18 [0.87, 1.60]	
Yoon 2010	0.3293	0.0836	3.1%	1.39 [1.18, 1.64]	
Subtotal (95% CI)			76.0%	1.41 [1.37, 1.46]	•
Heterogeneity: Chi ² = 39.81	, df = 24 (P = 0.02)	; I ² = 40%			
Test for overall effect: Z = 2	0.47 (P < 0.00001)				
Total (95% CI)			100.0%	1.35 [1.32, 1.39]	•
Heterogeneity: Chi? = 67.51	, df = 28 (P < 0.000)1); I ² = 5	9%	-	
Test for overall effect Z = 2	0.67 (P < 0.00001)				0.5 0.7 1 1.5 2
Test for subaroup difference	es: Chi ² = 25.15. dt	f=1 (P <	0.00001)	I ² = 96.0%	Decreased risk increased risk

Figure 2. (continued)

			Heterogeneity test Sample				Effect	Publica bias	tion		
Genetic model	Subgroup	Study (n)	P values	I ² (%) Cases (n) Controls (n) M		Model	OR [95% Cl]	P value	P _{Begg}	P _{Egger}	
	Caucasians	12	< 0.0001	73	73,886	81,138	Random	1.11 [1.06, 1.17]	< 0.0001	0.891	0.742
Allele (C vs.A)	Asians	31	< 0.00001	74	125,996	182,574	Random	1.26 [1.21, 1.30]	< 0.00001	0.865	0.55
	Total	43	< 0.00001	83	199,882	263,712	Random	1.21 [1.17, 1.25]	< 0.00001	0.843	0.489
	Caucasians	4	0.52	0	5204	6729	Fixed	1.33 [1.24, 1.44]	< 0.00001	1.000	0.919
Additive (CC vs.AA)	Asians	25	< 0.0001	60	19,719	35,876	Random	1.60 [1.48, 1.72]	< 0.00001	1.000	0.436
	Total	29	< 0.00001	67	24,923	42,605	Random	1.56 [1.45, 1.68]	< 0.00001	1.000	0.575
	Caucasians	4	0.14	46	7229	9775	Fixed	1.17 [1.09, 1.25]	< 0.00001	0.497	0.496
Heterozygous (CA vs.AA)	Asians	25	0.002	52	31,075	57,920	Random	1.26 [1.20, 1.33]	< 0.00001	0.513	0.353
	Total	29	0.0002	55	38,304	67,695	Random	1.25 [1.19, 1.31]	< 0.00001	0.485	0.223
	Caucasians	4	0.26	26	10,260	13,249	Fixed	1.22 [1.15, 1.30]	< 0.00001	0.497	0.650
Dominant (CA + CC vs.AA)	Asians	25	< 0.00001	63	39,133	68,537	Random	1.34 [1.27, 1.41]	< 0.00001	0.815	0.356
	Total	29	< 0.00001	65	49,393	81,786	Random	1.32 [1.26, 1.39]	< 0.00001	0.78	0.281
	Caucasians	4	0.47	0	10,260	13,249	Fixed	1.19 [1.12, 1.26]	< 0.00001	1.000	0.138
Recessive (CC vs.AA + CA)	Asians	25	0.02	40	39,133	68,537	Fixed	1.41 [1.37, 1.46]	< 0.00001	0.64	0.524
	Total	29	< 0.0001	59	49,393	81,786	Random	1.37 [1.30, 1.45]	< 0.00001	0.641	0.172

Table 5. The results of Meta-analysis and publication bias (LC).

and the risk of LC in the non-smoking group was higher than that in the smoking group (C vs. A: Smoking: [OR] = 1.16/Non-smoking: [OR] = 1.34), and it was also found that non-smokers had the highest risk of LC in

Asians ([OR] = 1.36, 95%CI [1.27, 1.46]) (Fig. S3 in supplemental content, Table 7). A further stratified analysis of the smoking status of patients with different types of LC was performed due to the presence of different types of LC in the included studies. For NSCLC, the *TERT* polymorphism (C vs. A) was associated with the risk of NSCLC in both smoking group and non-smoking group (Smoking: [OR] = 1.20, 95%CI [1.05, 1.36]; Non-smoking: [OR] = 1.33, 95%CI [1.18, 1.50]), and the non-smoking group had a higher risk of NSCLC than the smoking group (C vs. A: Smoking: [OR] = 1.20/Non-smoking: [OR] = 1.33), and it's also found that non-smokers had the highest risk of NSCLC in Asians ([OR] = 1.35, 95%CI [1.17, 1.55]) (Fig. S4 in supplemental content, Table 7). For LUAD, the *TERT* polymorphism (C vs. A) was associated with the risk of LUAD in both the smoking group and the non-smoking group (Smoking: [OR] = 1.26, 95%CI [1.16, 1.37]; Non-smoking: [OR] = 1.37, 95%CI [1.20, 1.56]), and the risk of developing LUAD in the non-smoking group was higher than that in the smoking group (C vs. A: Smoking: [OR] = 1.26/Non-smoking: [OR] = 1.37). In addition, the risk of LUAD was found to be the highest among non-smokers in Caucasians ([OR] = 1.40, 95%CI [1.17, 1.68]) (Fig. S5 in supplemental content, Table 7). For LUSC and SCLC, *TERT* polymorphisms (C vs. A) were not

		Heterogeneity test Sample					Effect	Publication bias					
Туре	Subgroup	Study (n)	P values	I ² (%)	Cases (n)	Controls (n)	Model	OR [95% Cl]	P value	P _{Begg}	P _{Egger}		
LC (NSCLC	LC (NSCLC and SCLC)												
	Total	21	< 0.00001	72	96,290	177,388	Random	1.27 [1.22, 1.33]	< 0.00001	1.000	0.778		
NSCLC	Caucasians	4	0.48	0	18,968	36,506	Fixed	1.19 [1.09, 1.31]	0.0001	0.497	0.862		
	Asians	17	< 0.00001	76	77,322	140,882	Random	1.28 [1.22, 1.34]	< 0.00001	0.869	0.59		
	Total Caucasians	7	0.51	0	5658	49,424	Fixed	1.03 [0.98, 1.09]	0.24	0.293	0.939		
SCLC		4	0.76	0	3848	26,008	Fixed	1.00 [0.94, 1.06]	0.96	1.000	0.644		
	Asians	3	0.65	0	1810	23,416	Fixed	1.11 [1.01, 1.22]	0.03	0.602	0.243		
	Total (NSCLC and SCLC)	28	< 0.00001	79	101,948	226,812	Random	1.22 [1.17, 1.28]	< 0.00001	0.836	0.804		
NSCLC (LU	JAD and LUSC)												
	Total	17	< 0.00001	77	73,546	170,050	Random	1.32 [1.26, 1.38]	< 0.00001	0.249	0.083		
LUAD	Caucasians	4	0.53	0	10,838	36,214	Fixed	1.22 [1.16, 1.28]	< 0.00001	0.174	0.113		
	Asians	13	< 0.00001	80	62,708	133,836	Random	1.34 [1.27, 1.41]	< 0.00001	0.222	0.089		
	Total	13	0.04	45	18,216	78,688	Fixed	1.09 [1.06, 1.13]	< 0.00001	1.000	0.218		
LUSC	Caucasians	4	0.31	16	7228	36,506	Fixed	1.04 [0.99, 1.10]	0.12	0.497	0.897		
	Asians	9	0.12	38	10,988	42,182	Fixed	1.13 [1.08, 1.18]	< 0.00001	0.404	0.061		
	Total (LUAD and LUSC)	30	< 0.00001	82	91,762	248,738	Random	1.23 [1.17, 1.29]	< 0.00001	0.339	0.982		

Table 6. The results of Meta-analysis and publication bias (Allele genetic model, C vs.A). Significance values are in Bold.

associated with the risk of LUSC and SCLC in both smoking group and non-smoking group in all populations (P > 0.05) (Table 7).

Sensitivity analysis. For LC, the sensitivity analysis results of the allele, additive, heterozygous, dominant and recessive genetic models (C vs. A, CC vs. AA, CA vs. AA, CA+CC vs. AA and CC vs. AA+CA) showed that none of the studies had significant sensitivity, indicating that there's no significant difference in the result of the meta-analysis after removing any study (Fig. S6, Tables S2–S6 in supplemental content). For NSCLC, SCLC, LUAD and LUSC, the sensitivity analysis of the allele model (C vs. A) also showed no significant sensitivity (Fig. S7, Tables S7, S8 in supplemental content).

Heterogeneity analysis. For LC, there was some heterogeneity in the overall population analysis results for the allele, additive, heterozygous, dominant and recessive genetic models (C vs. A, CC vs. AA, CA vs. AA, CA +CC vs. AA and CC vs. AA+CA) (P<0.1 or I²>50%), and this heterogeneity mainly exists in Asians (Table 5). In the stratified analysis, the allele model (C vs. A) of NSCLC and LUAD analysis results in the overall population also showed a certain degree of heterogeneity (P<0.1 or I²>50%), and this heterogeneity mainly existed in Asians (Table 6).

Publication bias. For LC, the funnel plots of the allele, additive, heterozygous, dominant and recessive genetic models (C vs. A, CC vs. AA, CA vs. AA, CA + CC vs. AA and CC vs. AA + CA) were all roughly symmetrical, suggesting there's no apparent bias (Fig. S8 in supplemental content). In terms of NSCLC, SCLC, LUAD and LUSC, the funnel plots of the allele model (C vs. A) were all roughly symmetrical (Fig. S9 in supplemental content). Additionally, the results of publication bias for all genetic models suggested that there were no obvious biases ($P_{Begg} > 0.05$, $P_{Egger} > 0.05$) (Tables 5, 6/Figs. S10–S12 in supplemental content).

Trial sequential analysis (TSA). For LC, TSA analysis of the allele, additive, heterozygous, dominant and recessive genetic models (C vs. A, CC vs. AA, CA vs. AA, CA+CC vs. AA and CC vs. AA+CA) showed Z-curve (blue line) crossed both the traditional boundary (green dashed line) and the TSA boundary (red line) (Figs. S13–S17 in supplemental content). In terms of NSCLC, SCLC, LUAD and LUSC, TSA analysis of the allele model (C vs. A) in the overall and Asian populations also showed the same results (Figs. S18–S21 in supplemental content). Similar results were found in TSA analysis of the allele model (C vs. A) for patients with LC, NSCLC, and LUAD in terms of smoking status (Figs. S22–S24 in supplemental content). These results showed the overall stability and credibility of the results of this meta-analysis. The TSA results of NSCLC, SCLC, LUAD and LUSC in Caucasians cannot be comprehensively analyzed due to the reasons such as small sample size or the absence of complete gene frequencies in some of the original data reported in the literature. In addition, TSA results for smoking status in SCLC and LUSC couldn't be comprehensively analyzed because of these reasons as well.

Summary of all the results. Due to the large amount of data in this study, a summative forest plot of all the results was created to show the statistical results more visually and more clearly, see Fig. 3.

				Heterogeneity test		Sample				Effect
Туре	Subgroup	Smoking status	Study (n)	P values	I ² (%)	Cases (n)	Controls (n)	Model	OR [95% Cl]	<i>P</i> value
		Smoking	9	< 0.00001	72	50,138	47,782	Random	1.16 [1.09, 1.23]	< 0.00001
	Overall	Non-smoking	16	< 0.00001	88	64,328	80,038	Random	1.34 [1.26, 1.41]	< 0.00001
		Total	25	< 0.00001	85	114,466	127,820	Random	1.27 [1.20, 1.33]	< 0.00001
		Smoking	3	0.16	45	29,540	23,384	Fixed	1.10 [1.06, 1.13]	< 0.00001
LC	Caucasians	Non-smoking	5	0.87	0	3808	13,182	Fixed	1.24 [1.15, 1.35]	< 0.00001
		Total	8	0.07	46	33,348	36,566	Fixed	1.12 [1.08, 1.15]	< 0.00001
		Smoking	6	0.10	46	20,598	24,398	Fixed	1.22 [1.17, 1.27]	< 0.00001
	Asians	Non-smoking	11	< 0.00001	85	60,520	66,856	Random	1.36 [1.27, 1.46]	< 0.00001
		Total	17	< 0.00001	81	81,118	91,254	Random	1.31 [1.24, 1.38]	< 0.00001
		Smoking	3	0.05	67	11,894	22,070	Random	1.20 [1.05, 1.36]	0.007
	Overall	Non-smoking	8	< 0.0001	79	26,120	35,676	Random	1.33 [1.18, 1.50]	< 0.00001
		Total	11	< 0.0001	75	38,014	57,746	Random	1.28 [1.18, 1.39]	< 0.00001
		Smoking	1	-	-	5784	8850	Fixed	1.11 [0.98, 1.26]	0.10
NSCLC	Caucasians	Non-smoking	3	0.60	0	924	3990	Fixed	1.32 [1.08, 1.63]	0.007
		Total	4	0.38	3	6708	12,840	Fixed	1.16 [1.05, 1.30]	0.005
		Smoking	2	0.18	44	6110	13,220	Fixed	1.29 [1.21, 1.38]	< 0.00001
	Asians	Non-smoking	5	< 0.00001	87	25,196	31,686	Random	1.35 [1.17, 1.55]	< 0.0001
		Total	7	< 0.00001	83	31,306	44,906	Random	1.31 [1.18, 1.44]	< 0.00001
		Smoking	1	-	-	1336	8850	Fixed	0.99 [0.88, 1.11]	0.87
SCLC	Caucasians	Non-smoking	3	0.25	27	100	3990	Fixed	1.04 [0.68, 1.59]	0.86
		Total	4	0.42	0	1436	12,840	Fixed	0.99 [0.89, 1.11]	0.91
		Smoking	2	0.13	57	7572	20,874	Random	1.26 [1.16, 1.37]	< 0.00001
	Overall	Non-smoking	7	< 0.00001	88	24,654	34,184	Random	1.37 [1.20, 1.56]	< 0.00001
		Total	9	< 0.00001	85	32,226	55,058	Random	1.33 [1.22, 1.46]	< 0.00001
		Smoking	1	-	-	3034	8850	Fixed	1.20 [1.10, 1.31]	< 0.0001
LUAD	Caucasians	Non-smoking	3	0.87	0	682	3990	Fixed	1.40 [1.17, 1.68]	0.0002
		Total	4	0.45	0	3716	12,840	Fixed	1.24 [1.14, 1.34]	< 0.00001
		Smoking	1	-	-	4538	12,024	Fixed	1.31 [1.22, 1.41]	< 0.00001
	Asians	Non-smoking	4	< 0.00001	94	23,972	30,194	Random	1.36 [1.16, 1.59]	0.0001
		Total	5	< 0.00001	92	28,510	42,218	Random	1.35 [1.19, 1.52]	< 0.00001
		Smoking	1	-	-	2750	8850	Fixed	1.03 [0.87, 1.22]	0.73
	Overall	Non-smoking	4	0.23	30	504	8632	Fixed	1.14 [0.95, 1.37]	0.16
		Total	5	0.30	19	3254	17,482	Fixed	1.08 [0.95, 1.22]	0.22
LUSC		Smoking	1	-	-	2750	8850	Fixed	1.03 [0.87, 1.22]	0.73
	Caucasians	Non-smoking	3	0.14	49	150	3990	Fixed	1.05 [0.75, 1.48]	0.77
		Total	4	0.26	24	2900	12,840	Fixed	1.03 [0.89, 1.20]	0.66
	Asians	Non-smoking	1	-	-	354	4642	Fixed	1.18 [0.95, 1.47]	0.13

Table 7. Meta-analysis results of smoking status (Allele genetic model, C vs. A). Significance values are inBold.

Discussion

Current studies have reported that gene polymorphisms in *TERT* and *TERC* are associated with telomere length^{33–35}, and longer telomeres length contributes to an increased risk of $LC^{36–38}$. The increased telomere length of the C allele of the rs2736100 (A > C) polymorphism in the second intron of *TERT* is related to cancer⁴⁴. A number of research reports have also reported that the frequency of the C allele of *TERT* rs2736100 increases in patients with $LC^{9,45-48}$. It's showed that the C allele can upregulate the expression of *TERT*, maintain and prolong telomere length, thereby increasing the risk of LC. However, due to the existence of factors such as ethnic differences, different types of LC, environmental pollution and smoking, the association between *TERT* rs2736100 polymorphism with LC that have been reported so far to clarify the association between this polymorphism and LC and the differences in the association between different ethnic groups and different types of LC.

43 studies (including 99,941 LC patients and 131,856 healthy controls) were included in this meta-analysis. The association of *TERT* polymorphisms with LC susceptibility was first evaluated by using the allele, additive, heterozygous, dominant and recessive genetic models (C vs. A, CC vs. AA, CA vs. AA, CA + CC vs. AA and CC vs. AA + CA). And the results showed that the C allele and "C" genotype were associated with the risk of LC

			LC	Control	Odds Ratio	Odds Ratio
Study or Subgroup log[O 1.1.1 LC(C vs.A)	dds Ratio]	SE	Total	Total	IV, Fixed, 95% CI	IV, Fixed, 95% CI
LC-Asians	0.2311	0.0207	125996	182574	1.26 [1.21, 1.31]	+
LC-Caucasians	0.1044	0.0235	73886	81138	1.11 [1.06, 1.16]	+
Total	0.1900	0.0172	199002	203712	1.21 [1.17, 1.25]	
1.1.2 LC(CC vs.AA)						
LC-Asians LC-Caucasians	0.47	0.0398	19719	35876	1.60 [1.48, 1.73]	+
Total	0.4447	0.0373	24923	42605	1.56 [1.45, 1.68]	+
1.1.3 LC(CA VS.AA)	0 2211	0.0240	21075	67020	1 26 11 20 1 221	+
LC-Caucasians	0.157	0.0361	7229	9775	1.17 [1.09, 1.26]	+
Total	0.2231	0.0251	38304	67695	1.25 [1.19, 1.31]	+
1111C(CA+CC ve AA)						
LC-Asians	0.2927	0.0274	39133	68537	1.34 [1.27, 1.41]	+
LC-Caucasians	0.1989	0.0301	10260	13249	1.22 [1.15, 1.29]	+
Total	0.2776	0.0237	49393	81786	1.32 [1.26, 1.38]	+
1.1.5 LC(CC vs.AA+CA)						
LC-Asians	0.3436	0.0147	39133	68537	1.41 [1.37, 1.45]	+
LC-Caucasians	0.174	0.0309	10260	13249	1.19 [1.12, 1.26]	+
Total	0.3148	0.0268	49393	81/86	1.37 [1.30, 1.44]	
1.1.6 NSCLC(C vs.A)						
NSCLC-Asians	0.2469	0.0203	77322	140882	1.28 [1.23, 1.33]	+
NSCLC-Caucasians Total	0.174	0.0448	18968	36506	1.19 [1.09, 1.30]	+
r stat	0.239	0.0200	00200	111300	1.27 [1.22, 1.32]	
1.1.7 SCLC(C vs.A)					Visite and the second	
SCLC-Asians	0.1044	0.0482	1810	23416	1.11 [1.01, 1.22]	<u> </u>
SCLC-Caucasians	0 0 2 9 6	0.0316	3848	26008	1.00 [0.94, 1.06]	+
- Clar	0.0200	0.0201		10121	1.00 [0.00] 1.00]	
1.1.8 LUAD(C vs.A)						
LUAD-Asians	0.2927	0.0274	62708	133836	1.34 [1.27, 1.41]	+
Total	0.2776	0.0237	73546	170050	1.32 [1.26, 1.38]	+
1.1.9 LUSC(C vs.A)	0 1 2 2 2	0.0221	10000	42102	1 1 2 11 00 1 101	+
LUSC-Caucasians	0.0392	0.0251	7228	36506	1.04 [0.99, 1.09]	+
Total	0.0862	0.0142	18216	78688	1.09 [1.06, 1.12]	+
4.4.401 C Smoking(Cup A)						
1.1.10 LC Smoking(C vs.A)	0 1989	0.0214	20598	24398	1 22 [1 17 1 27]	+
LC-Caucasians	0.0953	0.0189	29540	23384	1.10 [1.06, 1.14]	+
Total	0.1484	0.0318	50138	47782	1.16 [1.09, 1.23]	+
1.1.111 C Non-smoking(C vs.)	۵)					
LC-Asians	0.3075	0.0349	60520	66856	1.36 [1.27, 1.46]	+
LC-Caucasians	0.2151	0.0384	3808	13182	1.24 [1.15, 1.34]	+
Total	0.2927	0.0314	64328	80038	1.34 [1.26, 1.43]	+
1.1.12 NSCLC Smoking(C vs./	A)					
NSCLC-Asians	0.2546	0.0327	6110	13220	1.29 [1.21, 1.38]	+
NSCLC-Caucasians	0.1044	0.0636	5784	8850	1.11 [0.98, 1.26]	<u>+-</u>
Total	0.1823	0.0681	11894	22070	1.20 [1.05, 1.37]	
1.1.13 NSCLC Non-smoking(C	vs.A)					
NSCLC-Asians	0.3001	0.073	25196	31686	1.35 [1.17, 1.56]	
NSCLC-Caucasians	0.2776	0.1024	924	3990	1.32 [1.08, 1.61]	
Total	0.2852	0.0611	26120	350/0	1.33 [1.18, 1.50]	
1.1.14 SCLC Smoking(C vs.A)						
SCLC-Caucasians	-0.0101	0.0601	1336	8850	0.99 [0.88, 1.11]	-
1 1 15 SCLC Non-smoking(C)	(A av					
SCLC-Caucasians	0.0392	0.2168	100	3990	1.04 [0.68, 1.59]	
1.1.16 LUAD Smoking(C vs.A)	0.07	0.0000	4500	40004	4 04 14 00 4 441	-
LUAD-Asians LUAD-Caucasians	0.1823	0.0363	4538	8850	1.31 [1.22, 1.41]	
Total	0.2311	0.0422	7572	20874	1.26 [1.16, 1.37]	+
4 4 47 1 1140 Non and in 10						
LUAD-Asians	(13.A)	0.0812	23072	30194	1 36 [1 16 1 59]	
LUAD-Caucasians	0.3365	0.0916	682	3990	1.40 [1.17, 1.68]	
Total	0.3148	0.0676	24654	34184	1.37 [1.20, 1.56]	
1 1 18 LUSC Smoking(Com A)						
LUSC-Caucasians	0.0296	0.0861	2750	8850	1.03 [0.87. 1.22]	- +
	2.0200		2100			
1.1.19 LUSC Non-smoking(C)	vs.A)	0.4.105		1010	1 10 10 05 1 15	
LUSC-Asians LUSC-Caucasians	0.1655	0.1106	354	4642 3000	1.18 (0.95, 1.47)	
Total	0.131	0.093	504	8632	1.14 [0.95, 1.37]	++
						0.5 0.7 1 1.5 2
						Decreased risk Increased risk

Figure 3. Summary forest plot of all results.

comparing with the A allele and "A" genotype in the overall population. These results are consistent with those of previous GWAS studies^{10,12,14,45,47,50,59,61,64,65,68,69,74,76,77,79,80,87,88}. It indicates that people with C allele are more likely to suffer from LC, and C allele and "C" genotype are the risk factors for LC, and the C allele increases the risk of LC by extending telomere length. However, there are some GWAS that haven't found the association between the C allele and LC^{58–60,63}. The reasons for these different results may also be related to different ethnicities, countries, research methods, sample sizes, LC types, and linkage disequilibrium patterns. Previous studies also reported that the impact of *TERT* variation in Asians was stronger than that in Caucasians^{45,55}. Another study showed that rs2735947 was the most significant SNP in the Caucasians rather than rs2736100⁴⁹. Our findings also confirmed that the C allele and "C" genotype frequencies were indeed higher in Asians than in Caucasians, suggesting that Asians may have longer telomeres that leads to an increased risk of LC.

Since telomere length can vary with the histological type of LC^{40,41}, different types of LC may have different degrees of association with TERT gene polymorphism due to their different pathological types. Therefore, a stratified analysis of the included LC studies was performed. Previous studies have found that longer telomere length contributes to increase the risk of LC, especially for NSCLC and LUAD³⁶⁻³⁸, and the C allele can increase the risk of NSCLC^{65,83}. The results of our study also suggested that the C allele was associated with the risk of NSCLC. It indicates that the population carrying the C allele are more susceptible to NSCLC due to telomere lengthening. And it's also found in our study that Asians had a higher risk of NSCLC than Caucasians, proving that Asians may have longer telomeres, which contribute to an increased risk of NSCLC. Some studies^{47,69} found that TERT rs2736100 wasn't associated with the risk of SCLC in Caucasians, but Hu et al¹⁰ found that TERT rs2736100 could increase the risk of developing SCLC in Asians. Our results showed that the C allele was only associated with the risk of SCLC in Asians. It suggests that the C allele is a risk factor for SCLC in Asians but not in Caucasians, and the reason may be strongly related to the fact that Asian populations may have longer telomeres. When the OR values of NSCLC and SCLC were compared, it was found that NSCLC patients had a stronger disease association than SCLC patients. A previous study⁹² identified a locus on chromosome 5p15.33 that was significantly associated with the risk of LUAD in NSCLC, but not with other major histological types. Another study found that TERT s2736098 was significantly associated with an increased risk of SCLC in the Chinese population instead of rs273610089. These findings, combined with our results, suggested that Asian populations and NSCLC patients may have longer telomeres, which triggered the risk of cancer, and TERT rs2736100 is of a higher value as a genetic marker for diagnosing the pathogenesis of NSCLC than SCLC.

NSCLC is the most common type of LC, and LUAD is the most prevalent subtype of NSCLC⁷³. Previous studies⁹⁰ have found rs2736100 to be a risk factor associating with increased susceptibility to LC, especially for LUAD. results of this study also showed that the C allele was associated with the risk of LUAD, confirming that the risk of developing LUAD is also strongly associated with telomere lengthening^{36–38}. The results of this study also showed that Asians had a higher risk of LUAD than Caucasians, suggesting that Asians may possess longer telomeres, which contribute to an increased risk of LUAD. Some studies have found that there's no such a risk association among LUSC patients⁴⁹. Several other studies^{47,69} also showed that TERT rs2736100 wasn't associated with the risk of developing LUSC in Caucasians. However, in some studies on Asians¹⁰, the C allele of TERT rs2736100 was found to increase the risk of developing LUSC. Results of this study also showed that the C allele was associated with LUSC risk in Asians but not Caucasians. It proves that the C allele is a risk factor for LUSC in Asians but not in Caucasians and the reason has a lot to do with the fact that Asian populations may has longer telomeres. It's found that patients with LUAD had a stronger disease association than patients with LUSC. Previous studies have confirmed that rs2736100 was more associated with LUAD than with LUSC^{69,91}, which is consistent with our findings. Similarly, there are studies⁹² have identified a locus on chromosome 5p15.33 that is clearly associated with the risk of LUAD but not with other major histological types. These evidences demonstrate that Asian populations and patients with LUAD may have longer telomeres, thereby triggering the risk of cancer, and TERT rs2736100 has a higher value as a genetic marker for diagnosing the pathogenesis of LUAD than LUSC.

Epidemiological surveys showed that although smoking was identified as a major environmental risk factor for LC worldwide, only a small proportion of smokers develop LC during their lifetime. In contrast, a large proportion of LC cases have no history of smoking^{93,94}. LC in never-smokers differs from LC in smokers, and a large proportion of LC patients in never-smokers carry genetic variants in oncogenes⁹⁵. Recent studies have shown that the genetic susceptibility of never-smokers to LC is associated with genetic variants with pan-cancer risk effects, and that gene-environment interactions are important in LC etiology⁹⁶. Tumor suppressor genes are normally expressed in healthy cells due to key regulators of cell division, such as cyclin and cyclin-dependent kinases, as well as other cell cycle checkpoints that limit this process⁹⁷. However, when oncogenes triggered by environmental factors are activated and tumor suppressor genes are turned off, the control of cell division is altered, and cancer starts from a single cell^{98,99}. Studies have shown that multiple environmental risk factors such as smoking, heavy alcohol consumption, high intake of red meat and fat, low fiber intake, indoor and outdoor air pollution, and exposure to chemicals and radiation can contribute to genomic instability¹⁰⁰⁻¹⁰⁴. Genomic instability leads to nucleotide dysfunction, such as base substitution, base loss, nucleotide deletion, insertion or amplification of base pairs, which further induce DNA breaks, chromosomal remodeling or translocation. And if the damage is not fixed, it can lead to irreversible cell mutation and continuous growth^{105,106}. In LC studies, CT and TT genotype carriers of miR-26a-1 rs7372209 and miR-16-1 rs1022960 who have been exposed to cooking fumes have a higher risk of LC than those who have not been exposed¹⁰⁷. Another study evaluating the association between gene-radon interactions among uranium miners and LC indicated that the OR interaction effect of SNP rs6891344 and rs11747272 with chromosomes 5q23.2 was estimated to be 3.9 and 3.4, suggesting that uranium miners exposed to the radioactive gas radon are more susceptible to LC¹⁰⁸. These evidences suggest that a variety of environmental factors other than smoking can also cause genetic variants that lead to LC. Therefore, a stratified analysis on the smoking status of LC patients included in the study was conducted to clarify whether smoking or non-smoking caused variation in TERT rs2736100 and increased the risk of LC. The results showed that the C allele was associated with the risk of LC in both smokers and non-smokers, and the risk of LC in non-smokers was higher than that in smokers. It's been reported that rs2736100 is the most significant variation among non-smokers, while rs2736100 is less significant than rs36019446⁴⁹ among smokers, which confirms that TERT variation has a stronger impact on non-smokers than on smokers^{45,109}. A study also showed that TERT SNP was a risk factor for LC in never smokers¹¹⁰. Similarly, a case-control study also showed that the C allele increased the risk of LC in never smokers¹¹¹. Therefore, smoking is not the most critical factor to cause variation in TERT rs2736100 and increase the risk of LC.

To further clarify this genetic difference between smokers and non-smokers, we performed a stratified analysis of different types of LC in different ethnic groups as the telomere length and the frequency of *TERT* gene variants were different in different ethnic groups and different histological types of $LC^{40,41}$. The results of this

study also showed that TERT polymorphism (C vs. A) was associated with the risk of NSCLC in both smokers and non-smokers, and the risk of NSCLC in non-smokers was higher than that in smokers. For LUAD, the same result existed: TERT polymorphism (C vs. A) was associated with the risk of LUAD in both smokers and non-smokers, and the risk of LUAD in non-smokers was higher than that in smokers. Previous studies have also found that there are non-tobacco related risk factors in the pathogenesis of NSCLC. These possible risk factors include: the exposure to cooking fume, hormones and viral infection¹¹². Subramanian¹¹³ mentioned before that LUAD was the most common type among never smokers. Therefore, non-smokers are more likely to be at the risk of NSCLC and LUAD due to variation in TERT rs2736100 leading to telomere lengthening. It's confirmed that smoking does cause variation in TERT rs2736100, which increases the risk of most LC (NSCLC, LUAD), however, it's not the most critical factor. Evidence shows that⁸² education level, BMI, prior diagnosis of COPD, occupational exposure to pesticides, duration of smoking, exposure to a large number of cooking emissions, dietary factors (including less fish and shrimp, vegetables, soy products and nuts) and the excessive intake of meat in LC patients are all related to the development of LC. When combined with many environmental and lifestyle factors, TERT rs2736100 is still significantly associated with LC⁸². Therefore, LC (NSCLC, LUAD) is a multi-etiological disease caused by a combination of genetic and lifestyle factors. Comparing with different ethnic groups, it's found that the risk of LC and NSCLC in the non-smokers was the highest in Asians. Combined with the results above, it's proved that the Asian non-smoking populations may be more likely at the risk of LC and NSCLC due to the elevated frequency of TERT rs2736100 C allele combined with environmental factors that cause telomere lengthening. But for LUAD, non-smokers were found to have the highest risk of developing LUAD in Caucasians rather than Asians. The reason for this is still related to the small sample size of non-smokers in Caucasians, and the fact that there's not only one pathological type of LUAD in NSCLC but also many other types such as LUSC and large cell lung cancer (LCLC), which can lead to inconsistent results in the analysis of NSCLC and LUAD. In addition, the majority of non-smoking LUAD patients included in this study are Asian females (Asian females: N = 9618/Overall: N = 12,327), indicating that non-smoking females in the Asians are more likely to have the risk of LUAD. Previous studies have also confirmed that LUAD is more common in females^{114,115}. Patel et al. showed that among the never-smoking LC patients, the number of females exceeded that of males¹¹⁶. There was evidence confirmed that the common genetic variation of TERT-CLPTM1L was associated with the risk of LUAD in non-smoking Asian females⁴⁵. This can be explained by the following assumptions: females are more likely to be exposed to second-hand smoking, and exposed to coal for cooking at home and hormone replacement therapy. All these reasons can lengthen telomere to avoid apoptosis and ultimately lead to cancer¹¹⁷.

For LUSC and SCLC, *TERT* polymorphisms (C vs. A) were not associated with the risk of them in all populations, both in smokers and in non-smokers. Therefore, smoking may not cause variation in *TERT* rs2736100 that increase the risk of LUSC and SCLC. The cause of variation in *TERT* rs2736100 leading to LUSC and SCLC remains to be further clarified.

Limitations of this study: ① This meta-analysis is based on the research reports of different ethnic groups and different types of LC, which will inevitably produce some heterogeneity; ② The methods of gene detection and genotyping used in all studies were different, and there will be some differences in data results; ③ In terms of sample size, this study is sufficient in general. However, after subgroup analysis according to different LC types and ethnicity, the results signify that the sample size of SCLC and LUSC is still small. This will inevitably produce some false negative results for SCLC and LUSC; ④ Although this study discussed the effects of smoking, environment, lifestyle and other factors on LC in details, from the perspective of smoking status, the sample size of smoking patients reported in these studies is still relatively small, especially those of SCLC and LUSC studies. Therefore, to some extent, the reliability of the results of the correlation between smoking and the risk of SCLC and LUSC will be affected; ⑤ All the literatures included in this study are in English, not in the other languages.

Conclusion

In conclusion, the C allele of *TERT* rs2736100 is a risk factor for LC, NSCLC, and LUAD in different ethnic groups, and the risk is more common in Asians. Moreover, the C allele is a risk factor for LUSC and SCLC in Asians but not in Caucasians. Among the different types of LC, NSCLC patients have stronger risk correlation than SCLC patients, and LUAD patients have a stronger disease risk correlation than LUSC patients. Asians have a more common risk of various types of LC because they may have longer telomeres than Caucasians. The C allele is correlated with the risk of LC, NSCLC and LUAD in smokers and non-smokers, and the risk of LC in non-smokers of different ethnic groups is more common than that in smokers. In the Asians, non-smoking females are more at the risk of developing LUAD. Therefore, smoking does cause variation in *TERT* rs2736100 and increases the risk of most LC (NSCLC, LUAD), but it's not the most critical factor.

LC (NSCLC, LUAD) is a multi-etiological disease caused by a combination of genetic, environmental and lifestyle factors. Of course, it's necessary to integrate and analyze the data of studies with a larger sample size to draw more reliable conclusions in the future.

Data availability

Data supporting our findings are contained within the manuscript.

Received: 11 January 2023; Accepted: 11 August 2023 Published online: 15 August 2023

References

1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2019. CA Cancer J Clin. 69, 7–34 (2019).

- Moolgavkar, S. H. et al. Impact of reduced tobacco smoking on lung cancer mortality in the United States during 1975–2000. J. Natl. Cancer Inst. 104, 541–548 (2012).
- 3. Torres-Durán, M. *et al.* Residential radon and lung cancer characteristics in never smokers. *Int. J. Radiat. Biol.* **91**(8), 605–610 (2015).
- Gorlova, O. Y. et al. Never smokers and lung cancer risk: A case-control study of epidemiological factors. Int. J. Cancer. 118(7), 1798–1804 (2006).
- Markowitz, S. B., Levin, S. M., Miller, A. & Morabia, A. Asbestos, asbestosis, smoking, and lung cancer. New findings from the North American insulator cohort. *Am. J. Respir. Crit. Care Med.* 188(1), 90–96 (2013).
- Liao, Y., Xu, L., Lin, X. & Hao, Y. T. Temporal trend in lung cancer burden attributed to ambient fine particulate matter in Guangzhou, China. *Biomed. Environ. Sci.* 30(10), 708–717 (2017).
- 7. Bosse, Y. & Amos, C. I. A decade of GWAS results in lung cancer. Cancer Epidemiol. Biomark. Prevent. 27(4), 363–379 (2017).
- Wang, J. et al. Genetic predisposition to lung cancer: comprehensive literature integration, meta-analysis, and multiple evidence assessment of candidate-gene association studies. Sci Rep. 21, 8371 (2017).
- 9. McKay, J. D. et al. Lung cancer susceptibility locus at 5p15.33. Nature Genet. 40(12), 1404-1406 (2008).
- Hu, Z. et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nature Genet. 43(8), 792–796 (2011).
- Walsh, K. M. *et al.* Fine-mapping of the 5p15.33, 6p22.1-p21.31, and 15q25.1 regions identifies functional and histology-specific lung cancer susceptibility loci in African-Americans. *Cancer Epidemiol. Biomark. Prevent.* 22(2), 251–260 (2013).
- Hosgood, H. D. 3rd. *et al.* Interactions between household air pollution and GWAS-identified lung cancer susceptibility markers in the Female Lung Cancer Consortium in Asia (FLCCA). *Hum Genet.* 134(3), 333–341 (2015).
- 13. Wang, Z. *et al.* Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. *Hum. Mol. Genet.* **23**(24), 6616–6633 (2014).
- Dong, J. et al. Fine mapping of chromosome 5p15.33 identifies novel lung cancer susceptibility loci in Han Chinese. Int. J. Cancer 141(3), 447–456 (2017).
- Kachuri, L. *et al.* Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci. *Carcinogenesis* 37(1), 96–105 (2016).
- 16. Autexier, C. & Lue, N. F. The structure and function of telomerase reverse transcriptase. Annu. Rev. Biochem. 75, 493–517 (2006).
- 17. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. *Genes. Dev.* **19**, 2100–2110 (2005).
- 18. Diotti, R. & Loayza, D. Shelterin complex and associated factors at human telomeres. Nucleus 2, 119-135 (2011).
- Mocellin, S. et al. Telomerase reverse transcriptase locus polymorphisms and cancer risk: A feld synopsis and metaanalysis. J. Natl. Cancer Inst. 104(11), 840–854 (2012).
- Liu, L., Lai, S., Andrews, L. G. & Tollefsbol, T. O. Genetic and epigenetic modulation of telomerase activity in development and disease. *Gene* 340, 1–10 (2004).
- 21. Wyatt, H. D. M., West, S. C. & Beattie, T. L. InTERTpreting telomerase structure and function. *Nucl. Acids Res.* 38, 5609–5622 (2010).
- 22. Bell, R. J. et al. Understanding TERT promoter mutations: A common path to immortality. Mol. Cancer Res. 14(4), 315–323 (2016).
- 23. Kim, N. W. *et al.* Specific association of human telomerase activity with immortal cells and cancer. *Science* **266**, 2011–2015 (1994).
- 24. Ding, Z. *et al.* Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. *Cell* **148**, 896–907 (2012).
- 25. Stewart, S. A. & Weinberg, R. A. Telomerase and human tumorigenesis. Semin. Cancer Biol. 10(6), 399-406 (2000).
- 26. Shen, M. *et al.* A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of lung cancer. *Lung Cancer* **73**, 133–137 (2011).
- Bull, C. F. et al. Folate deficiency induces dysfunctional long and short telomeres; both states are associated with hypomethylation and DNA damage in human WIL2-NS cells. Cancer Prev. Res. 7, 128–138 (2014).
- Halaschek-Wiener, J. *et al.* Reduced telomere length variation in healthy oldest old. *Mech. Ageing Dev.* 129, 638–641 (2008).
- Rafnar, T. *et al.* Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. *Nat. Genet.* 41(2), 221–227 (2009).
- 30. Liu, Y. et al. The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Curr. Biol. CB 10(22), 1459–1462 (2000).
- Oh, H. et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc. Natl. Acad. Sci. U. S. A. 98(18), 10308–10313 (2001).
- Boukamp, P., Popp, S. & Krunic, D. Telomere-dependent chromosomal instability. J. Investig. Dermatol. Symp. Proc. 10(2), 89–94 (2005).
- 33. Codd, V. et al. Common variants near TERC are associated with mean telomere length. Nat. Genet. 42, 197–199 (2010).
- 34. Soerensen, M. Genetic variation and human longevity. Dan. Med. J. 2012, 59 (2012).
- 35. Codd, V. *et al.* Identification of seven loci affecting mean telomere length and their association with disease. *Nat. Genet.* **45**, 422–427 (2013).
- Seow, W. J. et al. Telomere length in white blood cell DNA and lung cancer: A pooled analysis of three prospective cohorts. Can. Res. 74(15), 4090–4098 (2014).
- 37. Yuan, J. M. *et al.* Leukocyte telomere length in relation to risk of lung adenocarcinoma incidence: Findings from the Singapore Chinese Health Study. *Int. J. Cancer* **142**(11), 2234–2243 (2018).
- Telomeres, C. et al. Association between telomere length and risk of cancer and non-neoplastic diseases: A mendelian randomization study. JAMA Oncol 3(5), 636–651 (2017).
- Wei, R. et al. TERT polymorphism rs2736100-C Is associated with EGFR mutation-positive non-small cell lung cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 21(22), 5173–5180 (2015).
- 40. Jang, J. S. et al. Telomere length and the risk of lung cancer. Cancer Sci. 99, 1385-1389 (2008).
- 41. Sanchez-Espiridion, B. *et al.* Telomere length in peripheral blood leukocytes and lung cancer risk: A large case-control study in Caucasians. *Cancer Res.* **74**, 2476–2486 (2014).
- 42. Gaspar, T. B. et al. Telomere maintenance mechanisms in cancer. Genes 9, 241 (2018).
- 43. Iles, M. M. et al. The effect on melanoma risk of genes previously associated with telomere length. J. Natl. Cancer Inst. 106, dju267 (2014).
- 44. Haycock, P. C. *et al.* Association between telomere length and risk of cancer and non-neoplastic diseases: A Mendelian Randomization Study. *JAMA Oncol.* **3**, 636–651 (2017).
- 45. Hsiung, C. A. *et al.* The 5p1533 locus is associated with risk of lung adenocarcinoma in never-smoking females in Asia. *PLoS Genet.* **6**, e1001051 (2010).
- Myneni, A. A. *et al.* Genetic polymorphisms of TERT and CLPTM1L and risk of lung cancer–a case-control study in a Chinese population. *Lung Cancer* 80, 131–137 (2013).
- 47. Wang, Y., Broderick, P., Matakidou, A., Eisen, T. & Houlston, R. S. Role of 5p133 (TERT-CLPTM1L), 6p2133 and 15q251(CHRNA5-CHRNA3) variation and lung cancer risk in never-smokers. *Carcinogenesis* **31**, 234–238 (2010).

- Zhang, X., Chen, Y., Yan, D., Han, J. & Zhu, L. TERT gene rs2736100 and rs2736098 polymorphisms are associated with increased cancer risk: A meta-analysis. *Biochem. Genet.* 60(1), 241–266 (2022).
- Li, Z. et al. Fine mapping in TERT-CLPTM1L region identified three independent lung cancer susceptibility signals: A largescale multi-ethnic population study. Mol. Carcinog. 57(10), 1289–1299 (2018).
- Chen, X. F. *et al.* Multiple variants of TERT and CLPTM1L constitute risk factors for lung adenocarcinoma. *Genet. Mol. Res.* 11(1), 370–378 (2012).
- Li, X. et al. Rs2853677 modulates Snail1 binding to the TERT enhancer and affects lung adenocarcinoma susceptibility. Oncotarget 7, 37825–37838 (2016).
- 52. Pabalan, N. A. Meta-analysis in cancer genetics. Asian Pac. J. Cancer Prev. 11(1), 33-38 (2010).
- 53. Li, H. et al. The TERT rs2736100 polymorphism increases cancer risk: A meta-analysis. Oncotarget 8(24), 38693–38705 (2017).
- 54. Snetselaar, R., van Oosterhout, M. F. M., Grutters, J. C. & van Moorsel, C. H. M. Telomerase reverse transcriptase polymorphism
- rs2736100: a balancing act between cancer and non-cancer disease, a meta-analysis. *Front. Med.* 5, 41 (2018).
 55. Yang, J. & Jiao, S. Increased lung cancer risk associated with the TERT rs2736100 polymorphism: an updated meta-analysis. *Tumour Biol. J. Int. Soc. Oncodev. Biol. Med.* 35(6), 5763–5769 (2014).
- 56. Wang, J. & Shete, S. Testing departure from Hardy-Weinberg proportions. Methods Mol. Biol. 1666, 83-115 (2017).
- 57. Higgins, J. P. & Green, S. Cochrane Handbook for Systematic Reviews of Interventions (John Wiley & Sons, Hoboken, 2011).
- Bae, E. Y. et al. Replication of results of genome-wide association studies on lung cancer susceptibility loci in a Korean population. Respirology 17(4), 699–706 (2012).
- Brenner, D. R. *et al.* Hierarchical modeling identifies novel lung cancer susceptibility variants in inflammation pathways among 10,140 cases and 11,012 controls. *Hum Genet.* 132(5), 579–589 (2013).
- Broderick, P. et al. Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res. 69(16), 6633–6641 (2009).
- 61. Cheng, Y. *et al.* Risk assessment models for genetic risk predictors of lung cancer using two-stage replication for Asian and European populations. *Oncotarget* **8**(33), 53959–53967 (2016).
- Furule, H., Arimura-Omori, M., Hamada, N., Yanagihara, T. & Kiyohara, C. The association of aging-related polymorphisms with susceptibility to lung cancer: A case-control study in a Japanese population. *Asian Pac. J. Cancer Prev.* 22(4), 1279–1285 (2021).
- 63. Ito, H. *et al.* Association between a genome-wide association study-identified locus and the risk of lung cancer in Japanese population. *J. Thorac. Oncol.* **7**(5), 790–798 (2012).
- 64. Jaworowska, E. *et al.* Smoking related cancers and loci at chromosomes 15q25, 5p15, 6p22.1 and 6p21.33 in the Polish population. *PLoS ONE* **6**(9), e25057 (2011).
- Jin, G. et al. Common genetic variants on 5p15.33 contribute to risk of lung adenocarcinoma in a Chinese population. Carcinogenesis 30(6), 987–990 (2009).
- Kohno, T. et al. Contribution of the TP53, OGG1, CHRNA3, and HLA-DQA1 genes to the risk for lung squamous cell carcinoma. J. Thorac. Oncol. 6(4), 813–817 (2011).
- 67. Lan, Q. *et al.* Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China. *PLoS ONE* **8**(3), e59230 (2013).
- Lan, Q. et al. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat. Genet. 44(12), 1330–1335 (2012).
- 69. Landi, M. T. *et al.* A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma [published correction appears in Am J Hum Genet. 2011 Jun 10;88(6):861]. *Am. J. Hum. Genet.* **85**(5), 679–691 (2009).
- 70. Li, H. *et al.* Prediction of lung cancer risk in a Chinese population using a multifactorial genetic model. *BMC Med. Genet.* **13**, 118 (2012).
- Liu, S. G. et al. Association of genetic polymorphisms in TERT-CLPTM1L with lung cancer in a Chinese population. Genet. Mol. Res. 14(2), 4469–4476 (2015).
- Machiela, M. J. *et al.* Genetic variants associated with longer telomere length are associated with increased lung cancer risk among never-smoking women in Asia: A report from the female lung cancer consortium in Asia. *Int. J. Cancer.* 137(2), 311–319 (2015).
- 73. Mandour, I., Hussein, S. A. M., Essam, R. & El-Hossainy, M. A. Study of genetic variants in chromosome 5p15.33 region in non-smoker lung cancer patients. *Adv. Respir. Med.* **88**(6), 485–494 (2020).
- 74. McKay, J. D. et al. Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40(12), 1404–1406 (2008).
- 75. Miki, D. *et al.* Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations. *Nat. Genet.* **42**(10), 893–896 (2010).
- 76. Pande, M. *et al.* Novel genetic variants in the chromosome 5p15.33 region associate with lung cancer risk. *Carcinogenesis* **32**(10), 1493–1499 (2011).
- Seow, W. J. et al. Association between GWAS-identified lung adenocarcinoma susceptibility loci and EGFR mutations in neversmoking Asian women, and comparison with findings from Western populations. *Hum. Mol. Genet.* 26(2), 454–465 (2017).
- Shiraishi, K. et al. Association of variations in HLA class II and other loci with susceptibility to EGFR-mutated lung adenocarcinoma. Nat. Commun. 7, 12451 (2016).
- Shiraishi, K. et al. A genome-wide association study identifies two new susceptibility loci for lung adenocarcinoma in the Japanese population. Nat. Genet. 44(8), 900–903 (2012).
- Truong, T. et al. Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J. Natl. Cancer Inst. 102(13), 959–971 (2010).
- Wang, F. et al. TERT rs2736100T/G polymorphism upregulates interleukin 6 expression in non-small cell lung cancer especially in adenocarcinoma. *Tumour Biol.* 35(5), 4667–4672 (2014).
- Wang, X. et al. Combining telomerase reverse transcriptase genetic variant rs2736100 with epidemiologic factors in the prediction of lung cancer susceptibility. J. Cancer. 7(7), 846–853 (2016).
- Xing, Y. L. *et al.* Case-control study on impact of the telomerase reverse transcriptase gene polymorphism and additional single nucleotide polymorphism (SNP)- SNP interaction on non-small cell lung cancers risk in Chinese Han population. *J. Clin. Lab. Anal.* **30**(6), 1071–1077 (2016).
- Yang, P. et al. A rigorous and comprehensive validation: Common genetic variations and lung cancer. Cancer Epidemiol. Biomark. Prev. 19(1), 240–244 (2010).
- Yin, Z. et al. Genetic polymorphisms of TERT and CLPTM1L, cooking oil fume exposure, and risk of lung cancer: A case-control study in a Chinese non-smoking female population. Med. Oncol. 31(8), 114 (2014).
- Yoo, S. S. et al. The effect of susceptibility variants, identified in never-smoking female lung cancer cases, on male smokers. Korean J. Intern. Med. 35(4), 929–935 (2020).
- 87. Yoon, K. A. *et al.* A genome-wide association study reveals susceptibility variants for non-small cell lung cancer in the Korean population. *Hum. Mol. Genet.* **19**(24), 4948–4954 (2010).
- Zhao, Z. *et al.* Significant association of 5p15.33 (TERT-CLPTM1L genes) with lung cancer in Chinese Han population. *Exp. Lung Res.* 39(2), 91–98 (2013).

- Zhao, M. M. et al. Genetic variations in TERT-CLPTM1L genes and risk of lung cancer in a Chinese population. Asian Pac. J. Cancer Prev. 15, 2809–2813 (2014).
- Yuan, Y. et al. Association between TERT rs2736100 polymorphism and lung cancer susceptibility: Evidence from 22 case-control studies. *Tumour Biol.* 35(5), 4435–4442 (2014).
- Zanetti, K. A. *et al.* Genome-wide association study confirms lung cancer susceptibility loci on chromosomes 5p15 and 15q25 in an African-American population. *Lung Cancer* 98, 33–42 (2016).
- Landi, M. T. et al. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin. Cancer Res. 16(2), 430–441 (2010).
- Lam, W. K., White, N. W. & Chan-Yeung, M. M. Lung cancer epidemiology and risk factors in Asia and Africa State of the Art. Int. J. Tuberc. Lung. Dis. 8, 1045–1057 (2004).
- Spitz, M. R., Wei, Q., Dong, Q., Amos, C. I. & Wu, X. Genetic susceptibility to lung cancer the role of DNA damage and repair. Cancer Epidemiol. Biomark. Prev. 12, 689–698 (2003).
- 95. Lee, Y. J. et al. Lung cancer in never smokers: change of a mindset in the molecular era. Lung Cancer 72(1), 9–15 (2011).
- 96. Hung, R. J. et al. Lung cancer risk in never-smokers of european descent is associated with genetic variation in the 515.33 tertclptm1ll region. J. Thorac. Oncol. 14(8), 1360–1369 (2019).
- 97. Mader, S. S., Windelspecht, M. & Cox, D. Essentials of Biology 15th edn. (McGraw-Hill Higher Education, New York, 2015).
- 98. Massagué, J. G1 cell-cycle control and cancer. *Nature* **432**(7015), 298–306 (2004).
- Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability-an evolving hallmark of cancer. *Nat. Rev. Mol. Cell Biol.* 11(3), 220–228 (2010).
- 100. Kopp, T. I., Vogel, U. & Andersen, V. Associations between common polymorphisms in CYP2R1 and GC, Vitamin D intake and risk of colorectal cancer in a prospective case-cohort study in Danes. *PLoS ONE* **15**(2), e0228635 (2020).
- Bagot, R. C. & Meaney, M. J. Epigenetics and the biological basis of gene x environment interactions. J. Am. Acad. Child Adolesc. Psychiatry. 49(8), 752–771 (2010).
- Dos Reis Filho, A. P., Silveira, M. A. D., Demarco, N. R. & D'Arce, L. P. G. Increased DNA damage, instability and cytokinesis defects in occupationally exposed car painters. *In Vivo* 33(6), 1807–1811 (2019).
- 103. Parsa, N. Environmental factors inducing human cancers. Iran J. Public Health. 41(11), 1-9 (2012).
- 104. Sankpal, U. T. *et al.* Environmental factors in causing human cancers: Emphasis on tumorigenesis. *Tumour Biol.* **33**(5), 1265–1274 (2012).
- 105. Ferguson, L. R. *et al.* Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. *Semin. Cancer Biol.* **35**(Suppl), S5–S24 (2015).
- Langie, S. A. *et al.* Causes of genome instability: The effect of low dose chemical exposures in modern society. *Carcinogenesis* 36(Suppl 1), S61–S88 (2015).
- 107. Yin, Z. et al. Interaction between polymorphisms in Pre-MiRNA genes and cooking oil fume exposure on the risk of lung cancer in chinese non-smoking female population. PLoS ONE 10(6), e0128572 (2015).
- Rosenberger, A. *et al.* Genetic modifiers of radon-induced lung cancer risk: A genome-wide interaction study in former uranium miners. *Int. Arch. Occup. Environ. Health.* 91(8), 937–950 (2018).
- Timofeeva, M. N. et al. Influence of common genetic variation on lung cancer risk: Meta-analysis of 14 900 cases and 29 485 controls. Hum. Mol. Genet. 21(22), 4980–4995 (2012).
- 110. Wang, Y. et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat. Genet. 40(12), 1407–1409 (2008).
- 111. Liao, Y. et al. VSIG4 expression on macrophages facilitates lung cancer development. Lab. Invest. 94(7), 706-715 (2014).
- Gealy, R. et al. Comparison of mutations in the p53 and K-ras genes in lung carcinomas from smoking and nonsmoking women. Cancer Epidemiol. Biomark. Prev. 8(4 Pt 1), 297–302 (1999).
- 113. Subramanian, J. & Govindan, R. Lung cancer in never smokers: A review. J. Clin. Oncol. 25(5), 561–570 (2007).
- 114. Henschke, C. I. *et al.* Early lung cancer action project: Annual screening using single-slice helical CT. *Ann. N. Y. Acad. Sci.* **952**, 124–134 (2001).
- 115. Samet, J. M. et al. Lung cancer in never smokers: Clinical epidemiology and environmental risk factors. Clin. Cancer Res. 15(18), 5626–5645 (2009).
- Patel, J. D., Bach, P. B. & Kris, M. G. Lung cancer in US women: a contemporary epidemic. *JAMA* 291(14), 1763–1768 (2004).
 Subramanian, J. *et al.* Review of ongoing clinical trials in non-small-cell lung cancer: a status report for 2012 from the Clinical-Trials.gov Web site. *J. Thorac. Oncol.* 8(7), 860–865 (2013).

Author contributions

This study is initiated by X.W.; X.W. will develop the search strategies, conduct data collection, and analyze independently. G.H., W.L. and Y.C. will revise it. All authors have approved the fifinal manuscript. Conceptualization: X.W.; Methodology: X.W., W.L.; Software: X.W.; Supervision: Y.C.; Writing – original draft: X.W.; Writing – review and editing: X.W., G.H., W.L., Y.C.

Funding

This work is supported by National Natural Science Foundation of China (82160861), Guizhou Provincial Basic Research Program(Natural Science) (Qiankehe Foundation-ZK[2023]General 411), Academic New Seedling Project of Guizhou University of Traditional Chinese Medicine (Guike Cooperative Academic New Seedling [2023]-22), Innovation and Entrepreneurship Training Program for College Students of Guizhou University of Traditional Chinese Medicine, China (Gui Zhong Yi Da Chuang He Zi (2022) No. 90), and Project of Education Department of Guizhou Province, China (Guizhou Education Technology 2022-023).

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/ 10.1038/s41598-023-40504-y.

Correspondence and requests for materials should be addressed to Y.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023