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Quantum correlation 
in a nano‑electro‑optomechanical 
system enhanced by an optical 
parametric amplifier 
and Coulomb‑type interaction
Habtamu Dagnaw Mekonnen 1,2, Tesfay Gebremariam Tesfahannes 3*, 
Tewodros Yirgashewa Darge 1,4 & Alemayehu Getahun Kumela 1,4

In this paper, we investigated the quantum correlation of nano‑electro‑optomechanical system 
enhanced by an optical parametric amplifier (OPA) and Coulomb‑type interaction. In particular, we 
consider a hybrid system consisting of a cavity and two charged mechanical oscillators with an OPA, 
where the optical cavity mode is coupled with a charged mechanical oscillator via radiation pressure, 
and the two charged mechanical oscillators are coupled through a Coulomb interaction. We use 
logarithmic negativity to quantify quantum entanglement, and quantum discord to measure the 
quantumness correlation between the two mechanical oscillators. We characterize quantum steering 
using the steerability between the two mechanical oscillators. Our results show that the presence of 
OPA and strong Coulomb coupling enhances the quantum correlations between the two mechanical 
oscillators. In addition, Coulomb interactions are more prominent in quantum correlations. Besides, 
in the presence of OPA, the maximum amount of quantum entanglement, quantum steering, and 
quantum discord were achieved between the two mechanical oscillators is greater than in the 
absence of OPA. Moreover, a proper phase choice of the optical field driving the OPA enhances 
quantum correlations under suitable conditions. We obtain quantum entanglement confines quantum 
steering and quantum discord beyond entanglement. Furthermore, quantum entanglement, 
quantum steering, and quantum discord decrease rapidly with increasing temperature as a result 
of decoherence. In addition, quantum discord persists at higher temperature values, although the 
quantum entanglement between the systems also vanishes completely. Our proposed scheme 
enhances quantum correlation and proves robust against fluctuations in the bath environment. 
We believe that the present scheme of quantum correlation provides a promising platform for the 
realization of continuous variable quantum information processing.

Quantum correlation and entanglement are special types of quantum coherence, and present many charming 
properties to realize quantum information  processing1–3. Consequentlly, quantum correlations are widely used 
in numerous tasks of quantum information processing, for instance, in quantum  communication4,  computation5 
and  metrology6. Specifically, quantum entanglement is a key ingredient of quantum information processing that 
characterize the non-classical property of multipartite quantum  systems7. Accordingly, numerous researchers 
show that the nonzero entanglement assures the existence of quantum correlations but the zero entanglement 
does not assure the absence of quantum correlations in a bipartite quantum state. Unlike the entanglement, the 
quantum steering can be certifying and judge for creation and verification of optomechanical  entanglement8. 
Subsequently, both theoretical and experimental researchers have precisely indicated that the observation of 
quantum steering is an essential resource in several fundamental  applications9–13. Thus, the quantum steering 
is used to quantify how much the two entangled bipartite states are steerable. Such a quantifier exhibits the 
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asymmetric property between two entangled observers (Alice and Bob). In this context, Alice can change (i.e. 
“steer”) the Bob states by exploiting their shared  entanglement14. Gaussian quantum discord is another quantum 
correlation quantifier introduced to go beyond entanglement and measure the non-classical correlations between 
two subsystems of a quantum system. Therefore, such a quantum discord strives at capturing all the quantum 
correlations in a bipartite state, including but does not necessarily involve quantum entanglement. Furthermore, 
the quantum discord is applicable to almost all squeezed-thermal states with nonzero Gaussian  discord15. It is 
essentially used in quantifying the quantumness in multiparty systems because of its robustness against decoher-
ence in comparison with  entanglement16.

Several researchers have studied the quantum correlation between optical and mechanical modes in opto-
mechanical  systems17–21. Amazioug et al.22,23 have been investigated the transfer of quantum correlations from 
Einstein-Podolsky-Rosen (EPR) entangled squeezed light to the movable mirrors and entanglement, EPR steer-
ing, and Gaussian geometric discord in a double cavity optomechanical system. Recently, several schemes for 
macroscopic entanglement in optomechanical systems have been thoroughly  investigated24–28. For instance, Vitali 
et al.26 examined stationary entanglement between an optical cavity field mode and a macroscopic vibrating 
mirror that can be generated using radiation pressure. Furthermore, Zhang et al.29 proposed a way to generate 
stationary entanglement between the cavity mode and the mechanical mode via radiation pressure. While, Yang 
et al.30 have proposed a scheme to generate robust tripartite optomechanical entanglement with a single-cavity 
optomechanical system driven by a single input laser field. To this aim, some interesting phenomena will occur 
when an optical parametric amplifier is introduced into an optomechanical cavity, such as the generation of 
entangled and squeezed states of  light31–34, enhance mechanical  cooling35, generate strong mechanical  squeezing36, 
and enhance the degree of precision of optomechanical position  detection37. For instance, Huang et al.38 have 
analyzed the ground state cooling of a macroscopic mechanical oscillator for the quantum manipulation of the 
mirror by degenerate optical parametric amplifier. In addition, Hu et al.39 have examined twofold mechanical 
squeezing in a cavity optomechanical system that involved an OPA driven by a periodically modulated laser field.

In addition, many schemes have been proposed to generate entanglement in nano-electro-optomechanical 
 systems40–43. Specifically, Bai et al40 propose a scheme to show that the system consisting of two macroscopic 
oscillators separated in space which are coupled through Coulomb interaction displays the classical-to-quantum 
transition behavior under the action of optomechanical coupling interaction. Pan et al.41 have studied the entan-
glement phenomena assisted by a distant nano-electro-optomechanical system with two optical parametric 
amplifiers. In the presence of OPAs, the degree of entanglement between the two cavity fields is much higher 
than in the absence of OPAs. The optical parametric amplifier plays a very significant role in the interaction of 
cavity  optomechanics41, and the possibility to enhance the radiation pressure at the sum sideband in an opto-
mechanical system containing an OPA has been developed to perform quantum  applications44. Most recently, 
Pan et al.45 investigated the entanglement phenomena, assisted through an electro-optical hybrid system with 
an optical parametric amplifier and a Coulomb force interaction, they suggest that the two charged oscillators 
enhanced the entanglement and output squeezing in an electro-optical hybrid system. Therefore, the presence 
of OPA, shows how to quantify the quantum correlations in nano-electro-optomechanical systems is still the 
subject of the active research field. Consequently, searching for smart measurements of the quantum features 
under a charged mechanical oscillator with an OPA and how to transfer information between the subsystems 
are active research fields and relatively few studies have been addressed.

In this paper, we investigated quantum correlations such as quantum entanglement, quantum steering, and 
quantum discord between two charged mechanical oscillators. From the theoretical point of view, our work 
aim is to contribute to the enhancement of the quantum correlation in the presence of OPA and with strong 
Coulomb coupling, under three-quantum correlation quantifiers. This shows that our model is different from 
other previous optomechanical systems that consist of a single charged optomechanical  system28. Specifically, 
the hybrid system consists of a cavity and two charged mechanical oscillators with an OPA, where the cavity 
mode is coupled with a charged mechanical oscillator via radiation pressure, and the two charged mechanical 
oscillators are coupled through a Coulomb interaction. We thoroughly examine how the nonlinear gain of 
OPA, the Coulomb coupling strength, the phase of the optical field driving the OPA, and the environmental 
temperature affect quantum correlations. Our results indicate that the presence of OPA and strong Coulomb 
coupling enhances the quantum correlations between the two mechanical oscillators. Besides, in the presence 
of OPA, the maximum amount of quantum entanglement, Gaussian quantum steering, and Gaussian quantum 
discord achieved between the two mechanical oscillators is greater than in the absence of OPA. This is due to 
the fact that increasing the nonlinear gain of the OPA increases the photon number in the cavity, which leads to 
a stronger radiation pressure acting on the left mechanical oscillator. Additionally, we show that a proper phase 
choice of the optical field driving the OPA enhances quantum correlations under suitable conditions. This is 
because the proper choice of a phase of the optical field driving the OPA may lead to maximum noise suppression, 
thereby resulting in maximum quantum correlations. Furthermore, the quantum correlations decline rapidly 
with increasing temperature as a result of decoherence. Our proposed scheme enhances quantum correlation 
and proves robust against fluctuations in the bath environment. Therefore, we believe that our results provide a 
realistic route toward the realization of the quantum correlation under the OPA and Coulomb-type interaction 
and a framework for future experimentally feasible with the advancement of technology.

The paper is structured as follows. In Section “Model and dynamical equations”, The model and dynamical 
equations of the system are introduced. In Section “Quantification of quantum correlations”, quantum correla-
tions including quantum entanglement, quantum steering, and quantum discord are discussed. The results of 
the three kinds of quantum correlations are discussed in Section “Results and discussion”. Conclusions are sum-
marized in Section “Conclusions”.
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Model and dynamical equations
The hybrid optomechanical system shown in Fig. 1 is composed of a fixed partially transmitting mirror, two 
charged nano-mechanical oscillators, and an OPA embedded in the cavity. The cavity mode couples the charged 
nano-mechanical oscillator through the radiation- pressure interaction, and also the first charged nano-mechan-
ical oscillator can be connected to the second spatially separated charged nano-mechanical oscillator by the 
Coulomb  interaction46. The cavity is coherently driven by an external laser with frequency ωl and amplitude � 
from the left side of a mirror.  The total Hamiltonian of the system can be written as

where ĉ(ĉ†) is the annihilation (creation) operator of the cavity optical mode with cavity frequency ωc . The first 
term describes the free energy of the cavity field. The second term denotes the energy of the mechanical modes 
with frequency ωi , effective mass of mechanical oscillators mi and the momentum (position) p̂i(q̂i) . We define 
the left mechanical oscillator as mechanical oscillator−1 and the right mechanical oscillator as mechanical oscil-
lator−2 . The third term is the energy of the photon-phonon interaction between the cavity mode and the mechan-
ical oscillator−1 , with the single photon optomechanical coupling constant g = ωc

L

√

�

2m1ω1
 . The fourth term 

describes the cavity field driven by an input field with frequency ωl and amplitude � =
√

2κP
�ωl

 , where κ and  P 
are the cavity damping rate and the input laser power, respectively. The fifth term denotes the energy between 
the OPA and the cavity field, Ga is the nonlinear gain of the OPA, and θ is the phase of the optical field driving 
the OPA. The last term shows the Coulomb interaction potential of a charged mechanical oscillators is given as 
Ĥcoul = −C1V1C2V2

4πǫ0|r0+q1−q2| , where Ci is the gate capacitance, Vi is the voltage of the bias gate, ǫ0 is the vacuum dielectric 
constant and r0 is the separation of the equilibrium positions of the two mechanical oscillators.

We assume the distance between the two charged mechanical oscillators is much greater than the small oscil-
lations of the charged mechanical oscillators ( q1, q2 ≪ r0 ) , the term describing the interaction between two 
charged mechanical oscillators can be expanded to the second order  as47

where the linear terms are absorbed in equilibrium positions, and quadratic terms are incorporated in the 
renormalization of oscillation frequencies. After omitting the constant term, the Coulomb interaction can be 
reduced to this  form48,49

where η = C1V1C2V2

4πε0mωmr
3
0

 is Coulomb coupling strength. The Hamiltonian of the system in a rotating frame at the 
frequency ωl takes the form

(1)
Ĥ = �ωc ĉ

†ĉ +
2

∑

i=1

�ωi

2

(

p̂2i + q̂2i
)

− �gq1ĉ
†ĉ

+ i��
(

ĉ†e−iωl t − ĉeiωl t
)

+ i�Ga

(

eiθ ĉ†2e−2iωl t − e−iθ ĉ2e2iωl t
)

+ Ĥcoul ,

(2)Ĥcoul = −C1V1C2V2

4πǫ0r0

(

1− q1 − q2

r0
+ (q1 − q2)

2

r20

)

,

(3)Ĥcoul = �ηq1q2,

(4)Ĥ = ��ĉ†ĉ +
2

∑

i=1

�ωi

2

(

p̂2i + q̂2i
)

− �gq1ĉ
†ĉ + i��

(

ĉ† − ĉ
)

+ i�Ga

(

eiθ ĉ†2 − e−iθ ĉ2
)

+ �ηq1q2,

Figure 1.  Schematic representation of the system. Hybrid OMS consists of the optical cavity, two charged 
nanomechanical resonators and a degenerate OPA placed inside the cavity, and the pump of the OPA is not 
shown.
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where � = ωc − ωl is optical cavity detuning. Using Eq. (4) and considering the damping and noise terms into 
Heisenberg equations, we can obtain the quantum Langevin equations of the hybrid system as

where γ1(γ2) is the damping rate of the two mechanical oscillators and ̂cin is the input vacuum noise operator with 
zero mean value and nonzero correlation function �ĉin(t)ĉ†in(t ′)� = δ(t − t ′)26,27. The quantum Brownian noise 
operators ξ1(t) (ξ2(t) ) a rise from the coupling between the two mechanical oscillators with the environment, 
and their mean values are zero and correlation function

where κB is the Boltzmann constant and T is the temperature of the reservoir related to the mechanical oscilla-
tors. However, quantum effects are revealed just for the oscillators with a large quality factor Qi = ωi

γi
≫ 1 . In 

this limit, the correlation function of the noise ξi(t) can be written  as50

In which, n̄ = (exp( �ωi
κBT

− 1))−1 is the mean thermal phonon number. We utilize the nonlinear quantum Lan-
gevin equations for the optical mode and the two mechanical oscillators by taking into account the condition of 
intense laser driving and weak coupling, i.e., ωl ≫ κ ≫ g51. We use the linearization approach, expanding each 
field operator as the sum of its steady-state mean values and fluctuation operator, which can be treated separately 
as ĉ = cs + δĉ, q̂i = qsi + δq̂i ,  q̂i = qsi + δp̂i , where  cs, qsi and psi are the mean values for operators   ĉ,  q̂i and p̂i . 
The steady-state mean values of the operators can easily be obtained by setting all time derivatives equal to zero 
in Eqs. (5–9) such that the steady-state mean value for the hybrid system can be obtained

where �′ = �− gqs1 is the effective cavity detuning from the frequency of the input laser in the presence of the 
radiation pressure. In order to examine the quantum correlation between the two mechanical oscillators, we need 
to calculate the fluctuations of their corresponding operators. The cavity is intensively driven with a very large 
input laser power, which means that at the steady state, the intracavity field has a large amplitude, i.e., |cs| ≫ 1 . 
Under, the strong driving limit, here we have neglected the high-order small terms of the fluctuation part, the 
linearized quantum Langevin equations can be written as

We choose the phase reference of the cavity field cs is real. In order to study the quantum statistical properties 
of the system through the small fluctuations of the system around the steady-state regime. Specifically, the full 
information about the correlations and entanglement can be characterized by analyzing the variance between the 
quadrature components of the fields. For this purpose, we define dimensionless quadrature operators. We define 
the quadrature operators for each mode as δx̂ = (δĉ† + δĉ)/

√
2 ,  δŷ = i(δĉ† − δĉ)/

√
2,  and the corresponding 

(5)˙̂q1 =ω1p̂1,

(6)˙̂p1 = − ω1q̂1 + gĉ†ĉ − ηq̂2 − γ1p̂1 + ξ1(t),

(7)˙̂q2 =ω2p̂2,

(8)˙̂p2 = − ω2q̂2 − ηq̂1 − γ2p̂2 + ξ2(t),

(9)˙̂c = − (κ + i�− igq̂1)ĉ + 2Gaĉ
†eiθ +�+

√
2κ ĉin,

(10)�ξi(t)ξi(t′)� =
γi

ωi

∫

dωi

2π
e−iωi(t−t′)ωi

(

1+ coth

(

�ωi

2κBT

))

, i = 1, 2.

(11)�ξi(t)ξi(t′)+ ξi(t
′)ξi(t)�/2 = γi(2n̄+ 1)δ(t − t ′).

(12)ps1 = ps2 = 0, qs1 =
−ω2 g |cs|2
η2 − ω1ω2

, qs2 =
g |cs|2η

η2 − ω1ω2

,

(13)cs = κ − i�′ + 2Gae
iθ

κ2 +�′2 − 4G2
a

�,

(14)δ ˙̂q1 =ω1δp̂1,

(15)δ ˙̂p1 = − ω1δq̂1 + g(c∗sδĉ + csδĉ†)− ηδq̂2 − γ1δp̂1 + ξ1(t),

(16)δ ˙̂q2 =ω2δp̂2,

(17)δ ˙̂p2 = − ω2δq̂2 − ηδq̂1 − γ2δp̂2 + ξ2(t),

(18)δ ˙̂c = − (κ + i�′)δĉ + igcsδq̂1 + 2Gae
iθ δĉ† +

√
2κδĉin.
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Hermitian input noise operators are  δx̂in = (δĉ†in + δĉin)/
√
2,   δŷin = i(δĉ†in − δĉin)/

√
2.  Thus, we obtain the 

linearized quantum fluctuations equations

where G0 =
√
2gcs is the effective optomechanical coupling. The equations of motion for the quantum fluctua-

tions from Eqs. (19)–(24) can be written in a compact form

where  u(t) = (δq̂1, δp̂1, δq̂2, δp̂2, δx̂, δŷ)
T and n(t) = (0, ξ1(t), 0, ξ2(t),

√
2κδx̂in,

√
2κδŷin)

T are the column vector 
of the fluctuation and the column vector of the noises sources, respectively. The drift matrix A can be defined by

Therefore, the drift matrix A of Eq. (26) contains all the information about the system. It is worth noting that the 
system can achieve a stable steady-state condition when all of the real parts of the eigenvalues of the drift matrix 
A are negative. The stability condition can be obtained by using the Routh-Hurwitz  criterion52. Therefore, the 
steady state of the quantum fluctuations is a continuous variable Gaussian state. This state is fully characterized 
by a 6 × 6 covariance matrix (CM) with corresponding components defined as

Accordingly, we can express the above as

where f (t) = exp(At) , and as t → ∞ , the system is stable. χ(t − t ′)ij = �n(t)in(t ′)j + n(t ′)jn(t)i�/2 is 
the matrix of the stationary noise correlation functions. As a consequence, and using the fact that the 
components of n(t) are uncorrelated, and using Eq. (11), then we get χ(t − t ′)ij = Dijδ(t − t ′) , where 
D = diag(0, γ1(2n̄+ 1), 0, γ2(2n̄+ 1), κ , κ) is the noise correlation matrix. The solution of Eq. (28) becomes 
R =

∫∞
0

dtf (t)Df (t)T . The stability conditions of the systems are satisfied, then the steady-state correlation 
matrix can be derived by considering the Lyapunov  equation53

The correlation matrix R can be written in the form of a block matrix

where each block represents a 2× 2 matrix. The blocks on the diagonal represent variance within each subsys-
tem (the optical cavity mode, the two mechanical modes ), whereas the blocks off the diagonal represent the 
correlations between subsystems.

Quantification of quantum correlations
In this section, we measure the quantum correlation between the subsystems. To this aim, it is commonly 
accepted that this quantum correlation transfer provides a potential tool to exploit the quantum information 
encoded in mechanical modes that can be more resilient against decoherence effects. The enhancement of this 
transfer is crucial. In this sense, we measure the quantum correlation between the subsystems through three 
quantum quantifiers such as quantum entanglement, quantum steering, and quantum discord. Particularly, the 

(19)δ ˙̂q1 =ω1δp̂1,

(20)δ ˙̂p1 = − ω1δq̂1 − ηδq̂2 + G0δx̂ − γ1δp̂1 + ξ1(t),

(21)δ ˙̂q2 =ω2δp̂2,

(22)δ ˙̂p2 = − ω2δq̂2 − ηδq̂1 − γ2δp̂2 + ξ2(t),

(23)δ ˙̂x = − (κ − 2Gacosθ)δx̂ + (�′ + 2Gasinθ)δŷ +
√
2κδx̂in,

(24)δ ˙̂y = − (�′ − 2Gasinθ)δx̂ − (κ + 2Gacosθ)δŷ +
√
2κδŷin,

(25)u̇(t) = Au(t)+ n(t),

(26)A =















0 ω1 0 0 0 0

−ω1 − γ1 − η 0 G0 0

0 0 0 ω2 0 0

−η 0 − ω2 − γ2 0 0

0 0 0 0 − κ + 2Gacosθ �′ + 2Gasinθ
G0 0 0 0 −�′ + 2Gasinθ − κ − 2Gacosθ















.

(27)Rij = �ui(t)uj(t ′)+ uj(t)ui(t
′)�/2.

(28)Rij =
∑

ij

∫ ∞

0

dt

∫ ∞

0

dt′f (t)ijf (t
′)jiχ(t − t ′)ij ,

(29)AR + RAT = −D.

(30)R =





Km1
Lm1m2

Lcm1

LTm1m2
Km2

Lcm2

LTcm1
LTcm2
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logarithmic negativity EN is a witness of the entanglement between the bipartite subsystems in a continuous 
variable system. It is defined  by54,55

which νs is the smallest partial transposed symplectic eigenvalue χ and given by

where � = detKm1
+ detKm2

− 2detLm1m2
 , and the correlation matrix is associated with the selected bipartite, 

and by neglecting the rows and columns, we obtained the interesting mode from Eq. (30) in the form of 2× 2 , 
block matrix

Furthermore, we can see that the necessary and sufficient condition for the Gaussian state being entangled if 
νs < 0.5 , which is entirely identical to Simon’s criterion, which states that the necessary and sufficient condition 
for entanglement of non positive partial transpose condition for Gaussian  states56. Consequently, we numeri-
cally describe the results of those calculations via plotted in Figs. 2, 3, 4 and 5. Furthermore, quantum steering 
is another quantum correlation quantifier that is an essential resource in several fundamental  applications12,13. 
It is a measure of asymmetric property between two entangled observers (between the mechanical oscillator−1 

(31)EN = max[0,−log2νs],

(32)νs =
[

�−
√

�2 − 4detχ

2

]
1
2

,

(33)χ =
(

Km1
Lm1m2

LTm1m2
Km2

)

.
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Figure 2.  Plots of quantum correlations, e.g., logarithmic negativity EN , quantum steering(SA→B : SB→A ), and 
quantum discord(DA : DB ) as function of the normalized detuning �/ωm for different value of the nonlinear 
gain of the OPA (a) Ga = 0 , (b) Ga = 0.26κ , (c) Ga = 0.35κ , and (d) Ga = 0.4κ with phase of the optical field 
driving the OPA ( θ = 0 ), temperature ( T = 4 mK), laser power (P = 10 mW) , and Coulomb coupling strength 
(η = 0.95ωm) . Other parameters are listed in the main text.
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and mechanical oscillator−2 in this case). Moreover, it provides a way to quantify how much steerability the two 
separate mechanical oscillators possess. If we consider the information transfer between the mechanical oscil-
lator−1 and mechanical oscillator−2 due to their correlation and label Alice (A: mechanical oscillator−1 ) and 
Bob (B: mechanical oscillator−2 ), we use the covariance matrix of mechanical oscillators of Eq. (33) and the 
steerability of mechanical oscillator−2 by mechanical oscillator−1  A → B is defined as 14

where v̄B is the symplectic eigenvalues of 
√
detχ  and χ = Km2

− LTm1m2
K−1
m1

Lm1m2
 , derived from the Schur com-

plement of Km1
 in the covariance matrix χ . The measure of Gaussian quantum steering of mechanical oscillator−2 

by mechanical oscillator−1 is given by

The corresponding measure of the Gaussian steerability B → A can be found by

From the above, they are two possibilities for quantum steering between A and B: If SA→B = SB→A = 0 , there is 
no-way steering, which means Alice cannot steer Bob and vice versa even if they are not separable, and two-way 
steering if SA→B = SB→A > 0 . In actuality, a non-separable state is not always a steerable state, while a steerable 
state is always not separable.

(34)SA→B = max
[

0,−ln(v̄B)
]

,
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2
ln
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.
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Figure 3.  Plots of quantum correlations, e.g., logarithmic negativity EN , quantum steering  ( SA→B : SB→A ), 
and quantum discord (DA : DB ) as a function of the normalized detuning �/ωm for different value of Coulomb 
coupling strength (a) η = 0.95ωm , (b) η = 0.97ωm , (c) η = 0.98ωm , and (d) η = 0.99ωm with the nonlinear 
gain of the OPA (Ga = 0.26κ) . Other parameters are the same as Fig. 2.
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Finally, we use another quantum correlation quantifier which is a fundamental notion allowing for the 
description of the quantumness of the correlations present in the state of a quantum system. In our case, the 
Gaussian quantum discord denotes non-classical correlations if the mechanical oscillator−1 and mechanical 
oscillator−2 are separable or not. Employing Eq. (33), the Gaussian quantum discord for the mechanical oscil-
lator−1 defined  as57

The simplectic eigenvalues given by

with �′ = det(Km1
)+ det(Km2

)+ 2det(Lm1m2
) and    ǫ  is defined by

Similarly, the quantum discord for the mechanical oscillator−2 can be found as
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Figure 4.  Plots of quantum correlations, e.g., logarithmic negativity EN , quantum steering ( SA→B : SB→A ), and 
quantum discord ( DA : DB ) as function of the normalized detuning �/ωm for different value of phase of the 
optical field driving the OPA (a) θ = π/16 , (b) θ = π/8 , (c) θ = π/4 , and (d) θ = π/3 with the nonlinear gain 
of the OPA (Ga = 0.26κ) . Other parameters are the same as Fig. 2.
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where the function f is defined by

The quantum state of the mechanical oscillator−1 and mechanical oscillator−2 are not separable if     
DA > 1 : DB > 1 . Moreover, if the condition   0 ≤ DA < 1 : 0 ≤ DB < 1  is satisfied, the mechanical oscillator−1 
and mechanical oscillator−2 can be in a separable state or an entangled state. Thus, we numerically describe the 
results of those calculations and plotted in Figs. 2, 3, 4 and 5.

Results and discussion
In this section, we investigate the quantum correlation through an optical parametric amplifier and coulomb-
type interaction in the hybrid system. This can be understood analytically by inspecting the structure of the 
drift matrix A of Eq. (26) which contains all the information about the system. Specifically, we have employed a 
three-quantum correlation quantifier’s expression of Eqs. (31), (35), and (37). Moreover, to obtain the covariance 
matrix, we numerically solve Eq. (29) and numerically calculate the logarithmic negativity, which is used as the 
witness of quantum entanglement, and Gaussian quantum discord that gives the measure of all non-classical 
correlations. Furthermore, we numerically calculate the quantum steering to characterize the steerability between 
the two mechanical modes. We now investigate the properties of the quantum correlation of the hybrid system. 
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Figure 5.  Plots of quantum correlations, e.g., logarithmic negativity EN , quantum steering ( SA→B : SB→A ), 
and  quantum discord ( DA : DB ) as a function of the temperature for different values drive laser 
power (a) P = 50mW , (b) P = 70mW , (c) P = 80 mW , and (d) P = 100 mW with � = 0.6ωm with the 
nonlinear gain of the OPA (Ga = 0.26κ) . The remaining set of parameters is the same as Fig. 2.
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For simplicity, we assume the parameters of the two mechanical oscillators are identical, i.e., ω1 = ω2 = ωm , 
γ1 = γ2 = γm and  T1 = T2 = T . The parameters used in our numerical calculations are chosen based on the 
experiment conditions reported in 58,59 where, ωm = 200π MHz, γm = 20π Hz, κ = 88.1 MHz, m = 5 ng, L = 1 
mm, and the wavelength of driving laser � = 810 nm.

In Fig. 2, we report the quantum correlations measuring between the two mechanical oscillators using log-
arithmic negativity EN , quantum steering ( SA→B : SB→A ), and quantum discord ( DA : DB ) as a function of 
the normalized detuning �/ωm for different values of nonlinear gain of the OPA (a) Ga = 0 , (b) Ga = 0.26κ , 
(c) Ga = 0.35κ , and (d) Ga = 0.4κ . In Fig. 2a–d, we numerically display the effect of the nonlinear gain of the OPA 
on the quantum entanglement, quantum steering, and quantum discord between the two mechanical oscillators. 
We generate the bipartite entanglement, quantum steering, and quantum discord between the two mechanical 
modes as functions of normalized detuning for different values of the nonlinear gain of the OPA. In particular, 
using realistic parameters for which a significant amount of quantum correlation is achievable. Specifically, one 
can observe that a correlation exists between the two oscillators, implying that there is a quantum correlation 
between them, even though they are separated. Furthermore, Fig. 2a–d, shows one can clearly understand that the 
higher the nonlinear gain of the OPA coupling parameter is the stronger the oscillators entangle and the broader 
the range of the correlation between the subsystems can be realized. This shows that increasing the nonlinear 
gain of the OPA enhances quantum entanglement, quantum steering, and quantum discord compared to the 
absence of the OPA, i,e., under ordinary light driving. Our result shows that if there is no Coulomb coupling, 
it is impossible to entangle the two separated oscillators. This is because increasing the nonlinear gain of the 
OPA corresponds to the increase in the photon number in the optical cavity, which leads to a stronger radiation 
pressure acting on the mechanical oscillator−1 and the Coulomb coupling between the mechanical oscillators. 
Furthermore, our results are consistent with those reported  in45.

Next, we explore the crucial role of Coulomb coupling strength η on the quantum correlations, e.g., quantum 
entanglement, quantum steering, and quantum discord between the two mechanical oscillators separated in 
space. Figure 3, we plot the logarithmic negativity EN , quantum steering ( SA→B : SB→A ), and quantum discord 
( DA : DB ) as function of the normalized detuning �/ωm for different value of Coulomb coupling strength (a) 
η = 0.95ωm , (b) η = 0.97ωm , (c) η = 0.98ωm , and (d ) η = 0.99ωm . As illustrated in the previous section, as long 
as the logarithmic negativity which characterizes the entanglement remains positive, there is an entanglement 
between the oscillators, meaning that there is a quantum correlation between two mechanical oscillators, even 
though they are separated in space. As can be seen from Fig. 3a–d that the presence of strong Coulomb coupling 
enhances the entanglement, quantum steering, and quantum discord of mechanical oscillators separated by 
space. It is worthwhile to point out that the larger the coulomb coupling results the more strongly entangled the 
mechanical oscillators. Furthermore, if there is no Coulomb coupling strength, it is impossible to entangle the 
two oscillators separately. Therefore, the Coulomb interaction between the two oscillators is the most essential 
parameter to realize the state transfer between the subsystems. Furthermore, our results are consistent with those 
reported  in40,45. Now, we consider the feasibility of the choice of the numerical value of the coupling strength η 
in the experiment. If we apply the reported experimental parameters, i.e., the gate voltage V1 = V2 = 200V  , the 
capacitance of the gate C1 = C2 = 2.4nF and the separation between mechanical oscillators without coulomb and 
optomechanical interaction r0 = 160µm40,47, in this situation η ≈ 0.33ωm . If we compare the numerical values 
used in our coupled optomechanical system, it is obvious that our choice of the numerical value of coulomb 
coupling strength is easily executable in experiments. Thus, our hybrid optomechanical system can be realized by 
choosing appropriate experimental parameters  from58,59. The results show that the presence of OPA and strong 
Coulomb coupling enhances the quantum correlations between the two mechanical oscillators, and Coulomb 
interactions are more prominent in quantum correlations.

We next examine the effect of the phase of the optical field driving the OPA on quantum correlations between 
the two mechanical oscillators separated in space. In Fig. 4, we plot the quantum correlations, e.g., logarithmic 
negativity EN , quantum steering ( SA→B : SB→A ), and quantum discord (DA : DB ) as a function of the normalized 
detuning �/ωm for different values of a phase of the optical field driving the OPA (a) θ = π/16 , (b) θ = π/8 , 
(c) θ = π/4 , and (d) θ = π/3 . As shown in Fig. 4a–d, it can be seen that the entanglement, quantum steering, 
and quantum discord larger with the phase  θ increases with fixed values of the nonlinear gain of the OPA (Ga) 
and Coulomb coupling strength η . Because the proper choice of a phase of the optical field driving the OPA 
may lead to maximum noise suppression, thereby resulting in maximum entanglement, quantum steering, and 
quantum discord between the two mechanical oscillators. Besides, the optimum values of quantum steering and 
quantum discord are occurred at �/ωm = 0.13 , and �/ωm = 0.05 , respectively, for the case θ = π/3 . Further-
more, the quantum correlation between the two mechanical oscillators increases as the phase of the optical field 
driving the OPA ( θ ) increases. Thus, we deduced that the presence of phase fluctuation of driving fields affects 
the quantum correlations.

It is also significant to study the robustness of quantum correlations between the two mechanical oscillators 
against temperature. Figure 5 shows plots of quantum correlations, e.g., logarithmic negativity ( EN ), steering 
( SA→B : SB→A ), and quantum discord (DA : DB ) as a function of the temperature for different values drive 
power  (a) P = 50 mW, (b) P = 70 mW , (c) P = 80 mW , and (d) P = 100 mW with � = 0.6ωm . It is obvious 
that quantum correlations, such as entanglement, quantum steering, and quantum discord, become stronger 
as the laser power increases. The reason for this is that increasing the laser power causes a stronger coupling 
between the mechanical oscillator−1 and the cavity field due to an increase in the photon number in the cav-
ity. The amount of entanglement, quantum steering, and quantum discord also decreases monotonically as the 
temperature increases because thermal noise in the environment induces decoherence. To be more specific, the 
entanglement degrades to zero, this is the phenomenon of entanglement of sudden  death60. According to these 
results, an increase in temperature leads to the transition from quantum to classical regimes, which is caused 
by thermal fluctuations. As a result, the hybrid system does not exhibit any entanglement in classical regimes, 
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despite the presence of quite strong laser power. We deduced that the stronger the thermal noise, the higher the 
temperature of the environment. The entanglement between two separated oscillators is then submerged by the 
strong thermal  noise50. We note that the two-way steerable state vanishes with higher values of the environmental 
temperature. In addition, we obtain better quantum discord at low temperatures, and even at higher values of 
temperature, quantum discord is found to persist, although entanglement EN vanishes completely, indicating 
that quantum discord extends beyond entanglement and confirms the robustness of this measure against the 
fluctuations of the bath environment. Therefore, thermal fluctuations affect quantum correlation, while laser 
power enhances quantum correlation. We believe that these are appropriate measures to quantify quantum entan-
glement, quantum steering, and quantum discord and show that our proposed scheme enhances the quantum 
correlation and proves robust against fluctuations in the bath environment.

Furthermore, we can summarize Figs. 2, 3, 4 and 5 show that entanglement, quantum steering, and quan-
tum discord all behave in the same way. As can be seen, quantum steering is bounded by quantum entangle-
ment. We have SA→B = SB→A > 0 and logarithmic negativity EN > 0 is the witness of two-way steering, while 
for SA→B = SB→A = 0 and EN > 0 , the two mechanical oscillators are not steerable (i.e. no-way steering). 
Thus, the quantum discord is more robust than entanglement as shown in Fig. 2, 3, 4 and 5, because when 
0 ≤ DA < 1 : 0 ≤ DB < 1 (i.e. the two mechanical oscillators are separable (if EN = 0 ) or entangled (if EN > 0 ). 
On the other hand when DA > 1 : DB > 1 (i.e. the two mechanical oscillators must be entangled) and we have 
EN > 0 . Moreover, we can also see from Figs. 2, 3, 4 and 5, that the quantum discord is more dominant than 
entanglement and also is a good quantifier of quantum correlation. The presence of OPA and strong Coulomb 
coupling enhances the quantum correlations between the two mechanical oscillators, and Coulomb interactions 
are more prominent in the nano-electro-optomechanical system. Such a phenomenon is because the enhance-
ment of the effective coupling accelerates the quantum correlation in hybrid systems. Thus, entanglement detec-
tion is still a challenge experimentally, but quantum correlation detection is relatively easy. At present, some 
promising schemes have been suggested  in26,45, so we can employ homodyne measurement techniques indirectly 
to detect quantum correlation especially the quantum  entanglement41,61. Therefore, we believe that our scheme 
will be experimentally feasible with the quantum information experimental applications, and demand for the 
development of skills in quantum state manipulation.

Conclusions
In conclusion, we have studied the quantum correlation in a nano-electro-optomechanical system enhanced by 
an optical parametric amplifier and Coulomb-type interaction. We consider a hybrid system that comprises a 
cavity and two charged mechanical oscillators with an OPA, in which the cavity mode is coupled to a charged 
mechanical oscillator via radiation pressure, and the two charged mechanical oscillators are coupled via Coulomb 
interaction. We showed that the Coulomb interaction between mechanical oscillators is the primary reason for 
the existence of a quantum correlation between the two mechanical oscillators. Our result shows that the presence 
of OPA and strong Coulomb coupling enhances the quantum correlations between the two mechanical oscilla-
tors. In addition, Coulomb interactions are more prominent in quantum correlations. Besides, in the presence 
of OPA, the maximum amount of quantum entanglement, quantum steering, and quantum discord achieved 
between the two mechanical oscillators than in the absence of OPA. This is because increasing the nonlinear gain 
of the OPA increases the photon number in the cavity, which leads to a stronger radiation pressure acting on the 
mechanical oscillator−1 . Additionally, we show that a proper phase choice of the optical field driving the OPA 
enhances quantum correlations under suitable conditions. This is because the proper choice of a phase of the 
optical field driving the OPA may lead to maximum noise suppression, thereby resulting in maximum quantum 
correlations. Furthermore, the quantum correlations decline rapidly with increasing temperature as a result of 
decoherence. Specifically, we noted that the quantum entanglement degrades to zero; this is the phenomenon 
of the quantum entanglement of sudden death. According to these results, an increase in temperature leads to 
the transition from quantum to classical regimes, which is caused by thermal fluctuations. Furthermore, when 
compared to quantum entanglement, the two-way steerable state vanishes with higher values of the environ-
mental temperature. Finally, we have shown that quantum discord persists at higher temperature values, even 
though quantum entanglement disappears completely at higher temperature values. In this regard, quantum 
discord extends beyond entanglement and confirms the robustness of this measure against the fluctuations of 
the bath environment. Our proposed scheme of quantum correlation provides a promising platform for realizing 
continuous variable quantum information processing.

Data availability
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able request.
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