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Mueller matrix polarization 
parameters correlate with local 
recurrence in patients with stage III 
colorectal cancer
Kseniia Tumanova 1*, Stefano Serra 2, Anamitra Majumdar 1, Jigar Lad 1, Fayez Quereshy 3, 
Mohammadali Khorasani 4 & Alex Vitkin 1,5,6

The peri-tumoural stroma has been explored as a useful source of prognostic information in colorectal 
cancer. Using Mueller matrix (MM) polarized light microscopy for quantification of unstained histology 
slides, the current study assesses the prognostic potential of polarimetric characteristics of peri-
tumoural collagenous stroma architecture in 38 human stage III colorectal cancer (CRC) patient 
samples. Specifically, Mueller matrix transformation and polar decomposition parameters were tested 
for association with 5-year patient local recurrence outcomes. The results show that some of these 
polarimetric parameters were significantly different (p value < 0.05) for the recurrence versus the 
no-recurrence patient cohorts (Mann–Whitney U test). MM parameters may thus be prognostically 
valuable towards improving clinical management/treatment stratification in CRC patients.

Colorectal cancer is one of the most common malignancies. Every year an estimated 1.4 million people world-
wide are diagnosed with colorectal carcinoma (CRC)1,2. Although surgical resection is the main treatment at 
present, the significant incidence of tumour recurrence following the procedure is strongly linked to a diminished 
chance of  survival3. Local recurrence (LR) plays a critical role in determining the outcome of patients who have 
undergone surgery for CRC 3; LR refers to the regrowth of cancer cells in the same location where the tumour was 
initially  removed3. Generally, the LR rate of colon cancer treated for cure is thought to be lower than that of rectal 
cancer; reported rates are below 10% for the former and 5–19% for the latter, depending on the stage and other 
clinical  variables4–6. The ability to predict which patients are likely to fail due to LR could be useful for creating a 
personalized and more patient-centred treatment plan. For example, such patients may be considered for adju-
vant radiation or chemotherapy and may also be suitable for more intensive follow-up after curative  resection3.

Few biomarkers based on genetic analysis of the cellular DNA (e.g., OncotypeDx, ColoPrint, ColoGuideEx, 
ColoGuidePro), for predicting distant recurrence in Stage II and III CRC, are currently being investigated for 
clinical  workup7–11. Despite being promising for recurrence prediction, the search for alternative sources of 
prognostic information is necessitated by numerous studies demonstrating the various shortcomings of most of 
these tests, as well as their high  cost10,11. Cellular compartment aside, increasing evidence supports the prognos-
tic value of the tumour microenvironment, such as tumour stromal  architecture12–16, particularly desmoplastic 
response (DR)17–20. DR is linked to the growth and structural reorganization of collagenous fibres in the most 
invasive tumour front regions. In order to evaluate DR, stromal maturity is divided into three categories (imma-
ture, intermediate, and mature); recent studies show that stromal maturity is correlated with 5-year relapse-free 
survival and locoregional  recurrence12,13. Nonetheless, despite its promise, assessment (either qualitative or 
quantitative) of DR is hampered by inter-observer variability and analysis subjectivity, which makes its clinical 
implementation challenging.

Towards quantifying DR and beyond, collagen can be visualized using a variety of optical techniques. Scan-
ning and transmission electron microscopies offer high-resolution visualization of individual collagen fibres 
but are expensive, involve complicated specimen preparation, and provide nanoscale detail that is excessive for 
many  applications21. Second harmonic generation (SHG) imaging is sensitive, specific for fibrillar collagen, and 
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amenable to quantification methods but lengthy imaging times, limited fields of view, high cost and technical 
complexity of its advanced microscope components hinder its clinical  use22,23. Another popular method to 
image fibrillar stroma is staining a histology slide with picrosirius red or Mason Trichrome and imaging with 
a  microscope24. However, utility of this method has been hindered by the multi-step sample preparation and 
reproducibility issues caused by differences in staining  procedures25.

In contrast, polarized light microscopy (PLM) offers a comparatively simple, rapid, and robust approach to 
address these disadvantages. PLM provides strong stromal contrast and wide fields of view with minimal sample 
preparation. Several recent reviews of polarimetry have summarized its potential in biomedicine, highlighting 
its applications in different cancer types such as breast, cervix, prostate, brain, and  colon26–28. Among the exten-
sively investigated techniques, the LC-PolScope and polychromatic polarization microscopy (PPM) stand out 
due to their cost-effectiveness and high resolution  advantages29–33. Significant contributions in this field have 
been made by Keikhosravi et al. who successfully quantified collagen organization in histopathology samples 
using liquid crystal-based polarization microscopy and real-time polarization microscopy of fibrillar collagen, 
 respectively31,32. However, it is important to consider their limitations. The LC-PolScope relies on liquid crystal 
devices, which require frequent calibration due to component  variations30. Additionally, both LC-PolScope 
and PPM primarily focus on imaging birefringent structures to acquire specimen retardation and its principal 
axis orientation, both useful metrics for specific applications. Nevertheless, in complex biological tissues, a 
polarization technique capable of providing a more comprehensive understanding of various structural tissue 
reorganizations may be  advantageous29,30.

A novel variant of cross-polarized light microscopy, recently proposed by our  group34–37 and combined with 
unsupervised clustering algorithm models, assessed the prognostic value of collagenous stroma to predict 5-year 
patient survival and showed initial  promise34. However, no correlation was found with LR outcomes, another 
clinically relevant endpoint. Hence an expanded and more powerful polarimetric technique that is sensitive to 
microstructural changes must be developed for obtaining this clinically relevant information on biomedical 
specimens. In the current paper, we address this challenge and demonstrate that Mueller matrix (MM) pola-
rimetry imaging may provide useful contrasts to stratify patients into LR-correlated groups, further suggesting 
that tumour stroma may indeed contain information of significant prognostic value. This work describes the 
extraction of MM polarimetric parameters that may have explicit associations with specific microstructural/
biophysical features of CRC tissues, and statistical analysis to explore correlations with actual clinical outcomes 
(5-year LR). The results suggest that this quantitative methodology can separate outcome groups, warranting 
further study and validation towards a simple and robust tool for incorporating stromal-based prognosis into 
potential clinical use.

Methods
Ethics. Institutional ethics approval was obtained from the University Health Network (Toronto, Ontario, 
Canada). The need for patients’ consent was waived by the ethics board due to the retrospective nature of the 
study, anonymization of personal health information, and the results of H&E analysis having already been dis-
cussed with patients. All procedures and handling of patient data were conducted in accordance with the Uni-
versity Health Network Research Ethics Board guidelines/approvals.

Cancerous tissue samples. This study used 38 archival surgical resection samples of Stage III left-sided 
colorectal cancer patients prior to receiving adjuvant chemotherapy. Clinical data (including clinical outcomes 
such as 5-year survival, 5-year local recurrence, etc.) were available to assess correlations. The no-LR cohort con-
tained 29 patients; consequently 9 patients belonged to the local recurrence group. The analysis used unstained 
4.5 µm thick sections on charged microscope slides, from formalin-fixed and paraffin-embedded blocks. Mini-
mal sample preparation involved chemical dewaxing to avoid possible polarization imaging  artifacts34–37. No 
further processing was required for polarimetric imaging. Adjacent slides were H&E stained and scanned at 
20X magnification on an Aperio ScanScope CS (Leica Biosystems, USA) for the pathologists’ region-of-interest 
(ROI) selection (Fig. 1a).

ROI selection and histology. In this study, the most representative section of each patient’s tissue resec-
tion was selected based on the depth of tumour invasion. To ensure systematically random sampling within 
the peri-tumoural region, an experienced gastrointestinal pathologist (SS) employed a “grid rule”  approach38. 
The pathologist used an overlaying grid within the peri-tumoural area, identifying regions of interest (ROIs) 
measuring approximately 200 μm × 200 μm on each slide. The sampling grid allowed for an even distribution 
and equal-sized ROIs within the peri-tumoural region, minimizing potential biases in the selection process. The 
ROIs were marked at the interface of the invasive tumour front and stroma, excluding cancer cells when possible 
(Fig. 1a). Microscopically evident structures such as smooth muscle tissue, lymphoid follicles, and large vessels 
were excluded as they are considered part of the native constituents of the large bowel and are likely not relevant 
to the analysis. The number of ROIs per patient slide ranged from 3 to 14 (356 ROIs in total over the 38 patients), 
depending on the size of the tumour and morphological characteristics of the stroma at the invasive tumour 
front. To avoid selection bias, the pathologist was blinded to the polarimetry images and clinical outcome data, 
such as 5-year local recurrence. The size of the ROI was carefully chosen to strike a balance between ensuring 
robust statistical analysis and capturing the inherent heterogeneity of the stromal region, while also maintaining 
adequate spatial resolution as reported in other  studies35,36. This approach aimed to optimize the selection of the 
ROI size, taking into consideration the need for reliable statistics and the diverse characteristics of the stroma. 
Visual tissue landmarks were used to transfer these ROIs from the H&E images onto the adjacent unstained 
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slides imaged polarimetrically (Fig. 1b, c). Image processing and polarimetric analysis were then performed 
using Python programming language.

Polarimetric method. The multiscale Mueller polarimetry module for a stereo zoom microscope (Axio 
Zoom V16, Zeiss with the objective lens Plan Neofluar Z 1X/0.25 NA), recently designed by our group, was 
used for this  study39. Briefly, the polarization of the incident light is modulated by a Polarization State Gen-
erator (PSG) comprising a rotatable linear polarizer (LPVISE100-A, Thorlabs) followed by a rotatable quarter 
wave plate (QWP) (AQWP05M-600, Thorlabs). The unstained tissue sample is viewed through suitable imaging 
optics including a Polarization State Analyser (PSA) made of the same elements as the PSG, but in reverse order 
(Fig. 2). The specific arrangement and orientations of the QWPs help in generating and analyzing the circu-
lar polarization components of the light, providing valuable additional information (over and above the linear 
polarization states and interactions) about the optical properties and structural characteristics of the sample. The 

Figure 1.  Whole-slide histologic and polarimetric imaging of a stage III CRC sample for qualitative ROI-based 
analysis. (a) Overview image of H&E-stained slide, showing different CR tissue types and pathologist-selected 
ROIs (green squares at the leading edge of the tumour). Zoomed-in (b) H&E and (c) retardance (see Section 
“Polarimetric method”) images of the region around the left-most ROI in (a). The brighter areas in (c) represent 
birefringent tissues that contain more collagenous stroma.
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microscope LED [Illuminator HXP 200C (D), Zeiss] is a 310 W uncollimated white light source passing through 
a 630 nm filter (ET630/75 or ZET630/10, Chroma). This is a reasonable tissue-optics wavelength choice because 
tissue scattering and hemoglobin absorption are relatively low at longer visible  wavelengths40. The camera was 
the ORCA-Flash4.0 V3 Digital CMOS by Hamamatsu. Its pixels are 6.5 × 6.5 μm2, arranged in a 2048 × 2048 
array. Microscope optics yielded lateral resolution of < 2.2 μm. The field of view in this study was 1.66 × 1.66 
 mm2, corresponding to an effective magnification of 8X. Taking this effective magnification into account, we 
calculated the pixel size to be 0.81 × 0.81 μm2.

To extract more information from the polarimetry images, the methodology presented here expands on our 
previous rotating-crossed-polarizers  approach34–37 towards a full MM analysis. The Mueller matrix is a sample 
transfer function that describes how the polarization of light changes due to its interactions with the sample, 
and thus represents the polarization properties of tissue. These properties are contained in its Mueller matrix M 
that links the input and output light states through a simple linear relationship:

where Sin is the input 4-element Stokes vector (input polarization state) and Sout is the output 4-element Stokes 
vector (output polarization state). The Mueller matrix thus contains 16 parameters and can be written as:

where mij are the elements of Mueller matrix.
Despite the seeming simplicity of Eqs. (1) and (2), the matrix algebra for any realistic measurement gets 

complicated very quickly; more to the point, the derived MM of tissue contains many “numbers” (16 elements!) 
of uncertain biophysical meaning and significance. The challenges of MM polarimetry are thus (A) to measure 
MM accurately, and (B) to extract meaningful biophysical metrics from it. To address (A), we used 24 direct 
Stokes vector images rather than the minimum of 16 to improve robustness and  SNR39,41. The setup was cali-
brated by measuring the Mueller matrices of standard samples, including air and retarders. Calibration is per-
formed pixel-by-pixel to reduce spatially dependent distortions, such as those caused by off-axis oblique rays. 
The reconstructed polarimetry images have slightly lower resolution compared to a single transmission Stokes 
image due to slight image shifts resulting from different setting of PSG and PSA. This rotation induces minor 
angular variations in optical component thickness and/or optical properties, which cause slight shifts in image 
location and potential loss of  focus39,42.

(1)Sout = MSin

(2)M =

m11 m12 m13 m14

m21 m22 m23 m24

m31

m41

m32

m42

m33 m34

m43 m44

Figure 2.  Experimental setup for Muller matrix microscopy. Light enters from below the sample (S), passes 
through a collimator (C) and polarization state generator (PSG), consisting of a linear polarizer (P) and a 
quarter-wave plate (QWP). After interacting with the sample, light passes through a polarization state analyzer 
(PSA), consisting of QWP and P. Finally, light is collected by the microscope objective lens (OBJ) and an image 
is captured by a CMOS camera. LS, light source; M, mirror; TL, tube lens. The polarimetry module is outlined 
with a dotted rectangle.
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To address potential artifacts in image alignment, we used pyStackReg, a Python library commonly employed 
for image co-registration43. This method incorporates bilinear interpolation, which calculates pixel values based 
on the weighted average of neighboring pixels, facilitating smooth transitions during image alignment. Although 
this can introduce slight variations in pixel values and potentially smooth out fine details or cause minor blurring 
in registered images, we performed a rigorous validation process to ensure the reliability of our analysis. Through 
comprehensive comparisons between interpolated and non-interpolated images, we consistently observed similar 
trends and patterns, suggesting that the interpolation did not introduce substantial distortions or biases that 
would affect the validity of our results.

To address (B), we (i) decomposed the MM using Lu–Chipman polar decomposition (MMPD) followed by 
selected metrics  extraction44, and (ii) calculated Mueller matrix transformation (MMT)  parameters45. There are 
many other possible polarimetric measures and decomposition techniques to choose from; these two methods 
were chosen to demonstrate proof of concept due to their relative simplicity and potential biophysical interpreta-
tion of the derived  numbers28.

(i) MMPD represents any physically realistic MM as the product of depolarizer ( M� ), retarder ( MR ), and 
diattenuator ( MD ) matrices:

As matrix multiplication is not commutative (order matters), the above decomposition order is not  unique46. 
Several research studies have tackled this issue, including offering alternate decomposition  algorithms47–50. Nev-
ertheless, the Lu-Chipman approach seems to work adequately in biological  media26,28. From Eq. (3), MMPD 
parameters � , R, and D can then be calculated, representing depolarization, retardance, and diattenuation 
properties of the tissue sample, respectively:

Further, the retardance R is composed of linear and circular  contributions26. In this study, we analyze the 
linear retardance and circular retardance of CRC samples via Eqs. (5a) and (5b), respectively:

 (ii) Instead of matrix manipulations as pursued via MMPD or other decomposition approaches, He et al.
have proposed MMT method by fitting the original MM elements to the trigonometric functions in polar 
coordinates to obtain a set of parameters for quantitatively describing the characteristics of anisotropic 
scattering  media45:

Previous efforts to assign biophysical meaning to these MMT and to the above-discussed MM decompo-
sition parameters have suggested the following: (a) the MMPD parameter ∆ and the MMT parameter b are 
sensitive to the sample depolarization  properties51,52; (b) the MMPD parameter D and the MMT parameters 
 t1 and  PL are sensitive to the sample’s  anisotropy52,53; (c) the MMPD parameter δ and the MMT parameter  qL 
can reveal the alignment and density of the fibrous structures due to their  birefringence26,52,53; (d) retardance-
related information (e.g., R, δ, and � in MMPD’s Eqs. 4b, 5a, and 5b) is mainly contained in the sub-matrix [ 

(3)M = M�MRMD

(4a)� = 1− |tr(M�)−1|
3

(4b)R = cos−1
[
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]

(4c)D = 1
m11

√

m2
12 + m2

13 +m2
14

(5a)δ = cos−1
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 m22  m23  m24;  m32  m33  m34;  m42  m43  m44]26,28, as also reflected in the MMT parameter  qL (the root-mean-square 
of  m42 and  m43 is one of the rotation-invariant parameters representing the ability of transforming between 
linear and circular  polarizations52,53); (e) the magnitude of the difference between  m23 and  m32 ( β in Eq. 6e) 
gives a measure of optical rotation (circular birefringence) and coexistence of multiple anisotropic effects in the 
 medium28,54,55. Similarly, circular retardance � has been linked to the presence of chiral molecules (e.g., sugars, 
DNA, enzymes), the changes of structures and/or concentrations of which are recognized as factors contrib-
uting to cancer  development26,56–58. For a more comprehensive understanding, please refer to Table 1, which 
demonstrates the relationship between these polarimetric parameters and their potential biophysical meaning.

Clearly then, there are some potential metrics candidates in the analysis/interpretation of MM (10 metrics 
reported in Table 1 and 9 MM elements listed above), and their optimum choice will likely be task-specific. That 
is, MM metrics that potentially delineate pathologic from normal tissue will likely be (at least in part) different 
from those that may correlate with 5-year disease-free survival or with probability of local recurrence. With that 
in mind, we tested the various MM polarization metrics mentioned above for possible correlations with local 
recurrence in a clinical cohort of 38 Stage-III CRC patients. The results below summarize our findings for the 
most significant “hits”.

Statistical method. The MM elements were computed individually for every pixel, yielding 62,500 values 
for each ROI. To aggregate the pixel-level data to the patient level, a two-step averaging method was applied. 
First, the median value for the MM elements across all pixels was calculated for each ROI. Then, the mean value 
was computed across the 3–14 ROIs within a given patient sample. The resulting Mueller matrix was used to 
derive a set of 19 polarimetric parameters for each patient. To compare these parameters between the patient 
outcome groups (LR vs. No LR), we first performed the Shapiro–Wilk test to check the normality assumption of 
the data; analysis indicated that the data was not normally distributed. Therefore, we used the Mann–Whitney 
(MW) U test to assess the null hypothesis that the categorical groups came from the same  distribution59. The 
MW U test is a non-parametric or ’distribution-free’ test that is appropriate for non-normally distributed data. A 
statistically significant result (p < 0.05) would indicate that there are significant differences between the groups, 
implying that not all samples were drawn from the same distribution.

It is important to note that no extreme outliers were identified during the data analysis process. The dataset 
exhibited a consistent pattern without any values that deviated significantly from the overall trends. Therefore, 
there was no need to exclude any data points from the analysis, and all the available data were utilized for the 
statistical comparisons between patient outcome groups (as reported in Table 2).

Results and discussion
Figure 3 displays the images of derived MM parameters D,  t1 and  qL, and for patients with different LR outcomes. 
Two representative ROIs were selected on each slide to illustrate intra- and inter-patient heterogeneity of CRC. As 
seen, besides some tentative qualitative visual differences, it is challenging to determine whether local recurrence 
status is reflected in these various polarization images. Obviously quantitative analysis is required, consisting 
of calculating various summary polarization metrics for each ROI, averaging across all ROIs for each patient, 

Table 1.  Examined polarization metrics and their potential biophysical meaning for characterizing biological 
tissue properties. Mueller matrix elements are excluded due to their complexity in interpretation within the 
complex and heterogeneous nature of biological tissue.

Polarimetric parameters Biophysical meaning

� Heterogenous nature of biological tissue

b Spatial distribution of sub-wavelength “small” cellular organelles

D, t1 , PL Directional heterogeneity of fibrous structures

R, δ , qL Alignment and density of collagenous fibers

� Presence of chiral molecules

β Presence of chiral molecules and/or arrangement of collagen fibers

Table 2.  Resultant statistics for the examined polarization metrics. µ represents the mean, and σ is the 
standard deviation; p value < 0.05 indicates a statistically significant difference between the No LR (n = 29) and 
LR (n = 9) groups. Total of 356 ROIs from 38 patient samples were analyzed.

D t1 qL |m43| β

No LR LR No LR LR No LR LR No LR LR No LR LR

µ 0.02 0.05 0.005 0.012 0.010 0.03 0.007 0.025 0.005 0.007

σ 0.01 0.03 0.004 0.011 0.009 0.02 0.007 0.025 0.009 0.005

Median 0.02 0.04 0.004 0.008 0.008 0.01 0.005 0.008 0.002 0.005

p 0.0101 0.0018 0.0031 0.0237 0.0212
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and checking the results for correlation with LR status using statistical comparisons as previously described. Of 
the nineteen examined polarization metrics described above, five showed statistically significant correlations 
with 5-year local recurrence status. We present these results in three categories: anisotropy-related parameters, 
retardance-related parameters, and optical activity. The associated statistics for these are summarized in Table 2.

Figure 4 shows the anisotropy-related parameters diattenuation D and degree of anisotropy  t1, showing 
statistically significant differences (p = 0.0101 and p = 0.0018, respectively) in these metrics depending on the 
patient’s LR status. The patient cohort that went on to recur exhibits greater stromal anisotropy, as indicated by 
the larger values of both diattenuation and degree of anisotropy. Also noted is the larger spread in the results 
for the LR group across both metrics; whether this is indicative of greater biological heterogeneity of stage III 
CRCs that go on to recur, or is caused by the smaller sample size of this cohort (n = 9 vs. n = 29 for the no-LR 
group) is currently unclear.

Figure 5 displays a similar summary for the retardance-related parameters, linear-to-circular polarization 
conversion qL (p = 0.0031) and the absolute value of the Mueller matrix element  m43 (p = 0.0237). Our findings 
show that patients who experienced local CRC relapse had significantly higher mean values (and larger spread) 
of both parameters than those who did not. Unlike these two, and thus somewhat surprisingly, the other often 
reported retardance parameter—retardance R of Eq. (4b) derived from polar decomposition—did not show 

Figure 3.  Mueller matrix polarimetry of human stage III left-sided colorectal cancer. H&E, D,  t1 and  qL images 
of a particular ROI; the former two columns report on tissue anisotropy, whereas the latter right-most column 
is sensitive to density and alignment of birefringent structures such as collagen. (a, b) two representative ROIs 
from a no-local-recurrence patient (green dashed contour). (c, d) two ROIs from a patient whose colorectal 
cancer did recur locally within 5 years (red dashed contour). Owing to the highly heterogeneous nature of 
gastrointestinal tissues structures in general, and CRCs in particular (both intra- and inter-patient), no obvious 
visually discernable patterns are evident. Quantification followed by statistical correlative analysis is required; 
for details, see text.
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significant association with LR status (p = 0.0526). However, considering its proximity to statistical significance, 
this observation may suggest the influence of the limited dataset size. Gathering more data points could poten-
tially lead to reaching statistical significance in the future.

While the actual mechanism of local CRC relapse remains unknown, alterations in collagen structure in the 
peri-tumoural region may provide a potential explanation of the trends shown in Figs. 4 and 5. Collagen is the 
major component of the extracellular matrix surrounding the tumour, and in fact tumour-associated collagen 
signatures (TACS) have been proposed as biophysical metrics of tumour growth, development, and  invasion60. 
Specifically in CRC, high-density type I collagen has been associated with poor prognosis in colon  carcinoma61. 
Furthermore, type I collagen-rich environments have been shown to induce mesenchymal gene expression and 
 invasion62. Increased collagen fiber alignment and stiffness have also been linked to tumourigenesis in colon 
carcinoma  tissues62. Our findings suggest that the structural reorganization of collagen fibers is reflected in higher 
values of anisotropy- and retardance-related parameters in the CRC patients whose cancers recurred. Thus, 
Mueller matrix polarimetry could be a valuable tool for the non-invasive assessment of collagen fiber structure 
in CRC and the identification of patients at high risk of local recurrence.

Finally, Fig. 6 shows a statistically significant difference between the LR-related groups for the parameter β 
(p = 0.0212). As mentioned, this parameter reflects optical activity, the ability of certain materials to rotate the 
plane of linearly polarized light. In the peri-tumoural region, circular birefringence parameters provide insights 
into the presence of asymmetric optically active chiral molecules (glucose, proteins, lipids) and changes in col-
lagen fiber  architecture26,28. However, no significant difference is observed in circular retardance parameter � 
between the LR and LR-free groups (p = 0.5845), suggesting that molecular asymmetry is not the main factor 
driving the observed variations. Instead, the density, orientation, and interaction of collagen fibers with other 
tissue components might contribute to the overall polarization changes, indicating the presence of multiple 
anisotropic  effects26–28.

Moving forward, we are actively exploring alternative methods to extract more information from the polari-
metric images, with the goal of enhancing quantitative differences between different clinical-outcomes groups. 

Figure 4.  Boxplots showing the comparisons of anisotropy-related metrics D and  t1 for the two local recurrence 
outcome groups. For each group, the central black line shows the median, the box indicates the 1st and 3rd 
quartiles, the whiskers indicate the minimum and maximum values, and outliers are shown with triangles (here 
and elsewhere, these points were included in the quantitative analysis summarized in Table 1); p value < 0.05 
indicates a statistically significant difference.

Figure 5.  Boxplots showing the comparisons of the retardance-related parameters  qL and |m43| for the two local 
recurrence outcome groups. See Fig. 4 caption for explanation.
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One avenue we are currently investigating is the potential application of supervised machine learning algorithms. 
By leveraging these algorithms in our polarimetric analysis, there is the potential for identifying patterns that 
could contribute to predicting patient LR outcomes in the future. However, it is important to note that at this 
stage, we are not directly predicting patient outcomes, but rather laying the groundwork for potential advance-
ment in this area. With the inclusion of a larger sample size, this may provide valuable insights towards the 
discovery of independent prognostic biomarkers. We are also investigating the utility of additional MM-derived 
parameters and pixel intensity distribution features, including higher orders of the central moment (second 
order statistics) such as skewness and  kurtosis63. Another thrust is the development of automatic ROI selection 
to make our method more objective, as the subjectivity of pathologist’s ROI selections can potentially affect the 
results and reduce the robustness of the approach. Finally, the data reduction/representation/averaging of MM 
results—the transition from pixel-level findings to ROI-level averages and then to patient-level metrics—can be 
done in several ways (one possible route pursued here); this needs to be investigated and optimized in greater 
detail. These methodological refinements will be crucial in testing the ability of polarimetric parameters to predict 
clinical outcomes and address other clinically important questions.

Conclusion
The stromal collagen within the tumour microenvironment has been extensively studied and has demonstrated 
promising potential as a prognostic biomarker in colorectal cancer. However, its widespread clinical adoption is 
hindered by various obstacles such as CRC heterogeneity and the lack of standardization in the methods used 
to extract and analyze stromal features. In this study, we employed Mueller matrix imaging and quantitative 
analysis to extract information-rich polarimetric parameters with tentative biophysical meaning to differenti-
ate between two groups of patients with distinct local recurrence outcomes. Specifically, polarization signals 
based on D,  t1, |m43|,  qL, and β metrics for patients who experienced local CRC relapse were significantly higher 
(and more broadly distributed) than for those who did not. These results suggest that PLM-measured CRC 
stromal features can provide useful prognostic information. However, for the potential clinical application of 
these promising initial results to be realized, further improvements are necessary. Future research will focus on 
exploring additional morphological polarimetric quantification methods to enhance the differentiation ability 
of MM parameters, utilizing deep neural networks, optimizing the pixels-ROIs-patients averaging pipeline, and 
investigating the possibility of automated ROI selection to minimize pathologists’ subjectivity.

Data availability
Data underlying the results presented in this paper are not publicly available at this time but may be obtained 
upon reasonable request to K.T. (k.tumanova@mail.utoronto.ca).
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