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Metabolites for monitoring 
symptoms and predicting remission 
in patients with depression who 
received electroconvulsive therapy: 
a pilot study
Takahito Uchida 1,2,7, Yuki Sugiura 3,4,7, Eiji Sugiyama 5, Rae Maeda 4, Kenji F. Tanaka 1,6, 
Makoto Suematsu 3, Masaru Mimura 1 & Hiroyuki Uchida 1*

The lack of biomarkers to monitor and predict the efficacy of electroconvulsive therapy (ECT) has 
hindered its optimal use. To establish metabolomic markers for monitoring and predicting the 
treatment efficacy of ECT, we comprehensively evaluated metabolite levels in patients with major 
depressive disorder (MDD) by performing targeted and non-targeted metabolomic analyses using 
plasma samples before and after the first, third, and final ECT sessions, and 3–7 days after the final 
session. We compared the plasma metabolomes of age- and sex-matched healthy controls (HCs). 
Thirteen hospitalized patients with MDD and their corresponding HCs were included in this study. 
We observed that patients with MDD exhibited lower levels of amino acids, including gamma-
aminobutyric acid (GABA), and metabolites involved in tryptophan metabolism and the kynurenine 
pathway, and higher levels of cortisol at baseline. Furthermore, we investigated the relationship 
between metabolite levels and depression severity across seven measurement timepoints along with 
one correlation analysis and found that amino acids, including GABA and tryptophan catabolites, were 
significantly correlated with the severity of depression. Despite the exploratory nature of this study 
due to the limited sample size necessitating further validation, our findings suggest that the blood 
metabolic profile has potential as a biomarker for ECT.

Biomarkers that monitor the efficacy of and predict response to ECT are needed. Depression is 
a serious psychiatric illness for which numerous treatment options are typically prescribed. However, only 33% 
of patients with major depressive disorder (MDD) achieve remission with the initial course of antidepressant 
drugs, which decreases to 13% with the fourth  course1. For patients with treatment-resistant depression (TRD), 
who do not respond to antidepressant treatment, several treatment guidelines recommend electroconvulsive 
therapy (ECT), given its superior effectiveness compared to that of antidepressant  treatment2. However, approxi-
mately half of patients with TRD fail to achieve remission, even with ECT. Additionally, ECT poses the risks of 
postictal delirium and autobiographical memory loss, causing hesitation among patients and physicians to use 
this treatment option, resulting in unsuccessful treatment. Prolonged depressive episodes impair social func-
tioning and reduce responsiveness to antidepressant treatments, including  ECT3. Therefore, there is an urgent 
need for methods that can monitor efficacy and predict ECT responses. However, to date, the prediction of the 
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response to ECT has been primarily investigated based on clinical or demographic characteristics, and no bio-
logical predictors have yet been identified.

Systemic biochemical changes induced by ECT. Post-ECT biochemical changes are diverse. The 
serum kynurenic acid/quinolinic acid level ratio, which was significantly lower in patients with MDD than in 
controls at baseline, significantly increased after three ECT  sessions4. Similarly, the serum kynurenic acid/l-
tryptophan (Trp) level ratio was negatively associated with depressive symptoms in patients with depression 
who received  ECT5. Hypothalamic–pituitary–adrenal (HPA) axis hyperactivation at baseline has been reported 
to predict subsequent ECT  efficacy6. Additionally, other biochemical changes, including in neurotrophic factors, 
the immune system, and monoamine neurotransmitters and neurogenesis, have been reported after  ECT7.

Thus, ECT causes systemic changes in multiple pathways, and a comprehensive assessment may best evalu-
ate ECT-induced biochemical changes. “Omics” approaches have recently garnered widespread attention as a 
comprehensive method of measuring biological materials. Metabolomics, which involves the profiling of small-
molecule metabolites, is advantageous because it measures both genomic and environmental variables. Metabo-
lomic analysis of urine, blood, and cerebrospinal fluid in patients with depression has revealed abnormalities in 
mitochondrial/energy metabolism, neural integrity, and signaling/neurotransmission8. However, this approach 
has not yet been extensively utilized to evaluate the response to ECT. Here, we conducted a longitudinal, tar-
geted, and non-targeted metabolomic study to identify metabolites that could predict remission following ECT 
in patients with depression through multiple metabolomic assessments immediately before and after the ECT 
sessions. In this study, we aimed to identify baseline characteristics of metabolite levels in patients with MDD 
and healthy controls (HCs). Additionally, we sought to identify specific blood metabolites that could be used to 
monitor the effects of ECT. Moreover, as part of our exploratory analysis, we aimed to identify potential blood 
metabolites that could predict remission after ECT by examining the changes in metabolite levels during the 
first ECT session.

Results
Demographic and clinical characteristics. This study included 13 hospitalized patients with MDD, 
and age- and sex-matched healthy individuals. All subjects were free of malignancies or inflammatory diseases 
that required treatment, and none were taking anti-inflammatory medications, including non-steroidal anti-
inflammatory drugs. All patients diagnosed with MDD were taking antidepressants when they underwent ECT 
for depressive symptoms. ECT was generally effective, and the mean (± standard deviation) total Montgom-
ery–Asberg Depression Rating Scale (MADRS) score decreased from 32.4 ± 11.7 at baseline (T1) to 9.8 ± 11.5 
after the final ECT session (T6), and the total Quick Inventory of Depressive Symptomatology (QIDS) score 
decreased from 16.6 ± 6.4 at baseline (T1) to 5.7 ± 3.3 after the final ECT session (T6). Nine patients (mean age 
55.6 ± 17.8 years, four males) achieved remission, while the other four patients (mean age 60.0 ± 12.0 years, three 
males) did not. Within the remission group, one patient achieved remission after the fourth ECT session, lead-
ing to the cessation of subsequent ECT sessions due to amnesic symptoms. Therefore, only the data collected 
from T1 to T4 were used for the analysis of this individual. Four patients were discharged before the final assess-
ment (T7). As shown in Table 1, the remission group had significantly lower QIDS scores at baseline and lower 
MADRS total scores after the final ECT session. Other demographic and clinical characteristics did not differ 
significantly between the remission and non-remission groups.

Baseline characteristics of plasma metabolite levels of patients with MDD and HCs. Partial 
least-squares discriminant analysis (PLS-DA), which included the levels of 357 plasma metabolites obtained 
from targeted and non-targeted metabolome analysis as variables, revealed that patients with MDD and HCs 
formed distinct clusters (Fig. 1A, Fig. S1, Table S1, and Table S2). Furthermore, volcano plot analysis revealed 
that γ-glutamyl dipeptide (γGlu-Glu), identified in the non-targeted analysis, was the most significantly differ-
ent metabolite in patients compared with that of HCs (Fig. 1B and Table S3). The hierarchical clustering analysis 
(HCA) of these metabolites showed higher levels of cortisol, choline, N-acetyl aspartate, ketone bodies, and 
inorganic phosphates, and lower levels of carnitine derivatives, purine metabolites, Trp and kynurenine (Kyn) 
pathway catabolites, γGlu-Glu, urea, carnitines, and gamma-aminobutyric acid (GABA) in patients (Fig. S2). A 
comparison of the levels of each metabolite identified by volcano plot analysis and HCA revealed significantly 
higher cortisol levels in patients with MDD. In contrast, the levels of purine metabolites, carnitine derivatives, 
metabolites involved in Trp metabolism and the Kyn pathway, GABA, metabolites involved in neurotransmitter 
metabolism, and γGlu-Glu were significantly lower in patients with MDD (Fig. 1C–F).

Correlations between plasma metabolite levels and depressive symptoms during ECT. PLS-
DA of the 357 metabolites obtained from targeted and non-targeted metabolome analyses during ECT (T1, T3, 
T5, and T7) in patients with MDD (Fig. 2A) showed that the plasma metabolome gradually changed over the 
course of ECT (Fig. 2B and Table S4).

We then investigated the correlation between metabolite levels and depression severity across four measure-
ment time points, along with a correlation analysis, to identify specific metabolites that could act as companion 
markers for ECT efficacy. (Fig. S3). The results showed that several amino acids and their derivatives, including 
GABA, oligopeptides, and kynurenine pathway metabolites, were significantly correlated with depression sever-
ity (Fig. 2C, Tables S5 and S6). The metabolites that showed baseline differences between patients with MDD 
and HCs, such as Trp catabolites, GABA, and γGlu-Glu, also showed significant correlations with depression 
severity during ECT (Fig. S4).



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13218  | https://doi.org/10.1038/s41598-023-40498-7

www.nature.com/scientificreports/

Changes in plasma metabolites following the first ECT session as predictors of subsequent 
remission: an exploratory analysis. PLS-DA, which included the levels of 357 plasma metabolites 
obtained from targeted and non-targeted metabolome analyses before and after the first ECT session (T1 and 
T2) in patients with MDD (Fig. 3A and Table S7), showed a marked change in the levels of metabolites before 
and after the first ECT session in both the remission (n = 9) and non-remission groups (n = 4) (Fig. 3B, left). Fur-
thermore, the cluster migration distance, which indicates the extent of metabolomic shift, appeared to be greater 
in the remission group than in the non-remission group (Fig. 3B, right). Volcano plot analysis identified metabo-
lites that exhibited significant changes in the first ECT session in the remission group and revealed that the levels 
of metabolites, that is, amino acids, their catabolites, and derivatives, significantly decreased, while the levels of 
cortisol significantly increased (Fig. 3C, Table S8). Changes in the levels of some metabolites, such as cortisol, 
GABA, γ-glutamyl glutamate, 5-hydroxyindoleacetic acid (5-HIAA), nicotinic acid, and orthophosphate, were 
not significant in the non-remission group (Fig. 3D and Fig. S5).

Discussion
To the best of our knowledge, this is the first study to evaluate the cross-sectional differences in metabolite levels 
in patients with MDD who underwent ECT, as well as their longitudinal changes, using targeted and non-targeted 
metabolomics analysis. Comprehensive metabolomic analysis enabled the identification of metabolites that have 
not been previously reported as biomarkers of MDD. Metabolomics is a sensitive measurement technique that 
is affected by various factors, including diet and physical activity. In the present study, because ECT was per-
formed on patients with MDD in an inpatient setting, diet, physical activity, and fasting were controlled under 
hospital supervision, which contributed to eliminating these confounding factors. In particular, the comparison 
of metabolite levels before and after ECT sessions allowed for an analysis in which various confounding factors 
were excluded, thereby capturing the biological changes that occur with ECT. First, this study assessed the cross-
sectional differences in plasma metabolite profiles between patients and controls and found that metabolites such 
as cortisol, urea, uric acid, and kynurenine pathway metabolites differed between the patient and control groups. 
These results are consistent with those of previous  studies9–11, and confirm the accuracy of the methodology used 

Table 1.  Demographic and Clinical Characteristics of Included Participants and Controls. Values are shown 
as mean ± S.D. or n (%). a One missing value. ECT, Electroconvulsive Therapy; MADRS, Montgomery-Asberg 
Depression Rating Scale; MDD, Major Depressive Disorder; Quick Inventory of Depressive Symptomatology 
Self-Reported version; QIDS.

Characteristics
Controls
(n = 13)

Remission
(n = 9)

Non-remission
(n = 4)

Remission versus non-remission
p value

Age, years 53.7 ± 14.4 55.6 ± 17.8 60.0 ± 12.0 0.66

Male sex, n 7 (53.8) 4 (44.4) 3 (75.0) 0.56

Education, years 14.5 ± 1.8 14.2 ± 1.9 15.0 ± 2.0 0.51

Age at MDD onset, years n/a 47.9 ± 20.6 45.0 ± 12.9 0.80

Family history of MDD, n 3 (23.1) 3 (33.3) 1 (25.0) 0.99

Current smoking, n 2 (15.4) 1 (11.1) 0 (0) 0.99

Current drinking, n 5 (38.5) 0 (0) 2 (50.0) 0.08

Previous episode, n n/a 2.2 ± 2.6 1.8 ± 1.3 0.74

Previous admission, n n/a 1.6 ± 2.6a 1.0 ± 1.2 0.70

Present episode, months n/a 10.1 ± 7.9 13.8 ± 11.3 0.51

Psychotic features, n n/a 1 (11.1) 2 (50.0) 0.20

Melancholic features, n n/a 5 (55.6) 3 (75.0) 0.99

Catatonic features, n n/a 0 (0) 1 (25.0) 0.31

Antidepressants, n 0 (0) 9 (100) 4 (100) n/a

Antipsychotics, n 0 (0) 4 (44.4) 3 (75.0) 0.56

Hypnotics, n 0 (0) 5 (55.6) 4 (100) 0.23

MADRS total score

Before ECT n/a 31.2 ± 11.1 33.3 ± 13.6 0.78

After the third ECT n/a 22.3 ± 16.7 32.0 ± 19.8 0.38

After the final ECT n/a 4.6 ± 3.0a 20.0 ± 16.0 0.02

QIDS total score

Before ECT n/a 13.4 ± 5.4a 21.8 ± 3.3 0.02

After the third ECT n/a 11.9 ± 7.8 11.0 ± 3.6a 0.86

After the final ECT n/a 4.6 ± 2.9a 8.3 ± 2.6 0.06

ECT parameters

First ECT charge (mC) n/a 173.4 ± 80.1 145.2 ± 24.2 0.51

Last ECT charge (mC) n/a 330.6 ± 147.7a 428.4 ± 120.0 0.27

ECT sessions, n n/a 8.6 ± 2.7 10.3 ± 1.3 0.26
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Figure 1.  Plasma metabolite levels of MDD and HCs at baseline. PLS-DA score plot showing that patients 
with MDD and HCs formed different clusters (A). PLS-DA cross-validation details and variable importance 
in projection (VIP) scores for Fig. 1A were shown in Fig. S1 and Table S1, respectively. In addition, VIP 
scores for Fig. 1A were shown in Table S2. Volcano plot comparing the levels of metabolites in patients 
with MDD and HCs at the baseline. The blue and red dots represent significantly (p < 0.05) downregulated 
and upregulated metabolites in patients with MDD (B). Metabolites showed statistical differences in levels 
between patients with MDD and HCs at the baseline (C–F). Abbreviations: GABA, gamma-aminobutyric 
acid; HC, healthy control; IDO, indoleamine 2,3-dioxygenase; MDD, major depressive disorder; PLS-DA, 
partial least-squares discriminant analysis; TDO, tryptophan 2,3-dyoxygenase; Trp, tryptophan; γGlu-Glu, 
gamma glutamyl-glutamic acid; γGlu-Ser, gamma glutamylserine; γGlu-Gly, gamma glutamylglycine; γGlu-
Gln, gamma glutamylglutamine; γGlu-Val, gamma glutamylvaline; 3OH Kyn, 3-hydrokynurenine; 5-HIAA, 
5-hydroxyindoleacetic acid. *p < 0.05, **p < 0.01, ***p < 0.001.
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the final ECT session (T7) were assessed (A). PLS-DA score plot showing the gradual change in levels of 
metabolites during the course of ECT in patients with MDD (B). VIP scores for Fig. 2B were shown in Table S4. 
The bar chart indicating Pearson’s correlation between the level of each metabolite and the MADRS score, 
with the amino acids, amino acid derivatives, and oligopeptides were highlighted in red (C). Abbreviations: 
ECT, electroconvulsive therapy; MDD, major depressive disorder; Gln, glutamine; Leu, leucine; MADRS, 
Montgomery–Asberg Depression Rating Scale; Ile, isoleucine; PLS-DA, partial least-squares discriminant 
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in this study. Moreover, we detected significant differences in metabolites that were not included in standard 
compound libraries used in conventional targeted metabolome analysis, such as amino acids and γGlu-Glu, 
because we applied non-targeted metabolomic analysis in the present study. Next, we evaluated the longitudi-
nal changes in plasma metabolite levels during ECT and found that metabolites including several amino acids, 
GABA, oligopeptides, and kynurenine pathway metabolites were significantly correlated with depression severity. 
This suggests that these metabolites can serve as markers for monitoring ECT efficacy during treatment. Finally, 
an exploratory analysis was conducted to examine the fluctuations in metabolite levels before and after the first 
ECT session with the aim of predicting subsequent remission following ECT. The levels of some metabolites such 
as GABA, cortisol, and 5-HIAA were significantly altered by the first ECT session only in the remission group.

The baseline cortisol level in the patients was higher than that in HCs, suggesting increased activity of the 
HPA axis. Increased HPA activity and high levels of cortisol are well-documented characteristics of MDD and are 
expected to reflect the interaction between genes and the  environment12. The high cortisol levels in the patient 
group in this study may have resulted from genetic variants possibly carried by the patients or primary/secondary 
stressful environments triggered by MDD. Furthermore, preliminary observations revealed a two-fold change 
in cortisol levels before and after the initial ECT session in the remission group, whereas the non-remission 
group exhibited minimal alterations. The findings of the present study suggest that activation of the HPA axis 
is required by ECT to achieve the intended therapeutic effect. In other words, a blunted cortisol stress response 
may be associated with treatment resistance to ECT, just as the blunted cortisol response to psychological stress 
in  MDD13. Patients with high cortisol levels may benefit from improving their cortisol  rhythm12, and manipula-
tion of cortisol levels using dehydroepiandrosterone has shown some success as an antidepressant  treatment14. 
Therefore, improving cortisol levels prior to the initiation of ECT may enhance the therapeutic efficacy of ECT.

The current study also demonstrated lower levels of Trp, 5-HIAA, and kynurenine pathway metabolites 
(including Kyn, 3OH-Kyn, and xanthurenic acid) in patients with MDD than in HCs, which is partly consist-
ent with the results of a meta-analysis in patients with  depression15. Trp is metabolized to Kyn, 3OH-Kyn, and 
3-hydroxyantharanilic acid by tryptophan 2,3-dyoxygenase (TDO) and indoleamine 2,3-dioxygenase. Given 
that TDO is activated by  cortisol16,17, the low levels of Trp and kynurenine pathway metabolites in patients with 
MDD reported in the present study could be explained by TDO activation and consequent increases in kynure-
nine pathway metabolism caused by elevated cortisol levels. Moreover, longitudinal observations of metabolites 
in patients with MDD during ECT revealed a positive correlation between the serotonin metabolite 5-HIAA 
and depressive symptoms. In other words, milder depressive symptoms corresponded to lower 5-HIAA levels. 
Changes in 5-HIAA with ECT have been reported in the literature; however, the findings have been inconsistent, 
with lower levels in serum within 2 h of initial ECT compared with those at  baseline18, higher levels in CSF within 
1 week after ECT compared with those at  baseline19, and no significant change in serum levels during  ECT5. 
Possible factors affecting inconsistent results between studies may include the timing of sample collection, the 
specimens used for each study (i.e., plasma, serum, and CSF), and the history of drug use. Changes in serotonin 
and 5-HIAA levels caused by antidepressant treatment may be complex, such as an acute drop and subsequent 
surge. Further studies using multiple assessments during treatment with a variety of specimens are needed.

The current study demonstrated lower baseline levels of GABA in patients with MDD than in HCs and a 
positive correlation between GABA levels and depression severity in patients with MDD during ECT. The effect 
of ECT on GABA in the brain is unclear, with one study showing an  increase20 while two other studies failed to 
replicate this  result21,22. Indeed, GABA levels appear to fluctuate dynamically at different time points after ECT. A 
prospective observational study during ECT reported a significant increase in GABA levels 10 min after the first 
ECT  session23 and a significant decrease 2 h  later24. Although the role of GABA in MDD is not fully understood, 
GABA levels have the potential to be a trait marker as well as a state marker for MDD during ECT, and dynamic 
ECT-induced changes in GABA levels may be associated with the therapeutic mechanisms of ECT.

The current study has several limitations. First, considering the small sample size, some metabolite associa-
tions may have been overlooked because of type 2 errors. In particular, regarding the comparison of metabolite 
levels between the remission and non-remission groups, this remains an exploratory analysis, and the findings 
should be interpreted with caution and confirmed in a larger sample size. Second, as this study was exploratory, 
we did not perform corrections for multiple tests. Last, peripheral blood is a convenient source of biomarkers 
for clinical applications; however, further investigation of the respective metabolic pathways may be necessary 
to determine the extent to which peripheral blood reflects changes in the central nervous system.

Conclusion
In the present study, we conducted targeted and non-targeted metabolomic analyses to comprehensively evaluate 
a large number of metabolites. We found that plasma levels of neurotransmitters and their degradation products 
varied throughout the course of ECT. Specifically, GABA and 5-HIAA can act as companion markers of the ECT 
response. Moreover, baseline cortisol levels may provide insight into the pathophysiology of MDD. Implement-
ing such metabolome measurement systems could assist physicians in selecting effective treatment strategies, 
and metabolic markers could be useful for monitoring abnormal brain function and subsequent recovery in 
patients with MDD.

Methods
Participants. The authors declare that all procedures contributing to this work comply with the ethical 
standards of the relevant national and institutional committees on human experimentation and the Declaration 
of Helsinki of 1975, as revised in 2008. All procedures involving human participants/patients were approved by 
the Institutional Review Board of Keio University School of Medicine (Approval No. 20160074). Before partici-
pation, written informed consent was obtained from all patients or their proxies and from all HCs participants 
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after providing them with detailed protocol information. Patient competence for consent was evaluated using 
the MacArthur Competence Assessment Tool for Clinical  Research25.

Inclusion criteria were age ≥ 20 years; fulfillment of the diagnostic criteria for MDD according to the Diagnos-
tic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5),26 as determined by at least two certified 
psychiatrists; scheduled for ECT at Keio University Hospital between October 2016 and March 2020; and lack 
of response to at least two antidepressant medications at therapeutic doses indicated in their packet  inserts27 or 
presentation with serious psychiatric conditions that required immediate treatment. Exclusion criteria were the 
presence of any serious physical illness, history of ECT within the past 6 months, diagnosis of alcohol or sub-
stance use disorder according to the DSM-526 within the past 6 months, history of head trauma with significant 
neurological sequelae, and history of vagal reflex on blood sampling.

An equal number of age- and sex-matched healthy individuals were recruited as HCs. These participants 
did not meet any criteria for psychiatric disorders according to the DSM-5 and had no history of psychiatric 
disorders.

ECT procedure. ECT was performed as previously  described28. Briefly, patients were treated with bitem-
poral ECT twice or thrice weekly using a brief pulse (0.5  ms) square-wave ECT device (Thymatron System 
IV device; Somatics, Inc., Lake Bluff, IL, USA). Treatments were continued until no further improvement was 
observed in the last two sessions by the psychiatrist in charge, based on clinical observations. Sodium thio-
pental (3–5 mg/kg), propofol (1 mg/kg), or sevoflurane was used for general anesthesia, and succinylcholine 
(0.5–1.0 mg/kg) was used to induce muscle relaxation during ECT.

Specimen collection. Venous blood samples were collected in EDTA-2 K vacuum tubes (Terumo, Tokyo, 
Japan) before and after the first (T1 and T2, respectively), third (T3 and T4, respectively), and final ECT sessions 
(T5 and T6, respectively) and 3–7 days after the final ECT session (T7) (Fig. S6A). Blood sampling before the 
ECT session was performed between 8 and 10 am, within 2 h of the ECT session, in a fasting state. Post-ECT 
blood sampling was conducted 1–2 h after the ECT session in the fasting state. Blood sampling was avoided 
within 1 h of the ECT session to reduce the potential anesthetic drug effects. Blood sampling from the HCs 
was performed between 8 and 10 am in a fasting state. Within 1 h of blood sampling, plasma was separated by 
centrifugation at 1200× g for 10 min at 4 °C using a swing-type centrifugation rotor (Kokusan H-19R, Japan). 
Plasma was transferred to a microtube and stored at − 80 °C.

Clinical assessments. Depressive symptoms were assessed using the  MADRS29 and the Japanese transla-
tion of the 16-item QIDS Self-Reported  version30,31 before the first ECT session (T1), after the third ECT session 
(T4), after the final ECT session (T6), and 3–7 days after the final ECT session (T7). Remission was defined as 
a MADRS total score of ≤ 9 after the final ECT session. Additionally, the following information was collected: 
age; sex; educational history; age at MDD onset; family history of MDD; current smoking status; current drink-
ing status; number of previous depressive episodes; number of previous psychiatric admissions, duration of the 
present episode; presence of psychotic, melancholic, and catatonic features according to the DSM-5 criteria for 
depressive  disorders26; drugs administered at the time of the first ECT; charge used in the first and last ECT ses-
sions; and number of ECT sessions conducted.

Comprehensive targeted/non-targeted metabolomic analysis of plasma for biomarker discov-
ery. The unique feature of this study was the simultaneous targeted and non-targeted analyses of metabolites 
in the plasma using two types of chromatography/mass spectrometry. Targeted liquid chromatography–mass 
spectroscopy (LC–MS/MS) and ion chromatography–MS (IC-MS) were performed on metabolites registered 
in the lab compound library by comparing the measured data in plasma with reference standards (System-1 
and System-2 in Fig. S6B, respectively). Fourier-transform mass spectroscopy was also used for non-targeted 
analysis, that is, the detection of compounds not registered in the laboratory compound library (System-2 in 
Fig. S6B). The metabolites identified by chemical formula analysis (exact mass and isotope pattern matching) 
and structural analysis (MS/MS) were validated by comparison with commercially available reference standard 
compounds. For reference standards that were unavailable, we provided the compositional formula and name 
of the candidate compound. Finally, 217 components were identified and validated by targeted analysis, and an 
additional 140 components were used in subsequent analyses as metabolites that met compositional matching 
or structural identification criteria by both compositional matching and MS/MS (Fig. S6C). The detailed proce-
dures of the metabolomic analysis are described in the Supplementary Material.

Statistical analyses. Demographic variables. Differences in variables between patients with MDD who 
achieved remission after ECT (remission group) and those who did not (non-remission group) were determined 
using independent t-tests for continuous variables and Fisher’s exact test for categorical variables, with a signifi-
cance level of 0.05.

Plasma metabolite levels of MDD and HCs at baseline. PLS-DA was used to provide an overview of the differ-
ences in the levels of plasma metabolites obtained from the metabolomic analysis between patients with MDD 
and HCs. Volcano plot analysis was performed to identify metabolites with significant differences in levels 
between patients with MDD and HCs. In addition, the levels of metabolites identified by volcano plot analysis 
were compared between patients with MDD and HCs using Student’s t-test. HCA was performed to extract and 
list the metabolite cluster characteristics of the two groups.
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Correlations between plasma metabolite levels and depressive symptoms during ECT. PLS-DA was applied to 
provide an overview of the longitudinal change in the plasma metabolome over three pre-ECT session time 
points (T1, T3, and T5) and 3 days after the final ECT session (T7). Subsequently, for each measured metabolite, 
we performed a single correlation analysis incorporating metabolite levels at T1, T3, T5, and T7 and the cor-
responding severity of depression, as indicated by the QIDS and MADRS total scores.

Plasma metabolite fluctuation by the first ECT session predicts subsequent remission after ECT. PLS-DA was con-
ducted to provide an overview of the differences in metabolite levels between T1 and T2. We then performed a 
volcano plot analysis to identify metabolites with significant changes in levels in the remission group. Moreover, 
changes in their levels were compared using Student’s t-test before and after the first ECT session between the 
remission and non-remission groups.

Data availability
The datasets used and/or analyzed during the current study are not publicly available in accordance with the 
provisions of the ethics committee but are available from the corresponding author upon reasonable request.
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