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Assessment of atmospheric 
emissivity models for clear‑sky 
conditions with reanalysis data
Luis Morales‑Salinas 1*, Samuel Ortega‑Farias 2, Camilo Riveros‑Burgos 3,4, 
José L. Chávez 5, Sufen Wang 6, Fei Tian 6, Marcos Carrasco‑Benavides 7, José Neira‑Román 7, 
Rafael López‑Olivari 8 & Guillermo Fuentes‑Jaque 1,9

Atmospheric longwave downward radiation (Ld) is one of the significant components of net radiation 
 (Rn), and it drives several essential ecosystem processes. Ld can be estimated with simple empirical 
methods using atmospheric emissivity (εa) submodels. In this study, eight global models for εa 
were evaluated, and the best‑performing model was calibrated on a global scale using a parametric 
instability analysis approach. The climatic data were obtained from a dynamically consistent scale 
resolution of basic atmospheric quantities and computed parameters known as NCEP/NCAR reanalysis 
(NNR) data. The performance model was evaluated with monthly average values from the NNR data. 
The Brutsaert equation demonstrated the best performance, and then it was calibrated. The seasonal 
global trend of the Brutsaert equation calibrated coefficient ranged between 1.2 and 1.4, and the 
K‑means analysis identified five homogeneous zones (clusters) with similar behavior. Finally, the 
calibrated Brutsaert equation improved the  Rn estimation, with an error reduction, at the worldwide 
scale, of 64%. Meanwhile, the error reduction for each cluster ranged from 18 to 77%. Hence, 
Brutsaert’s equation coefficient should not be considered a constant value for use in εa estimation, nor 
in time or location.

Thermal atmospheric emissivity (εa) is a parameter mainly used to estimate the atmospheric downward long-
wave radiation (Ld), which is used to determine net radiation  (Rn). In this way, the  Rn plays a significant role in 
modeling natural phenomena such as vegetation evapotranspiration rates, snowmelt, and frost  occurrence1. The 
longwave radiation emitted by the atmosphere occurs at wavelengths between 4 and 100 μm in the electromag-
netic spectrum and is influenced mainly by water vapor, carbonic anhydride, ozone, and  clouds2.

The Ld is one of the significant components of the  Rn model applied to  forests3, affecting several essential 
ecosystem processes, such as photosynthetic rate, plant respiration, and primary productivity. However, the Ld 
term is not easy to measure. Although pyrgeometers are used to measure it, their high  cost4,5 often limits their 
inclusion in automatic weather stations.

Then, the Ld term can be estimated using simple empirical methods adjusted based on direct measurements 
to solve this problem. In this regard, the literature shows that reliable estimations of Ld can be obtained using a 
statistical adjustment or calibration based on measured air temperature and relative humidity data measured at 
the surface (at screen height). However, local calibration is  required6 for accurate results. Another approach is 
to use radiosonde data and atmospheric radiative transfer models, but this information limits their application 
to a specific date and  place7–13.

Although an extensive database is needed, estimating εa through statistical models could be significantly 
improved using different parameterizations based on atmospheric conditions. This database should be able to 
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represent a range of atmospheric conditions for every location in the world to decrease the error of statistical 
estimations of εa.

Therefore, local calibrations of the coefficients involved in the empirical εa models are necessary. Research 
indicates that the majority of equations used to estimate εa are only valid for clear-sky days, reaching more 
accurate results when considering daily or climatological averages. Clear-sky days are defined by the absence 
of visible clouds in the sky. In this sense, the clear-sky conditions are defined when the clear-sky index (Global 
solar radiation/Extraterrestrial solar radiation) is approximately greater than 0.914,15. In order to achieve this, it 
is possible to use existing databases such as NCEP/NCAR reanalysis to obtain more accurate estimations of the 
emissivity at the Earth’s  surface16,17.

According to the literature, using semiempirical approaches to estimate εa has inherent errors linked to 
instrument-based measurement deviation or uncertainty. Therefore, the use of a properly calibrated εa model 
is a viable alternative for estimating more accurately at specific locations using meteorological variables such as 
air temperature and relative  humidity6,18–20. In this regard, there is plenty of information in the literature about 
the estimation of  Rn using empirical and semiempirical εa models based mainly on ground-based instruments 
for specific locations of different roughness surfaces  worldwide20–36.

In this study, the performance of eight models was evaluated to determine their accuracy in the estimation 
of atmospheric emissivity for different locations worldwide. Climatic data from NCEP/NCAR reanalysis (NNR) 
were obtained from a dynamically consistent scale resolution of basic atmospheric quantities and computed 
parameters. Among the evaluated models, the one with the best statistical performance was calibrated on a global 
scale using a parametric instability analysis approach. In this way, one of the main contributions of the study at 
hand was to improve the  Rn computation over homogeneous latitude areas globally, reducing the need for local 
calibration of atmospheric emissivity.

Information derived from NCEP/NCAR reanalysis data (NNR). Exploratory analysis for the NCEP/
NCAR reanalysis data (1948–2020) across the world revealed that the air temperature  (ta) varied between 
– 37 °C and 49 °C, with an average of 17 °C. Additionally, the actual vapor pressure  (ea) values ranged from 0.01 
to 21.9 kPa with an average value of 5.02 kPa; meanwhile, εa averaged 0.73 and varied between 0.34 and 0.97. 
Moreover, the variable with the most significant variation coefficient was  ta, presenting a value of 447.7%,  ea with 
107.6%, and εa reached an 18.5% variation.

Figure 1 shows the observed values of εa obtained using the NNR data throughout the year’s seasons. In 
Fig. 1, a spatial pattern can be seen due to the formation of homogeneous groups or units (clusters) based on 
latitude. Moreover, this trend was also observed on a monthly scale (data not shown). These clusters have tem-
poral variability related to atmospheric dynamics. Additionally, εa presents homogeneous values overseas and 
in oceans; likewise, the poles show the same trend but with different absolute values. On the continents, εa have 
variations related to the topography, land use, and closeness to seas and oceans. That trend was also observed in 
other  study37, which indicated that uncertainties in the computation of land surface temperature, can be highly 
influenced by the spatial variability of the ground.

Figure 1.  Maps of climatological world atmospheric emissivity (εa) for (a) winter, (b) spring, (c) summer, and 
(d) autumn, calculated from NCEP/NCAR reanalysis data. This figure was obtained with R  software83.
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At the spatial resolution scale of the NNR, climatological variables merely correspond to a spatial trend as the 
NNR’s spatial estimate being approximately 250 km. Comparing this data with surface weather station networks 
at this resolution is difficult since they correspond merely to an average in each grid element or “pixel”38,39. How-
ever, several studies have established the agreement between grid and ground-based observations for variables 
such as solar radiation, air temperature, relative humidity, precipitation, and  pressure40. Wind speed exhibits 
the largest biases in space recorded, compared with other reanalysis products like ERA-40, ERA-Interim, or 
ERA5. Although the NNR presents significant differences, the spatial calculation resolution is different, adding 
additional elements, and making it challenging to make direct  comparisons38,40–44. It is noteworthy that evapo-
transpiration calculated from NNR data is comparable to those calculated from observations at most weather 
 stations39,45.

Performance of atmospheric emissivity models. Descriptive analysis for the εa evaluation using the 
eight models is presented in Table 1. This table shows that the estimated values of εa were between 0.22 and 0.99, 
and the average values ranged from 0.61 to 0.83. Moreover, the Bastiaanssen model exhibited the lowest varia-
tion, with a variation coefficient of 1.1%; meanwhile, the Brutsaert model showed the highest variation coeffi-
cient, with a value of 28.1%. The other models obtained an intermediate variation with values from 6.4 to 20.1%.

Table 2 presents the performance of the eight models, showing that the minimum and maximum values of 
the root mean square error (RMSE) were 0.097 and 0.216, respectively. Meanwhile, the coefficient of determina-
tion  (r2) ranged from 0.45 to 0.69, while the Akaike information criterion (AIC) presented a minimum value 
of − 2,354,713 and a maximum of − 1,745,909. Considering all statistical parameters such as systematic error 
(BIAS), mean absolute error (MAE), RMSE, normalized RMSE (nRMSE), coefficient of determination  (r2), 
index of agreement (d) and AIC, the Idso and Jackson model presented the poorest performance (BIAS = 0.097, 
MAE = 0.143, RMSE = 0.216, nRMSE = 34%,  r2 = 0.45, d = 0.25, and AIC = − 1,745,909), while the εa Brutsaert 
model had the best performance (BIAS = − 0.127, MAE = 0.128, RMSE = 0.152, nRMSE = 23.9%,  r2 = 0.76, d = 0.80, 
and AIC = − 2,354,713).

Global calibration for the best model. The better performance of the Brutsaert model for estimating 
εa simplifies the global calibration process, considering that only one parameter remains dependent, so that the 
exponent’s hypothesis is invariant.

Supplementary Fig. 1 shows the seasonal behavior of εa, revealing a consistent linear and positive regression 
with  (ea/ta), independent of the season. The plot shows two separated data tendencies during the winter season 
with the upper right side of the graph being the most important as it concentrates more points over a linear trend.

Table 1.  Descriptive statistics of estimated atmospheric emissivity (dimensionless) for each model.

Model Minimum Maximum Median Average Standard deviation Variation coefficient (%)

Bastiaanssen 0.71 0.76 0.76 0.75 0.0083 1.1

Prata 0.67 0.85 0.71 0.72 0.0512 7.1

Idso 0.70 0.89 0.74 0.75 0.0480 6.4

Brutsaert 0.22 0.85 0.66 0.61 0.1701 28.1

Idso and Jackson 0.74 0.99 0.82 0.83 0.0737 8.9

Swinbank 0.37 0.89 0.68 0.66 0.1330 20.1

Brunt 0.61 0.83 0.69 0.69 0.0627 9.1

Angstrom 0.65 0.82 0.72 0.72 0.0602 8.3

Table 2.  Comparative statistics for the performance of the eight models for estimating atmosphere emissivity, 
using processed NCEP/NCAR reanalysis data. BIAS, MAE and RMSE are the systematic error, mean absolute 
error, and root mean square error, respectively. The units are dimensionless. nRMSE is the normalized root 
mean square and corresponds to a percentage. r2 is the coefficient of determination, and d is the index of 
agreement (dimensionless). The AIC is the Akaike information criterion (dimensionless).

Model BIAS MAE RMSE nRMSE r2 d P AIC

Bastiaanssen 0.019 0.099 0.131 20.6 0.50 0.23 **  − 1,996,608

Prata  − 0.011 0.084 0.103 16.2 0.57 0.68 **  − 1,949,235

Idso 0.020 0.076 0.105 16.6 0.59 0.65 **  − 1,973,122

Brutsaert 0.127 0.128 0.152 23.9 0.69 0.80 **  − 2,354,713

Idso and Jackson 0.097 0.143 0.216 34.0 0.45 0.25 **  − 1,745,909

Swinbank  − 0.070 0.089 0.108 17.0 0.66 0.85 **  − 2,058,430

Brunt  − 0.041 0.088 0.101 16.0 0.64 0.75 **  − 2,058,430

Angstrom  − 0.010 0.079 0.097 15.3 0.60 0.74 **  − 2,018,959
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Only a trend was evident for the spring season, with a higher concentration of points from 0.7 to 1.0. For the 
summer months, the graph presents the most irregular linear regression of all seasons, with the cluster of points 
concentrated in the top portion of Supplementary Fig. 1c, in a range of 0.8 to 1.0.

Finally, in the autumn season, two linear regressions can be identified with different slopes. However, the most 
important trend is located in the upper portion of the graph, where εa are concentrated in a range from 0.8 to 1.0.

The performance summary of the parametric instability analysis through the geographically weighted regres-
sion (GWR) of the spatial variation for Brutsaert equation parameters, is presented in Supplementary Table 1. 
The negative BIAS values show that the GWR coefficients underestimated the spatial variability of the Brutsaert 
equation parameters. Furthermore, the BIAS depicted a random behavior. The monthly mean RMSE was approxi-
mately 0.022 (dimensionless) with an estimation error of 1.5%. The RMSE values for autumn and winter were 
above the mean, while the RMSE values for spring and summer were below the mean.

As a result, the months that were closer to the average maximum temperature showed a more accurate esti-
mation of the parameters in the Brutsaert equation compared to the colder months near the average minimum 
temperature. AIC values showed a similar pattern to RMSE; thus, warmer months resulted in a better AIC value 
than colder months. The Nash–Sutcliffe efficiency (NSE) index, d, and  r2 indices had values near 1, indicating a 
good fit of the GWR coefficients for each month.

Figure 2 shows the global seasonal trend of calibrated Brutsaert model coefficient and the cluster resulting 
from the K-means analysis. The calibrated coefficient value ranged between 1.2 and 1.4, considering the four 
seasons and the five zones with similar behavior. In this sense, the Brutsaert model coefficient did not present 
a unique value for the entire world. The predominant zone was related to the Ecuador line, which covered a 
critical zone of the study area.

Additionally, the austral and boreal zones presented differentiation from the rest of the world. The monthly 
mean empirical coefficient of the Brutsaert model is shown in Supplementary Table 2. Moreover, the performance 
of the uncalibrated and calibrated Brutsaert equations in computing net radiation for each cluster is presented in 
Table 3. Here, a RMSE reduction was observed at a worldwide scale of 64%, while in Cluster 2, a RMSE decrease 
of approximately 77% was observed. However, Cluster 3, which mainly represents a significant portion of the 
land, only reached an RMSE reduction of 18%.

It is important to note that the spatial resolution of the model used is approximately 250 km, which allows 
the calculation of meteorological variables that correspond to large climatic regions across the Earth.

The spatial configuration of the variables is influenced by factors such Earth’s topography, oceans, and land 
surface cover, which affects variables such as albedo and surface emissivity. The Seasonal dependence is strongly 
associated with the Earth’s trajectory in its solar orbit, affecting the incident energy of short and long waves, 
adjusting to the solar  declination29,46,47.

Improvements of estimated net radiation. In high latitudes (C1 in Fig.  2), a calibrated Brutsaert 
model coefficient demonstrated good agreement between the observed and estimated values of  Rn (Fig.  3b) 
values using a calibrated Brutsaert model coefficient (Cluster 1 in Table 3). Low error values were observed for 
BIAS, MAE, and RMSE, − 4.5, 6.1, and 7.5 W  m–2, respectively.

At the same time, the NSE, d, and the  r2 had values close to 1.0 and a value of nRMSE equal to 8.7%. In this 
context, estimated  Rn for latitudes greater than 60° N under all-sky conditions from MODIS imagery, was vali-
dated using data from 82 sites and eight different observation  networks27.

These authors found acceptable accuracy values of RMSE ranging between 15.04 and 23.66 W  m–2, whereas 
the values of  r2 and BIAS were between 0.51 and 0.85 and between − 0.08 and 0.27 W  m2, respectively. However, 
for Alaska’s Arctic tundra summer conditions (at USA sites Fen, Tussock, and Heath, the latitude of 68° N), the 
estimated  Rn for all-sky conditions aligned well with the observed values, presenting an average RMSE of 23 
W  m–2 and  r2 value equal to 0.99 using the remote sensing thermal-based two-source energy balance  model48.

Errors were found using a similar value for the original Brutsaert coefficient (1.25 ± 0.009), which was consist-
ent with our study for summer condition (S Table 1). When estimating the  Rn in the geographic areas correspond-
ing to Cluster 2 (Table 3), latitudes are between 40 and 60°N (C2 in Fig. 3), and lower errors were observed, with 
values of 49, 10, and 7% for BIAS, MAE and RMSE, respectively. Simulations of  Rn in different zones, locations, 
and vegetation surfaces have been performed within a range of  latitudes34, 41–60°N in Canada (Eloria, Ontario, 
with a latitude of 43°N) using an empirical  Rn-Model observed an average MAE,  r2 and d of approximately 28 W 
 m–2, 0.98 and 0.99, respectively. At the same latitude but different locations in Avignon,  France30 (latitude 43°N), 
the  Rn was evaluated using a semiempirical model based on Stefan–Boltzmann under grass cover, observing a 
RMSE of 34 W  m-2 with a calibrated Brutsaert’s coefficient of 1.31.

Also, the  Rn has been estimated for clear-sky and all-wave net radiation combined visible and shortwave 
infrared (VSWIR) and thermal infrared (TIR) remote sensing data at a location in Montana, USA (Fort Peck, 
latitude 48° N)49, observing that the component-based approach presented a BIAS, RMSE and  r2 of 76.7, 2.0 
and 0.87, respectively. Using a direct estimation approach, the BIAS, RMSE, and  r2 values were 52.3, − 1.5, and 
0.94, respectively. Furthermore,  Rn estimations from solar shortwave radiation measurements and conventional 
meteorological observations (or satellite retrievals) were conducted at 24 different  sites50. Three of these sites were 
located at latitudes over 42° N (Fort Peck, MT in grass cover; Sioux Falls, SD in grass cover; and Wind River, WA 
in temperate evergreen forest cover). Thus, the errors obtained at those sites were 17.2, 20.8, and 16.0 W  m–2 for 
RMSE and 3.5, 2.6, and 4.6 W  m–2 for BIAS, respectively. For mid-latitudes (C3 in Fig. 3), the estimation of  Rn 
(Fig. 3f), using a calibrated Brutsaert’s coefficient (Cluster 3 in S Table 2), presented a statistical mean deviation 
lower than 9.3 W  m–2. The evaluation of the different  Rn models presented in the literature worldwide are mainly 
inserted between latitudes 42°N and 40°S. In this context,  Rn was estimated using MODIS data for clear sky days 
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with an empirical εa  equation51,52, and this study covered most of Oklahoma and the southern part of Kansas, 
USA (latitude from approximately 34.5°to 38.5°N and longitude from 95.3° to 99.5°W).

Thus, the comparison between observed and simulated  Rn presented 59 W  m–2, 74 W  m–2, and 0.89 for BIAS, 
RMSE, and  r2, respectively. On the other hand, for the climate of Baghdad, Iraq (latitude 33°N) in natural prairie 
grass, there was a good agreement between observed and estimated  Rn with a simple empirical approach for all 
clear  skies53, with an average RMSE value equal to 28 W  m–2 and  r2 value of 0.984.

However, in a semiarid climate covered by sparse vegetation near  Tabernas54, Almería, Spain (37°N) good 
agreement was obtained between the observed and simulated  Rn, with a mean RMSE value of 47 W  m–2 and  r2 
value of 0.96. In another study conducted on an olive vegetation surface in southwestern Sicily, Italy (37°N)55, an 
RMSE value of 35.4 W  m–2 was obtained in the  Rn. They used a semiempirical model based on the Stefan–Boltz-
mann law that included estimating longwave radiation incorporating the original Brutsaert’s coefficient value. 

Figure 2.  World spatial distribution of the calibrated coefficient of Brutsaert for (a) winter, (b) spring, (c) 
summer, and (d) autumn. Additionally, the homogeneous areas or clusters are presented (e), referenced for the 
Northern Hemisphere. This figure was obtained with R  software83.
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Furthermore, in a wetland in the Paynes Prairie Preserve (29° N) in north-central Florida,  USA56, the  Rn was 
estimated using GOES satellite data. Thus, the  Rn was best characterized when the GOES solar and GOES long-
wave radiation products were combined, reaching average RMSE, NSE, and  r2 values equal to 14.1 W  m–2, 0.92, 
and 0.95, respectively.

In another experience, in the Upper Blue Nile Basin, Ethiopia (7.5°–12.5° N)57 the  Rn distribution was esti-
mated from satellite MODIS and automatic weather station, obtaining a reduction in the mean bias (MB) and 
RMSE values of 76.43 and 17.71%, respectively, by implementing the new recalibrated Brutsaert equation.

Furthermore, the solar shortwave radiation data and meteorological observations (or satellite retrievals) from 
24 different sites (USA and China) were used to estimate  Rn

50, where 21 of them were in latitudes between 32° 
and 41°N under various land covers (grass, pastures, wheat, rangeland, crop, forest, native prairie, and desert). 
Across all sites and land covers, the BIAS varied between 19.7 and 27.8 W  m–2, while the RMSE ranged from 
12.8 to 21.0 W  m–2.

For grass cover, a semiempirical model based on the Stefan–Boltzmann law was evaluated to estimate  Rn in 
Talca, Chile (35°S)30, obtaining an RMSE of 42 W  m–2 with a calibrated Brutsaert’s εa coefficient equal to 1.31. 
Furthermore, for olive tree cover (Pencahue Valley site, Pencahue, Chile, latitude 35°S and CIFA Experimen-
tal Station site, Córdoba, Spain, latitude 37.8°N) and vineyard cover (Pencahue Valley site, Pencahue, Chile, 
latitude 35°S), the estimation of  Rn was observed with RMSE and MAE values below 45.0 and 31.0 W  m–2, 
 respectively25,35,36. For latitudes from 41°S to 60°S (C4 in Fig. 3), the estimation of  Rn (Fig. 3h), using a calibrated 
Brutsaert’s coefficient (Cluster 4 in Table 3), presented a statistical mean deviation lower than 10.6 W  m–2.

In this case, there is limited literature about the estimation of  Rn in southern latitudes. Thus, the approaches 
presented in this study are promising for improving the estimation of  Rn by incorporating a calibrated Brutsaert’s 
εa equation coefficient, broken down by homogeneous latitudes separated into five zones around the world 
(Figs. 2e and 3). Additionally, the errors found in this study are lower and similar in the same case compared to 
those found in the existing literature. In this sense, it is necessary to further evaluate εa estimates under a larger 
number of land cover types, different vegetation architectures of surface roughness lengths, and other charac-
teristics than the Brutsaert εa equation coefficient values obtained in this research.

Conclusions
A spatially explicit approximation method for calculating atmospheric emissivity (εa) has been investigated 
to improve the estimation of downward longwave radiation during the day and further enhance radiation 
calculations.

The study evaluated eight models globally to estimate air emissivity using the NCEP/NCAR Reanalysis 
database, which corresponds to spatial trends in each variable used, mainly due to the calculation resolution, 
which is 2.5° in latitude and longitude. The results showed that the Brutsaert εa model had the best performance 
(BIAS = − 0.127, MAE = 0.128, RMSE = 0.152, nRMSE = 23.9%,  r2 = 0.76, d = 0.80, AIC = – 2,354,713), and it was 
calibrated using geographically weighted regression (GWR) for global use.

The calibrated values considerably improved the calculation of the components of the surface energy balance, 
reducing calculation errors in net radiation from 25.2 W  m–2 (nRMSE = 32.6%) to 8.6 W  m–2 (nRMSE = 12.0%). 
The study indicates that the Brutsaert εa model should not be considered to have a constant coefficient value in 
time or space. It is advisable to use the coefficients found in this work to minimize errors when calculating net 
radiation. Using a sinusoidal equation or spline-type interpolation to reproduce the temporal variability of the 
coefficients for each day of the year is recommended when using the average monthly coefficients of the Brutsaert 
equation to estimate the emissivity of the atmosphere at a daily level.

Table 3.  Comparison of statistical indices for evaluating the Brutsaert equation effect on net radiation 
computation. BIAS, MAE, and RMSE are the systematic error, mean absolute error, and root mean square 
error, respectively. The nRMSE is the normalized root mean square error, and its unit is %. The NSE is the 
Nash–Sutcliffe model efficiency index, d is the index of agreement, and  r2 is the coefficient of determination 
(dimensionless). The information is only presented for four out of the five clusters.

Zone Model BIAS (W  m–2) MAE (W  m–2) RMSE (W  m–2) nRMSE (%) NSE d r2

Cluster 1
Uncalibrated Brutsaert’s – 37.5 37.5 40.1 46.4 0.78 0.95 0.99

Calibrated Brutsaert’s  − 4.5 6.1 7.5 8.7 0.99 1.00 1.00

Cluster 2
Uncalibrated Brutsaert’s  − 26.9 27.1 30.9 36.3 0.87 0.97 0.99

Calibrated Brutsaert’s  − 2.3 5.5 7.0 8.2 0.99 1.00 0.99

Cluster 3
Uncalibrated Brutsaert’s  − 3.8 9.1 11.4 22.5 0.95 0.99 0.96

Calibrated Brutsaert’s 1.7 7.2 9.3 18.2 0.97 0.99 0.97

Cluster 4
Uncalibrated Brutsaert’s  − 16.9 17.1 20.1 25.8 0.93 0.98 0.99

Calibrated Brutsaert’s 7.6 9.0 10.6 13.6 0.98 1.00 0.99

Worldwide
Uncalibrated Brutsaert’s  − 15.2 18.1 23.6 32.0 0.90 0.98 0.97

Calibrated Brutsaert’s  − 0.2 6.5 8.4 11.3 1.00 1.00 0.99
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Methods
Due to the different climatic conditions, the entire world was used as the study area to achieve an adequate model 
evaluation and calibration. Observed climatic data were obtained from a dynamically consistent scale resolution 
of basic atmospheric quantities and computed parameters known as NCEP/NCAR reanalysis data (NNR). These 
data were produced by the US National Centers for Environmental Predictions (NCEP) and the National Center 
for Atmospheric Research (NCAR) based in Boulder, CO,  USA16.

Figure 3.  Comparison of net radiation computed using uncalibrated (a,c,e,g) and calibrated (b,d,f,h) Brutsaert’s 
equation in the estimated worldwide clusters: Cluster 1 (a,b); Cluster 2 (c,d); Cluster 3 (e,f); and Cluster 4 (g,h).
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NCEP/NCAR reanalysis data. The NNR data of global climatic information cover the period from 1948 
to the present. Its spatial resolution is 2.5° longitude and 2.5° latitude with a temporal resolution of one month, 
one day, or six hours, and diagnosed diabatic heating of 17 vertical isobaric levels from 1000 to 10   hPa58–60. 
The NNR data were developed by the synergy of processes such as quality control, assimilation, interpolation, 
observed data acquired by ground and sea stations, planes, satellites, and atmospheric soundings, together with 
simulations of atmospheric general circulation models using the Climate Data Assimilation System (CDAS)58.

The data used in this research were based on the “Surface” and “Surface flux” sections and their upward solar 
radiation flux.

Atmospheric emissivity parameterizations. Below are the equations used to estimate εa with mete-
orological variables such as  ta and actual vapor pressure  (ea). The exception is the Bastiaanssen  model21 because 
it estimates εa at a daily scale for any condition of cloudiness, only depending on atmospheric transmissiv-
ity (τsw). The Bastiaanssen model was  calibrated61 and used in the satellite-based energy balance for mapping 
evapotranspiration with an internalized calibration (METRIC)  model62. The eight evaluated models are the 
 following2,12,13,21,52,63–65:

where εa is the atmospheric emissivity (dimensionless) for clear-sky conditions based on air temperature  (Ta, K), 
water vapor pressure  (ea, hPa), atmospheric transmissivity (τSW, dimensionless), and altitude (z, meters above 
sea level). The z was obtained from the WorldClim  data66 with a spatial resolution of 1 km. Moreover, ea was 
estimated as  follows29,67:

where  ea is the actual water vapor pressure (hPa),  ta is the air temperature (°C), and RH is the relative humidity 
(%). Also, the τSW and ξ were calculated according to:

The observed values of εa were calculated as follows:

where  To corresponds to the average temperature of the whole air profile (K) measured by a meteorological sta-
tion, and Ld is the atmospheric longwave downward radiation (W  m–2).

For this study, the  To and Ld data was obtained from the reanalysis databases. On the other hand, the estimated 
values of εa from the eight models were calculated using  ta and RH obtained from the same reanalysis databases.

The evaluation of the goodness of fit for each model was conducted using the monthly average values of the 
NCEP/NCAR reanalysis (NNR) data.

Statistical analysis. The evaluation of the goodness of fit for each model was conducted using the monthly 
average values of the NNR data through the determination of the systematic  error68 (BIAS), mean absolute 
 error68 (MAE), root mean square  error68 (RMSE), normalized root mean square  error69 (nRMSE), and coef-
ficient of  determination70  (r2) (Table 3). Additionally, the index of agreement (d) was  used70–75, as well as the 
Akaike information criterion (AIC)76–78. Also, the Nash–Sutcliffe efficiency (NSE)  index79 was used, and it can 
range from − ∞ to 1. An efficiency of 1 (NSE = 1) corresponds to a perfect match of modeled data to the observed 
data. An efficiency of 0 (NSE = 0) indicates that the model predictions are as accurate as the mean of the observed 

εa = 0.85(−Ln(τsw))
0.09

,

εa = 1− (1+ ξ) · e−
√
1.2+3.0·ξ

,

εa = 0.70+ 0.0000595 · ea · e(1500/Ta),

εa = 1.24 · (ea/Ta)
1
7 ,

εa = 1− 0.261 · e−0.000777·(273−Ta)
2

,

εa = 0.0000092 · (Ta)
2
,

εa = 0.605+ 0.048 ·
√
ea,

εa = 0.83− 0.18 · 10−0.067·ea ,

ea = 6.108 ·
(

RH

100

)

· e
(

17.27·ta
ta+237.3

)

,
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ξ = 46.5 · (ea/ta),
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data, whereas an efficiency less than zero (NSE < 0) occurs when the observed mean is a better predictor than the 
model. Essentially, if the model efficiency is closer to 1, the model is more accurate. NSE is equivalent to the coef-
ficient of determination  (r2), thus ranging between 0 and 1.

Global calibration. The εa model with the best performance was adjusted globally using geographically 
weighted regression (GWR). For this analysis, the dependent variable was εa, and the independent variables were 
 ea and  Ta. The GWR was carried out using NNR data, where information on each pixel was extracted from the 
grids, generating a vector type point layer for every month.

The GWR is based on weighted least  squares80, considering the distance between each point, and it is 
described with the following  equation80–82:

where  (ui,  vi) corresponds to the coordinates of the ith point in the space,  yi is the dependent variable value, x is 
the kth independent variable in the ith point,  a0 and  ak are the regression parameters in the ith point, and δi is 
the error in the ith point. The  ak(ui,  vi) coefficients were estimated as follows:

where the dependent and independent variables are in the Y and X matrices, respectively.
All calculations, statistical analyses, and figures were processed using R  software83 and the libraries “raster”84, 

“rgdal”85, “hexbin”86, “hydroGOF”87, “topmodel”88, and “GWmodel89,90.

Net radiation improvements. Rn was computed at a global scale to evaluate the impact of the εa cali-
brated model on the traditional method of calculating net radiation. The  Rn is the sum of downward (incoming) 
and upward (outgoing) shortwave and longwave radiation, which is also a measure of the available energy at an 
underlying surface. It is also the fundamental parameter that governs the climate of the planetary boundary layer 
and is the driving force for processes such as evapotranspiration, air and soil heating, and photosynthesis. The 
net radiation over the terrestrial surface can be calculated as  follows21:

where  Rn is the estimated net radiation (W  m-2);  R↓ is the downward shortwave solar radiation (W  m–2);  L↓ and 
 L↑ are the downward and upward longwave radiation, respectively (W  m–2); α is the surface albedo (dimension-
less); and εs is the surface emissivity (dimensionless). The components of the incoming and outgoing longwave 
radiation, respectively, are given by:

where εa is atmospheric emissivity (dimensionless);  Ta is air temperature (K);  Ts is the land surface temperature 
(K), which was obtained from the monthly mean MOD11C3  product91; and σ is the Stefan–Boltzmann constant 
(5.67 ×  10–8 W  m–2  K–4).

εs can be calculated from a simple linear regression using the normalized difference vegetation index or 
 NDVI92, which is necessary to estimate the land surface temperature (LST). The values of εs were calculated as 
 follows25:

where the NDVI is obtained from the monthly mean MOD13A3  product93.
εa is determined according to Brutsaert’s64 method, where the observed  Rn was computed with the shortwave 

and longwave radiation from the NCEP/NCAR reanalysis. Meanwhile, the estimated  Rn was obtained using the 
uncalibrated and calibrated parameters of Brutsaert’s equation and calculating the longwave radiation using L↓ 
and L↑ equations.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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