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A hybrid in silico/in‑cell controller 
for microbial bioprocesses 
with process‑model mismatch
Tomoki Ohkubo 1, Yuki Soma 2, Yuichi Sakumura 1,3, Taizo Hanai 2 & Katsuyuki Kunida 1,4*

Bioprocess optimization using mathematical models is prevalent, yet the discrepancy between model 
predictions and actual processes, known as process‑model mismatch (PMM), remains a significant 
challenge. This study proposes a novel hybrid control system called the hybrid in silico/in‑cell 
controller (HISICC) to address PMM by combining model‑based optimization (in silico feedforward 
controller) with feedback controllers utilizing synthetic genetic circuits integrated into cells (in‑cell 
feedback controller). We demonstrated the efficacy of HISICC using two engineered Escherichia coli 
strains, TA1415 and TA2445, previously developed for isopropanol (IPA) production. TA1415 contains 
a metabolic toggle switch (MTS) to manage the competition between cell growth and IPA production 
for intracellular acetyl‑CoA by responding to external input of isopropyl β‑d‑1‑thiogalactopyranoside 
(IPTG). TA2445, in addition to the MTS, has a genetic circuit that detects cell density to autonomously 
activate MTS. The combination of TA2445 with an in silico controller exemplifies HISICC 
implementation. We constructed mathematical models to optimize IPTG input values for both 
strains based on the two‑compartment model and validated these models using experimental data 
of the IPA production process. Using these models, we evaluated the robustness of HISICC against 
PMM by comparing IPA yields with two strains in simulations assuming various magnitudes of PMM 
in cell growth rates. The results indicate that the in‑cell feedback controller in TA2445 effectively 
compensates for PMM by modifying MTS activation timing. In conclusion, the HISICC system presents 
a promising solution to the PMM problem in bioprocess engineering, paving the way for more efficient 
and reliable optimization of microbial bioprocesses.

A primary goal of bioprocess engineering is to produce a larger amount of a desired product at higher rates from 
a smaller amount of raw  materials1,2. To achieve this, it is necessary to control the behavior of microorganisms 
so that their capabilities can be harnessed to the fullest extent. Approaches to this can be broadly classified into 
two categories: computerized process control (in silico feedforward control) and autonomous feedback control 
by synthetic genetic circuits integrated in cells (in-cell feedback control)3–5.

In silico feedforward control is an approach widely used in industries where mathematical models are used 
to predetermine the optimal values of inputs to the process, such as temperature, pH, and substrate and inducer 
 feeds6–10. In silico feedforward control comprises a sophisticated approach that maximizes product yield by 
predicting the future process state and managing the various tradeoffs that arise with respect to process inputs. 
However, one challenge is that the predetermined input values are no longer optimal in the actual process when 
there is a significant mismatch between the model and the actual process (process-model mismatch, PMM). 
One solution to the PMM problem is model predictive control (MPC), in which the state variables of the ongo-
ing process are measured in real-time and fed back to the control  inputs11–19. Although MPC is widely used for 
process control, it can be unavailable if the model includes the intracellular concentrations of RNA, metabolites, 
or enzymes as state variables that are difficult to monitor online.

In-cell feedback control is a nascent approach that emerged from synthetic  biology20. In the last two dec-
ades, various examples of synthetic genetic circuits have been reported, such as those designed to control cell 
 density21–24, co-culture  composition25,26, or intracellular protein expression  levels27–31. Unlike in silico controllers, 
in-cell controllers can only provide simple feedback control, such as proportional control; sophisticated control 
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to maximize future product yields is difficult for in-cell controllers. Conversely, it can detect intracellular RNAs, 
enzymes, and metabolites, which are difficult to monitor using process sensors or biochemical analyses and 
provide feedback on cell behavior in situ. Therefore, the in silico model-based controller and the in-cell feedback 
controller complement each other’s limitations.

To overcome the PMM problem of in silico controllers, we propose a hybrid control strategy that combines 
a high-level in silico feedforward controller and a low-level in-cell controller (hybrid in silico/in-cell controller, 
HISICC) (Fig. 1). When the actual process state deviates from the prediction by the in silico controller owing 
to the PMM, the in-cell feedback controller senses the actual state and corrects the cell behavior to prevent a 
decrease in the product yield based on the sensing. To demonstrate the concept of HISICC, this study focuses 
on the isopropanol (IPA) production process using the two engineered Escherichia coli strains we reported on 
 previously32,33 as an example of the bioprocess. As described in detail in the Results section, prediction error in 
cell growth is a critical PMM in this process, which leads to decrease in IPA yield. Since only one of these strains 
contains an in-cell feedback controller which detects cell density, this strain can be defined as an example of 
HISICC in combination with the in silico feedforward controller whereas the other strain cannot. The study goals 
were (1) to construct a new mathematical model for an in silico feedforward controller and assemble an HISICC 
by coupling it with a previously developed in-cell feedback controller and (2) to demonstrate the robustness of 
the HISICC to PMM, namely prediction errors in cell growth, by comparing the two strains in terms of IPA yield 
in multi-round simulations where various magnitudes of PMM were assumed.

Results
IPA production process using two engineered strains. Prior to describing the details of mathemati-
cal modeling for the design of in silico feedforward controllers, we provide an overview of the IPA production 
process using the two engineered strains that we previously developed, TA1415 and  TA244532,33. In conventional 
IPA production processes, cell growth and IPA production compete for intracellular acetyl-CoA synthesized 
from the substrates. This competition needs to be balanced since an imbalance in the use of intracellular acetyl-
CoA for either cell growth or IPA production results in reduced IPA yield. TA1415 has a genetic circuit called the 
metabolic toggle switch (MTS) that allows this competition to be managed by an external input of an inducer, 
isopropyl β-d-1-thiogalactopyranoside (IPTG). We designed an in silico feedforward controller that optimizes 
the IPTG input using a mathematical model of the strain. However, because TA1415 does not have an in-cell 
feedback controller, the combination of TA1415 and the in silico controller does not comprise an HISICC. In 
contrast, TA2445 has an in-cell feedback controller consisting of an MTS and another genetic circuit to detect 
cell density, termed quorum sensing. Owing to the in-cell feedback controller, TA2445 autonomously controls 
cell growth and IPA production in accordance with the external IPTG input as a reference signal. Therefore, the 
combination of TA2445 and an in silico feedforward controller designed for this strain can be considered an 
example of HISICC.

In both strains, the activated MTS stopped the synthesis of citrate synthase (the enzyme that mediates the 
reaction that initiates the TCA cycle) and simultaneously initiates the synthesis of a series of enzymes for IPA 
production, thereby achieving a changeover from cell growth to IPA production. The timing of MTS activation 
creates a tradeoff: if the MTS is activated too early, the IPA yield is low because the cells do not grow sufficiently; 
if the MTS is activated too late, the IPA yield is also low because extracellular nutrients are used up by cell growth, 
resulting in insufficient synthesis of a series of enzymes for IPA production.

Figure 1.  Conceptual diagram of the hybrid in silico/in-cell controller (HISICC). The in silico feedforward 
controller calculates the optimal control inputs for the process based on the controller model. An example 
of a control input is the inducer feed. The bacterial cells receive this control input as a reference signal and 
autonomously perform feedback control.
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In TA1415 cells, the MTS was activated by the addition of IPTG to the medium in the middle of the culture 
period (Fig. 2A). Therefore, the timing of IPTG addition can be defined as the input variable of the process to 
be optimized (Fig. 2B).

TA2445 has an additional genetic circuit for quorum sensing that detects cell density to activate the MTS, as 
described in the Introduction (Fig. 2C). The circuit is composed of an intercellular messenger called an acylated 
homoserine lactone (AHL) and genetic devices that send or receive it. As the cell density increases, so does the 
AHL concentration in the medium. When the AHL concentration reaches a certain level, the receiver device 
detects AHL and activates the MTS. The sender and receiver devices utilize the same promoter, which responds 
to both IPTG and AHL. This allows the sensitivity of quorum sensing to be tuned by varying the extracellular 
concentration of IPTG. Thus, IPTG concentration can be defined as the input variable of the process to be 
optimized (Fig. 2D); if IPTG concentration is too high, quorum sensing becomes too sensitive, and the MTS is 
activated too early. Conversely, if the IPTG concentration is too low, quorum sensing becomes too insensitive, 
and the MTS is activated too late or is not activated at all.

Mathematical modeling. TA1415 model. The TA1415 model is based on a two-compartment model, 
which is a type of structured model constructed by Williams that divides the cells into two compartments: XA 
and  XG34. The XA compartment represents the active part of cells directly involved in cell growth, including 
RNA, ribosomes, and small metabolites such as amino acids. On the other hand, the XG compartment repre-
sents an inactive part that is not directly involved in cell growth, including DNA, proteins, and cell membranes. 
XA is produced from the extracellular substrate S, and XG is produced from XA. Since the amount of XG per 
cell is nearly constant, it can be considered proportional to the cell density. Williams’ two-compartment model, 
although quite simple, can explain the lag phase as well as the experimental fact that cell growth continues for 
a period after removal of the substrate from the medium in the middle of the log phase. In the simulation, no 
additional XA is produced after substrate removal, while XG is produced until the XA present in the cells is 
exhausted.

When IPTG is fed to TA1415 cells, cell growth slows but does not immediately  stop32. This behavior is similar 
to that observed after substrate removal during the log phase, as described above. This suggests that when the 
MTS stops the TCA cycle, cells store materials for cell growth, such as amino acids, which can be used to continue 
cell growth. Thus, to model the MTS, we extended Williams’ two-compartment model to a three-compartment 
model with an additional compartment, E, representing a series of enzymes for IPA production (Fig. 3A).

Hereinafter, we describe the model equations. The initial values of the state variables and parameters are 
summarized in Tables 1 and 2, respectively. The mass balance equations are as follows:

Figure 2.  Genetic circuits of TA1415 and TA2445. (A) Genetic circuit of TA1415, in which the metabolic 
toggle switch (MTS) changes the flow of intracellular Acetyl-CoA (AcCoA) from the TCA cycle to the synthetic 
pathway for isopropanol (IPA) production; the MTS is activated when IPTG is added to the medium. (B) 
Block diagram showing the control structure of TA1415, in which the MTS changes the expression level of the 
synthetic pathway and cell growth. The volumetric production rate of IPA is proportional to the product of cell 
density and the expression level of the synthetic pathway. (C) Genetic circuit of TA2445 with the sender device 
to secrete and the receiver device to detect AHL, which realize quorum sensing collectively; the MTS is activated 
when the receiver device detects an increased extracellular concentration of AHL due to cell growth. (D) Block 
diagram showing the control structure of TA2445. Quorum sensing provides feedback of increased cell density 
to the MTS, the sensitivity of which depends on IPTG concentration in the medium.
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where XA , XG and E represent the three aforementioned compartments, XA, XG, and E, respectively. B represents 
the IPA concentration in the medium. S , unlike in Williams’ model, represents collective extracellular resources, 

(1)dS
dt = −v1

(2)dXA
dt = v1 − v2

(3)dXG
dt = v2(1− aEu)

(4)dE
dt = v2aEu

(5)dB
dt = v3

Figure 3.  The three-compartment models of the two strains. (A) TA1415 model. Active compartment XA is 
synthesized by the TCA cycle from S, which represents extracellular resources; from XA, inactive compartment 
XG and E, a series of enzymes on the synthetic pathway for IPA production, are synthesized. When activated, 
the MTS stops synthesizing XA and initiates synthesis of E. The production rate of IPA, represented by B is 
proportional to XG and E. (B) Dynamics of state variables for TA1415 model, with IPTG added at 9 h to activate 
the MTS. (C) TA2445 model. A, which represents extracellular AHL, increases with cell growth. The MTS is 
activated when A reaches a certain level that depends on extracellular IPTG concentration. (D) Dynamics of 
state variables for TA2445 model at IPTG concentration of 0.05 mM.

Table 1.  State and input variables for the two models.

Symbol Initial value for TA1415 Initial value for TA2445 Unit Description

For TA1415 and TA2445

S 1− XA(0)− XG(0) 1− XA(0)− XG(0) Dimensionless Extracellular resources

XA Estimated Estimated Dimensionless Active compartment

XG 0.02 0.005 Dimensionless Inactive compartment

B 0 0 mM IPA concentration

E 0 0 Dimensionless Enzymes for IPA production

For TA1415

u – – Dimensionless Normalized IPTG concentration

For TA2445

A – 0.01 nM AHL concentration

u – – mM IPTG concentration
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including not only glucose but also waste accumulation and pH shifts, as discussed in the “Discussion” section. 
u indicates the IPTG concentration, that is, the control input. u is normalized and takes either 0 or 1. By incor-
porating u into the mass balance and reaction rate equations described below, the changeover of the reactions 
due to the MTS is mathematically expressed. aE represents the allocation of XA for the synthesis of XG and E, 
as described below.

v1 , v2 , and v3 represent the rates of three reactions (Reactions 1–3), respectively. First, in Reaction 1, S is 
consumed, and XA is synthesized by the TCA cycle:

The reaction rate v1 is proportional to both the total cell size XA + XG + E and S . rleak is a parameter that 
describes the incomplete MTS changeover; it allows Reaction 1 to proceed slowly and XA to be synthesized even 
in the presence of IPTG. In Reaction 2, XA is consumed and XG and E are synthesized as follows:

The ratios of the XG and E production rates are represented by aE in Eqs. (3) and (4). The reaction rate v2 is 
proportional to XA and the remainder of the cell, XG + E . k1 and k2 are both reaction rate parameters that govern 
the rate of XG synthesis, that is, the cell growth rate, through Reactions 1 and 2 in tandem. In Reaction 3, IPA 
(represented by B ) is synthesized, and its reaction rate v3 depends on XG and E:

We introduced a saturation constant KE so that the rate of Reaction 3 was saturated with respect to E. Finally, 
the observation equations that link the state variables of the model to the measurements of cell density (OD600) 
and IPA concentration are as follows:

where y1 , y2 , and Nm represent the cell density, IPA concentration, and constant proportionality between the cell 
density and XG, respectively. Simulated trajectories of each compartment at IPTG concentration of 0.05 mM are 
shown in Fig. 3B. When MTS is not activated ( u = 0 ), Reaction 1 proceeds, and only XG is produced in Reaction 
2. When MTS is activated ( u = 1 ), Reaction 1 stops, and E is produced in addition to XG in Reaction 2 (Fig. 3B). 
However, because of some leakage in the promoter, represented by rleak , Reaction 1 does not stop completely, 
and a small amount of XA continues to be produced thereafter.

TA2445 model. The TA2445 model combines the three-compartment TA1415 model with a portion of the 
quorum sensing model constructed by You et al. (Fig. 3C)23. The mass balance equations are as follows:

(6)v1 = k1S(XA + XG + E)(1− (1− rleak)u)

(7)v2 = k2XA(XG + E)

(8)v3 = k3
E

E+KE
XG

(9)y1 = NmXG

(10)y2 = B

(11)dS
dt = −v1

Table 2.  Parameters for the two models estimated with all datasets.

Symbol Value for TA1415 Value for TA2445 Unit Description

For TA1415 and TA2445

k1 0.4772 0.4526 /h Production rate parameter for Reaction 1

k2 0.9089 1 /h Production rate parameter for Reaction 2

k3 1.2418 2 mM/h Production rate parameter for Reaction 3

rleak 0.2777 0.0607 Dimensionless Leak ratio of Reaction 1

aE 0.1508 0.0190 Dimensionless Ratio of XA allocated to the synthesis of E

KE 0.0081 0.0034 Dimensionless Saturation coefficient for E in production rate of B

XA(0) 0.0572 0.0240 Dimensionless Initial value of XA. Ten times of XG(0) was set as the upper limit 
of estimation

Nm 5.4651 5.6799 OD600 Carrying capacity

For TA2445

kA – 1.9137E+3 nM/h AHL production rate parameter

dA – 0.1489 /h AHL degradation rate parameter

KA – 1.596 nM Dissociation constant for AHL (estimated with TA2946 data)

Ku – 0.02268 mM Dissociation constant for IPTG (estimated with TA2946 data)

nA – 1.752 Dimensionless Hill coefficient for AHL (estimated with TA2946 data)

nu – 1.597 Dimensionless Hill coefficient for IPTG (estimated with TA2946 data)
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Equations (11–15) are nearly identical to the mass balance equations for the TA1415 (Eqs. 1–5), although 
the IPTG input u is replaced by the promoter output z of the receiver device in the in-cell feedback circuit. This 
represents the activation of the MTS by the in-cell feedback circuit; as the concentration of AHL increases, the 
MTS is activated, and its threshold is regulated via the IPTG concentration. Thus, z is a two-variable function 
of AHL and IPTG concentrations, expressed as follows: Eq. (16) is the mass balance equation for the AHL, 
represented by A , adopted from the model of You et al. The first term representing AHL production includes z 
because the same promoter is used in the sender and receiver devices. Therefore, positive feedback occurs during 
AHL production. The second term represents the decomposition of AHL (first-order reaction), where dA is the 
decomposition rate parameter of AHL. The reaction rate and observation equations are identical to those of the 
TA1415 model, except that u is replaced by z.

The promoter response z to IPTG and AHL concentrations was modeled using data from another E. coli strain 
we previously developed,  TA294633. TA2946 contains a GFP gene on a plasmid downstream of the same promoter 
as the sender and receiver devices of TA2445. Using TA2946, we measured the promoter response to IPTG and 
AHL in terms of fluorescence intensity. The response curve of the promoter was fitted to the Hill equation to 
obtain the values of its four parameters: dissociation constants and Hill coefficients for IPTG or AHL (Fig. 4).

(12)dXA
dt = v1 − v2

(13)dXG
dt = v2(1− aEz)

(14)dE
dt = v2aEz

(15)dB
dt = v3

(16)dA
dt = kAXGz − dAA

(17)v1 = k1S(XA + XG + E)(1− (1− rleak)z)

(18)v2 = k2XA(XG + E)

(19)v3 = k3
E

E+KE
XG

(20)y1 = NmXG

(21)y2 = B

(22)z = AnA

AnA+KA
nA

unu

unu+Ku
nu

Figure 4.  Response to IPTG and AHL of the promoters used in the sender and receiver devices of TA2445. 
Experimental data (white dots) of the Escherichia coli strain TA2946, which has a plasmid with the GFP gene 
downstream of the same promoter, was fitted using Hill equation.
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Approximation of the promoter response using the product of the Hill equations for AHL and IPTG was 
reported in a previous study using similar  promoters35. Simulated trajectories of each compartment at IPTG 
concentration of 0.05 mM are shown in Fig. 3D.

Model simulation and validation. The TA1415 and TA2445 models were trained using experimental 
data on the IPA production process obtained in previous  studies32,33. The details of the experimental data are 
described in the “Materials and methods” section. Both models trained with all experimental datasets fit closely 
(Fig. 5, Table 2). This indicates that, despite their simple structure, our models capture the dynamics of cell 
growth and IPA production of the two strains in response to various IPTG inputs. Additionally, we used the 
hold-out validation method to ensure that the two trained models did not overfit the training data (Fig. 6). 
The details of the validation method are described in the “Materials and methods” section. The coefficients 
of determination R2 were above 0.5 for all test data, indicating that both models have adequate generalization 
performance within the range of IPTG input values of the training data. The slightly lower R2 values for IPA 
concentration than for cell density (OD600) may be because the three-compartment model does not represent 
the slowdown of IPA production rate due to substrate depletion.

Model‑based input optimization. To demonstrate the optimal control by the in silico feedforward con-
troller, we optimized the IPTG input variables to maximize the IPA concentration at the end of the culture using 
the two models. These models were trained using all datasets before input optimization (Fig. 5, Table 2). The tim-
ing of IPTG addition for TA1415 (Fig. 7A) and the concentration of IPTG for TA2445 (Fig. 7B) were optimized. 
The feasible region for IPTG input was defined as 0–15 h for TA1415 and 0.01–1.0 mM for TA2445. In addition, 
to visualize the overall distribution of IPA yield over the range of feasible IPTG input values, we comprehensively 
simulated the models within this range. The model predictions captured the experimental trends, which had a 
single peak, indicating that our models successfully reproduced the tradeoff in the IPA production process with 
both strains.

Controller performance against PMM. To evaluate the robustness of HISICC against PMM, we calcu-
lated the IPA yields of the two strains in multiple rounds of simulation (Fig. 8). In each round of simulations, rep-
resented as a grid point on the curved surfaces in Fig. 8, different magnitudes of the PMM were introduced, and 
the cell growth of both strains was assumed to be faster or slower than that predicted by the in silico feedforward 

Figure 5.  Simulations of the IPA production process for various IPTG inputs using the models of the two 
strains. Both models were trained using all datasets. White dots represent experimental data and red lines 
represent simulation results. (A) for TA1415. (B) for TA2445.
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controller. In contrast, in all simulation rounds, the controller models used for IPTG input optimization were 
identical to those trained using all experimental datasets (Fig. 5, Table 2). Therefore, the resulting IPTG input 
values in all simulation rounds were identical to those optimized in the model-based input optimization section 
(represented by dotted vertical lines in Fig. 7). To introduce the PMM into cell growth, for the two parameters 
( k1 and k2 in Eqs. (6) and (7) for TA1415 and Eqs. (17) and (18) for TA2445, respectively) that determine the 
cell growth rate, we defined various combinations of values to compute the process dynamics. These values are 
denoted as k∗1 and k∗2 to distinguish them from the corresponding values in controller models k1 and k2 . Note 
that k∗1 and k∗2 are parameters representing the intrinsic properties of the cells, which are difficult to artificially 
manipulate in real experiments. However, in this series of simulations, we set various values for these parameters 
to emulate possible situations in which the cell behavior deviates from that predicted by the in silico controller. 
In a round of simulations where (k∗1 , k

∗
2) = (k1, k2) , no PMM was defined (represented by red dots in Fig. 8). 

This round represents an ideal situation where the in silico controller perfectly predicts cell behavior, and the 
IPA yield in this round is referred to as the optimal yield, IPAopt . First, for both strains, when the growth rate was 
slower than prediction (namely k∗1/k1 < 1 ∩ k∗2/k2 < 1 ), IPA yields were lower than IPAopt . This was apparently 
because cell density did not increase sufficiently during the fixed culture period. However, when the cell growth 
was faster than that predicted by the controller model, the two strains resulted in different IPA yields. In the case 

Figure 6.  Hold-out validation of the models of the two strains, using a dataset from a flask subjected to one 
of five IPTG input conditions as a validation dataset. Each circle represents a validation round (18 rounds of 
validation in total for each strain). Details of the datasets are summarized in Table S2. (A) for TA1415. (B) for 
TA2445.

Figure 7.  Model-based optimization of IPTG inputs to maximize IPA yield. White and red dots represent 
experimental data and optimized values, respectively, and red lines represent results of the exhaustive 
simulations. (A) for TA1415. (B) for TA2445.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13608  | https://doi.org/10.1038/s41598-023-40469-y

www.nature.com/scientificreports/

of TA1415 (which did not contain an in-cell feedback controller), the addition of IPTG was delayed relative to 
the truly optimal timing, resulting in a lower IPA yield than IPAopt (Fig. 8A). By contrast, in the case of TA2445, 
which contains an in-cell feedback controller, cells can autonomously adjust the timing of MTS activation earlier, 
resulting in suppression of the decrease in IPA yield (Fig. 8B). These results indicate that within HISICC, the 
in-cell feedback controller can support the in silico feedforward controller to prevent it from being disturbed 
by the PMM.

Discussion
In this study, we proposed HISICC, a hybrid control system in which a high-level model-based controller pro-
vides a reference signal to a low-level in-cell feedback controller by means of the inducer concentration to sup-
press the performance deterioration caused by the PMM. We then performed a proof-of-concept of HISICC 
in the IPA production process with two E. coli strains that contain the MTS. Only one of these strains can be 
combined with the in silico feedforward controller to form a HISICC because it has an in-cell feedback controller 
that detects cell density (quorum sensing) to activate the MTS. We hypothesized that owing to the in-cell feedback 
controller, this HISICC can correct the timing of the MTS activation based on quorum sensing to prevent IPA 
yield decrease due to PMM of cell growth rate. To prove the hypothesis, first, mathematical models of the two 
strains were constructed to design an in silico feedforward controller. The constructed models are based on a 
previously reported two-compartment model. We used the experimental data from the IPA production culture 
to estimate the values of the parameters included in these models. Although the constructed models had simple 
structures, they captured the dynamics of cell growth and IPA production in response to various IPTG inputs. 
Both models showed excellent prediction performances for the experimental data in the hold-out validation. 
The validated models were then used to evaluate the robustness of HISICC against PMM. Finally, we compared 
the IPA yield between the two strains using simulations in which the model predictions and actual cell growth 
rates were assumed to be different. The results showed that, as we hypothesized, when cell growth is faster than 
expected by the in silico controller, the strain equipped with the in-cell feedback controller can prevent a decrease 
in IPA production. On the other hand, the strain without the in-cell controller cannot prevent a decrease in IPA 
production, which demonstrates the effectiveness of HISICC.

The cell density of the strain used in this proof-of-concept study was measured to autonomously activate 
the MTS. Since the cell density can be easily measured using a standard spectrophotometer instead of an in-cell 
feedback controller, it is easy to suppress the influence of the PMM by combining a low-level feedback control-
ler using a spectrophotometer with a high-level model-based controller. However, as noted in the Introduction 
section, in many microbial processes, the optimization of process inputs involves intracellular concentrations 
of mRNA, proteins, metabolites, or products. In such cases, few biochemical analysis methods are applicable 
for feedback control of the process because of their long turnaround times. Bacteria-based processes require 
particularly short turnaround times due to rapid cell growth. We believe that the HISICC proposed in this study 
can be a solution to the PMM problem when the ongoing monitoring of the process state is challenging using 
conventional hard sensors or biochemical analysis methods.

Furthermore, we must note a few points regarding the three-compartment models that we constructed. First, 
the state variables included in these models are approximate and difficult to interpret as concentrations of spe-
cific substances. Williams discussed the same issue in his two-compartment  model34. In particular, substrate S 

Figure 8.  IPA yields in the presence of PMMs of various magnitudes were calculated in multiple simulation 
rounds. Each grid point on the surfaces represents the results of each round of simulations. On the x- and 
y- axes, k∗

1
 and k∗

2
 represent various values of the two cell growth parameters defined to calculate the process 

dynamics in each round of simulations. k1 and k2 represent the corresponding values defined in the controller 
model, which were, in contrast, fixed to the estimated values listed in Table 2 in all rounds of simulations. This 
means that IPTG input values were also constant in all rounds at the optimized values shown in Fig. 7 (IPTG 
adding time = 9.3 h for TA1415 and IPTG concentration = 0.044 mM for TA2445). Red dots represent the 
optimal IPA yields (i.e., IPA yields maximized when the cell growth rate parameters were defined equal between 
the controller model and in the actual process). (A) for TA1415. (B) for TA2445.
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in our models does not correspond explicitly to the glucose concentration in the medium, but rather abstractly 
represents the total extracellular resources consumed for cell growth and enzyme synthesis, including nutrients 
such as sugars and nitrogen sources, accumulation of waste products, and pH shifts. These abstractions allow 
our models to capture the dynamics of cell growth and IPA production in response to various IPTG inputs, 
while maintaining very simple structures. Meanwhile, they limit the use of our model to off-line optimization 
of inducer addition, which was demonstrated in this study: since the state variables of our models cannot be 
directly associated with measured concentrations of substrates or metabolites in the medium, it is challenging to 
utilize the model for state estimation of an ongoing process or for model-based feedback control such as MPC.

Secondly, as mentioned in the model simulation and validation section, our model does not account for the 
slowdown in the production rate of IPA due to substrate depletion at the end stage of culture, as in the model 
reported by Dunlop et al.27. This approximation would have resulted in a higher yield of IPA than the optimal 
yield IPAopt in the simulation, which assumed that the actual cell growth was faster than that predicted by the 
in silico controller with TA2445 (Fig. 8B). Thus, the increase in the IPA yield owing to faster cell growth was 
negligible. However, we believe that this approximation does not affect our argument that HISICC prevents the 
reduction in IPA yield due to PMM.

In summary, we proposed the concept of HISICC that leverages the strengths of both in silico and in-cell 
controllers as a solution to the problem of PMM in bioprocesses and set and achieved the following two goals. 
First, we designed an example of HISICC in the IPA production process by combining a previously reported 
E. coli strain possessing an in-cell feedback circuit based on quorum sensing with an in silico feedforward con-
troller based on a newly constructed mathematical model. The mathematical model exhibited high prediction 
performance for different process input values, indicating its feasibility for use in in silico feedforward control-
lers. Second, we demonstrated that HISICC can effectively compensate for the PMM through multiple rounds of 
simulations in which PMM of different magnitudes were intentionally introduced for cell growth. The proposed 
hybrid control strategy is expected to be applicable to various model-based optimizations and in-cell feedback 
circuits as a promising solution for PMM, which is a long-standing challenge in bioprocesses.

Materials and methods
Experimental data. The experimental data from the IPA production cultures used in this study to train 
and validate the models for the two engineered E. coli strains, TA1415 and TA2445, were obtained from two 
previously published  studies32,33. Here, we provide a brief description of the IPA production culture experiments. 
For both strains, seed cultures were grown overnight in 3 mL of M9 minimal medium supplemented with 10 g/L 
glucose, 1 g/L casamino acids, and 10 ppm thiamine hydrochloride at 37 °C on a rotary shaker at 250 rpm. IPA 
production cultures were initiated with 1% (v/v) inoculation from the seed culture and grown in 20 mL of M9 
minimal medium supplemented with 20 g/L glucose, 1 g/L casamino acids, and 10 ppm thiamin hydrochloride 
at 30 °C on a rotary shaker at 250 rpm. Cell density (OD600) and IPA concentration were measured routinely 
during culture. For TA1415, the culture duration was 69 h. In the middle of the culture, 0.1 mM IPTG (con-
centrated enough to activate the MTS) was added at five different timepoints (0, 6, 9, 12, and 15 h, Table S1). 
Three flasks were cultured for each addition of IPTG. For the TA2445 cells, the culture duration was 51.5 h. At 
the beginning of the culture period, different concentrations of IPTG (0.01, 0.03, 0.05, 0.1, or 1.0 mM, Table S1) 
were added to the medium to tune the in-cell feedback controller. Three flasks were cultured for each addition 
of IPTG.

Parameter estimation. MATLAB/Simulink 2022a was used for model construction and simulation. In 
the modeling of TA2445, Curve Fitting Toolbox was used to approximate the promoter response to AHL and 
IPTG using the Hill equation, as described in the Mathematical modeling section. Simulink Design Optimiza-
tion was used to estimate the other model parameters. The parameter values were chosen to minimize the sum of 
the squared errors between the model predictions and the measured data, as shown in Eqs. (23) and (24). Errors 
were normalized to the maximum values of measurements in the same culture. In these equations, V  represents 
the objective function for optimization. Vector θ and θ̂  represent the model parameters and estimated values for 
them, respectively. y and ŷ  represent the measured and predicted process outputs, respectively. ũ represents the 
IPTG input (addition time for TA1415 and concentration for TA2445). The subscripts i , j , and k represent the 
process output index ( i = 1 for cell density and i = 2 for IPA concentration), culture flask index, and measure-
ment time index, respectively.

The lsqnonlin command was used for optimization. The trust region method was selected as the optimiza-
tion algorithm for the command. A scaling factor was specified for each parameter to prevent those with large 
absolute values from excessively influencing the overall parameter estimation.

Model validation. We validated that the constructed models correctly predicted the cell density and IPA 
concentration in response to different IPTG input values using the hold-out method. For each round of vali-
dation, one IPTG input value was selected from the five experimental values, excluding the maximum and 
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minimum values (Fig. 6). The experimental dataset from one of the three flasks to which the selected input 
condition was applied was defined as the validation dataset. The datasets from the remaining 12 flasks were col-
lectively defined as the training datasets. For each round of validation, the coefficient of determination R2 was 
calculated for the cell density or IPA concentration as follows:

The subscripts j = 4, 5, . . . , 12, 19, . . . , 27 represents the flasks selected for the validation dataset (Table S2). 
The subscript set Dtrain,j represents the set of flasks selected for the training dataset.

Model‑based input optimization. Simulink Design Optimization was used to optimize the IPTG input. 
The optimal value ũopt was chosen to maximize the IPA concentration at the end of the culture, as shown in 
Eqs. (25) and (26). The culture duration tN in the simulation was defined as 69 h and 51.5 h for TA1415 and 
TA2445, respectively, as in the experiments.

Data availability
The datasets and computer code used in this study are available at GitHub (https:// github. com/ kkuni da/ 202304_ 
Ohkubo_ bioRx iv. git).
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