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Structure‑based modeling 
of critical micelle concentration 
(CMC) of anionic surfactants 
in brine using intelligent methods
Danial Abooali 1* & Reza Soleimani 2*

Critical micelle concentration (CMC) is one of the main physico‑chemical properties of surface‑active 
agents, also known as surfactants, with diverse theoretical and industrial applications. It is influenced 
by basic parameters such as temperature, pH, salinity, and the chemical structure of surfactants. Most 
studies have only estimated CMC at fixed conditions based on the surfactant’s chemical parameters. 
In the present study, we aimed to develop a set of novel and applicable models for estimating CMC 
of well‑known anionic surfactants by considering both the molecular properties of surfactants and 
basic affecting factors such as salinity, pH, and temperature as modeling parameters. We employed 
the quantitative‑structural property relationship technique to employ the molecular parameters of 
surfactant ions. We collected 488 CMC values from literature for 111 sodium‑based anionic surfactants, 
including sulfate types, sulfonate, benzene sulfonate, sulfosuccinate, and polyoxyethylene sulfate. 
We computed 1410 optimized molecular descriptors for each surfactant using Dragon software to be 
utilized in the modelling processes. The enhanced replacement method was used for selecting the 
most effective descriptors for the CMC. A multivariate linear model and two non‑linear models are the 
outputs of the present study. The non‑linear models were produced using two robust machine learning 
approaches, stochastic gradient boosting (SGB) trees and genetic programming (GP). Statistical 
assessment showed highly applicable and acceptable accuracy of the newly developed models 
 (RSGB

2 = 0.999395 and  RGP
2 = 0.954946). The ultimate results showed the superiority and greater ability 

of the SGB method for making confident predictions.

Abbreviations
AE  Absolute error
ANFIS  Adaptive neuro-fuzzy inference system
ANNs  Artificial neural networks
BEHp2  Highest eigenvalue no. 2 of Burden matrix/weighted by atomic polarizabilities
CEOR  Chemical enhanced oil recovery
CIC2  Complementary information content (neighborhood symmetry of 2-order)
CMC  Critical micelle concentration
D  Dipole moment
EEig12x  Eigenvalue 12 from edge adj. matrix weighted by edge degrees
EHOMO  Energy of the highest occupied molecular orbital
ELUMO  Energy of the lowest unoccupied molecular orbital
EOR  Enhanced oil recovery
ERM  Enhanced replacement method
Et  Total energy of molecule
f-IBAL  Balaban distance connectivity index
FSR  Forward stepwise regression
G3s  3Rd component symmetry directional WHIM index/weighted by atomic electro-topological 
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GA-MLR  Genetic algorithm multivariate linear regression
GB  Gradient boosting
GFA  Genetic function approximation
GP  Genetic programming
HGP  Hydrophobic group position
ICA  Imperialist competitive algorithm
KH0  Kier and Hall molecular connectivity index of zero-th order
KH1  Kier and Hall molecular connectivity index of first-order
KS3  Kier shape index of third-order
Lop  Lopping centric index
MAE  Mean absolute error
MM2  Molecular mechanics
n  Number of samples in the dataset
NT  Total atom number
P  Pressure
PSO  Particle swarm optimization
Q2

boot  LOO cross-validation squared correlation coefficient of bootstrapping
Q2

ext  Squared correlation coefficient of external-validation
Q2

LNO  Leave-N-out cross-validation squared correlation coefficient
Q2

LOO  Leave-one-out cross-validation squared correlation coefficient
Q2

yi  Y-randomization LOO cross-validation squared correlation coefficient
QC-max  Maximum net atomic charges on carbon atom
QSPR  Quantitative-structural property relationship
R2  Squared correlation coefficient
R2

boot  Squared correlation coefficient of bootstrapping test
R2

ext  Squared correlation coefficient of external-validation test
R2

yi  Squared correlation coefficient of y-randomization test
RA−1  Reciprocal of randic index
RM  Replacement method
RMSD  Root-mean-square deviation
RMSECV  Root-mean-square error of cross-validation
RSD  Residual standard deviation
RNC  Relative number of carbon atoms
Seq  NaCl equivalent salinity
SGB  Stochastic gradient boosting
SVM  Support vector machine
T  Temperature
TDIP  Total dipole moment
WHIM  Weighted holistic invariant molecular
WI  Wiener number
ycal.i   Predicted dependent variable
y
exp.
i   Experimental dependent variable
yexp .  Average of experimental dependent variable
ΔHf  Molar heat of formation
Π  Octanol/water partition coefficient

The industrial applications of surfactant solutions demonstrate the growing importance of these systems in 
everyday  life1. Surfactants are utilized in various industries, including enhanced oil recovery (EOR)2, cleaners 
and  detergents3,4, emulsifiers and dispersing  agents5,  foods6,  coatings7, and many other chemical, petroleum, 
and pharmaceutical  processes1.

Surfactants are amphiphilic compounds consisting of hydrophilic (polar head) and hydrophobic (nonpolar 
tail) parts. Due to this unique structure, surfactants tend to accumulate at the surface of solutions such as water 
or brine. Once the surface is saturated with surfactant molecules, the remaining particles accumulate in the bulk 
and form  micelles8.

Among different types of surfactants, anionic surfactants are known for their high foaming properties, and 
some industries such as chemical EOR (CEOR), detergents, and cleaners, often use them in specific applica-
tions. In the present study, we investigated several anionic surfactants to better understand their behavior and 
properties.

Critical micelle concentration (CMC) is an important property of surfactants that has been investigated in 
many theoretical and experimental studies. The CMC is defined as the maximum concentration of a surfactant 
at which micelles do not form or the concentration at which micelles begin to  form8,9.

In concentrations larger than CMC, the solution is considered micellar and exhibits different behavior from 
a dilute solution (e.g., a solution with concentration less than the CMC). From an industrial and economic point 
of view, operating surfactant systems at the CMC often results in specific efficiencies. In addition, several theo-
retical and thermodynamic studies have been carried out to estimate various properties of surfactant systems 
based on the same properties at the CMC. A good example in this area is the estimation of the surface tension of 
a surfactant solution from the surface excess concentration at the  CMC8,9. The CMC is a straightforward way to 
assess the behavior of surfactant solutes on surfaces and colloids, making it a valuable tool for evaluating their 
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potential industrial and pharmaceutical  applications10,11. In certain situations, it is desirable for surfactants to 
have a low CMC, such as when they are used to dissolve hydrophobic drugs in micellar cores with minimal 
surfactant  quantities10,12. Additionally, in applications like foaming, wetting, and hard surface cleaning, where 
a low product surface tension is often desired, micelles act as surfactant reservoirs above the CMC, allowing 
for product dilution without significant changes in surface tension. On the other hand, in cases like membrane 
protein extraction, a high CMC is preferred since the extraction efficiency typically plateaus at around four times 
the CMC of the surfactant due to self-association10,13.

Due to the numerous applications of CMC, knowledge about the values of this specific property is essential 
under different conditions. Experimental measurements are a reliable way to access to accurate values. However, 
conducting experiments in laboratories is not always simple, especially at high temperatures and pressures. In 
some cases, experimental measurements are expensive and/or time-consuming and may involve uncertainties 
about impurities, possible decompositions, etc. The application of estimation methods and mathematical models 
may be effective in this area. Empirical modeling, as a famous method, and different mathematical-statistical 
algorithms are available for developing computational correlations. Well-known tools such as genetic program-
ing (GP), artificial neural networks (ANNs), particle swarm optimization (PSO), adaptive neuro-fuzzy inference 
system (ANFIS), support vector machines (SVMs), stochastic gradient boosting (SGB) trees, etc., are applied.

In order to estimate the properties of chemical compounds, molecular based approaches such as group-
contribution and quantitative structure–property relationship (QSPR) are  preferred14. In the group-contribution 
method, properties of chemical compounds are estimated by analyzing different parts of their molecular struc-
tures, such as functional groups, singular and multiple bonds, etc. This is an interesting method that can some-
times achieve high accuracy. However, there are some disadvantages, such as its limited applicability to certain 
isomers as well as chemical compounds with novel structure.

QSPR is another estimation approach in which the considered property (objective function) is estimated from 
a number of chemical parameters of the components called ”molecular descriptors”15. The molecular descriptors 
relate solely to the molecular structures of components and are calculated by applying certain mathematical rules. 
One of the important advantages of a QSPR model is the ability to estimate the properties of newly designed 
chemical compounds only solely from their molecular descriptors. In this study, the QSPR technique was applied 
to produce novel models for CMC as functions of molecular descriptors.

There are several mathematical models for estimating the CMC of anionic surfactants. In 1953,  Klevens16 
proposed a relationship between the CMC and the number of carbon atoms in the surfactant tail (N) as follows:

A and B are constants for homologue series of surfactants under fixed condition. This model is simple, but it 
is valid for fixed conditions and structurally simple surfactants.

In the main studies of CMC modelling, the QSPR approach has been used. Huibers et al.17 developed a multi-
variable linear model based on QSPR from a data set of 119 anionic surfactants at 40 °C. The model is as follows:

In this equation, the descriptor “t-sum-KH0”, which is the zeroth-order Kier and Hall molecular connectiv-
ity index, is considered as a variable for the hydrophobic part (tail) of the surfactant. This parameter is related 
to the molecular volume and surface area. “TDIP” represents the total dipole moment of the surfactant and is 
a descriptor for the entire molecule.“h-sum-RNC” is the relative number of carbon atoms in the hydrophilic 
moiety (head) and reflects the diversity of head group  structures18.

Huibers et al.17 also developed a multi-variable linear correlation for the types of sulfate and sulfonates using 
66 data points at 40 °C:

KH1 is the first-order Kier and Hall molecular connectivity index, which is a parameter that correlates with 
molecular volume and surface area. KS3 is the of third-order Kier shape index that is related to molecular shape. 
HGP determines the carbon number attached to the hydrophilic moiety and is located on the longest chain of 
the surfactant’s  molecule17,18.

Another linear model was produced by Jalali-Heravi and  Konouz19 using 31 anionic surfactants (27 alkyl 
sulfates and 4 alkane sulfonates) at 40 °C. The correlation was presented as follows:

In this equation, WI, which is the Wiener number, a topological descriptor that measures molecule com-
pactness.  RA−1 is the reciprocal of Randic index, a criterion for quantifying molecular branching and D is the 
molecular dipole moment.

In 2002, Wang et al.20 proposed a QSPR linear model for 40 anionic surfactants. This model involved a number 
of quantum mechanical descriptors:

(1)log (CMC) = A− BN

(2)
log 10(CMC) = (1.89 ± 0.11)− (0.314 ± 0.01) t - sum - KH0 − (0.034 ± 0.003)TDIP

− (1.45 ± 0.18) h - sum - RNC

(3)
log 10(CMC) = (2.42± 0.07)− (0.537 ± 0.009) KH1− (0.019 ± 0.002) KS3

+ (0.096 ± 0.005)HGP

(4)
log 10(CMC) = − (3.1373 ± 0.4374)− (9.7401 ± 1.3165)× 10−4 ×WI

+ (11.0284 ± 2.2709)RA−1 + (6.704 ± 0.6150) D
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In this equation, KH0,  Et, ΔHf,  EHOMO and  ELUMO represent the Kier and Hall molecular connectivity index 
of zeroth order, total energy of the molecule, molar heat of formation, energy of the highest occupied molecular 
orbital, and energy of the lowest unoccupied molecular orbital, respectively.

The model of Robert et al.21 was another correlation produced in 2002 which was generated by adopting 
the octanol/water partition coefficient for 16 anionic surfactants, including primary alcohol sulfate and pri-
mary alcohol ester sulfate at 50 °C. They applied two variables in their correlation: Πh, which is the octanol/
water partition coefficient of the hydrophobic moiety and is defined as the octanol/water partition coefficient 
of the whole molecule minus the octanol/water partition coefficient of the negatively charged fragment  SO3

− or 
 OSO3

− 18, and L,which is the length of hydrophobic moiety as a C–C single bond unit. The following model is 
their suggested correlation:

A multi-variate linear model was presented by Li et al.22 in 2004. They optimized the hydrophobic–hydro-
philic structures of 98 anionic surfactants, including sodium alkyl sulfates, sodium alkyl sulfonates, sodium 
alkyl benzene sulfonates, and potassium alkyl carboxylates, and calculated quantum chemical data to develop 
their correlation:

In this equation,  NT represents the total number of atoms, and  QC-max represents the maximum net atomic 
charges on the carbon atom.

Li et al.23 also developed a linear model in 2006 for 36 sodium alkyl benzene sulfonates using the same method 
as their previous work:

f−IBAL is the Balaban distance connectivity index of the hydrophobic segment, which stands for molecular size 
and compactness.

Katritzky et al.18,24 recommended using topological, solvation, and charge-related molecular descriptors for 
developing models, due to the significant driving force of the intermolecular interactions between anionic sur-
factants and water. However, different categories of descriptors have been used in modeling, and acceptable 
results have been presented.

A general investigation shows that almost all suggested mathematical correlations for estimating CMC have 
been constructed based on chemical descriptors in constant conditions of temperature (T), mostly in aqueous 
solutions without salinity. However, CMC is a physico-chemical quantity of surfactants that is highly influenced 
by some basic parameters. Along with the chemical structure of a surfactant, the salinity of solution, temperature 
(T), pressure (P), and pH are the most effective parameters on CMC, as shown in previous  studies25–29.

The impact of temperature on the CMC of surfactants in water is intricate and follows a non-linear trend. 
Initially, the CMC decreases with temperature until it reaches a minimum, after which it starts to increase with 
a further increase in temperature. This is due to the fact that higher temperatures lead to reduced hydration 
of the hydrophilic part of the surfactant molecule, which facilitates the formation of micelles. However, at the 
same time, the increase in temperature also interferes with the structured water molecules surrounding the 
hydrophobic part of the surfactant molecule, which impedes micelle formation. Thus, the balance between the 
favorable and unfavorable effects of temperature on micellization determines whether the CMC increases or 
decreases over a certain temperature  range30. Generally, the addition of salt to anionic surfactant solutions results 
in a reduction of surface tension, with the effect becoming more significant at higher salt concentrations. This 
phenomenon is attributed to the electrostatic interactions that facilitate the migration of surfactant monomers 
towards the  interface31.

The amin objective of this study was to generate novel and accurate models that incorporates both the effective 
parameters on CMC, including chemical descriptors and physical variables, for several widely-used common 
anionic surfactants. In this study, the QSPR method was coupled with two robust machine-learning approaches,- 
SGB and GP. New predictive methods were developed with applicability and confidence for estimating CMC. of 
the inclusion of physical properties such as T, pH and salinity along with the chemical descriptorsfor estimating 
of CMC is a novel and innovative approach. Additionally, the use of SGB and GP methods to develop CMC 
models is a new technique.

Materials and methods
Data set. The total dataset includes 488 sets (i.e. observations) of experimental data adopted from the 
 literature11,19,25,32–42. Each set (observation) contains basic parameters, including the salinity of the solution (in 
the the form of NaCl equivalent salinity), temperature (T), pH, and CMC at atmospheric pressure. The collected 
data involve 111 widely-used sodium-based anionic surfactants, including sodium alkyl sulfates, sodium alkane 
sulfonates, sodium alkyl benzene-sulfonates, sodium di-alkyl sulfosuccinate, and sodium alkyl (X) oxy-ethylene 
sulfates (X represents mono, di, tri or tetra).

It should be noted that NaCl equivalent salinity  (Seq) is defined as the salinity of brine in which all dis-
solved salts (cations and anions) have been replaced with a certain amount of sodium chloride so that the brine 

(5)
log 10(CMC) = 0.546− 0.269KH0− 0.0037�Hf + 0.000224 Et + 0.382 EHOMO

+ 0.493 ELUMO − 0.0134 D

(6)log10(CMC) = 1.5(± 0.3)− 0.39 (± 0.05)�H − 0.08 (± 0.02) L

(7)
log 10(CMC) = (1.89 ± 0.0671)− (0.0697 ± 0.00151) NT − (0.0323 ± 0.0015)D

+ (0.381 ± 0.0305)QC - max

(8)log 10(CMC) = − 0. 213− 0. 261{KH0} + 0. 598{f− IBAL} − 0. 0191{D}
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resistivity keeps the  same43,44. It is a usual and simple method for representing salinity where a common criterion 
(the amount of NaCl) is applied instead of a diverse variety of salts. Additionally, the pH of solutions collected 
in the dataset is attributed to the dissolved salts (i.e. effects of cations and anions of the salts) without the effects 
of surfactant ions, and there are no acid or base additives in the collected data. The ranges of all variables have 
been shown in Table 1.

To generate the data-based models, the entire dataset was first randomly divided into two subsets. According 
to the  literature45–49, 90% of the data was considered as training data, and the remaining data points were utilized 
as test data. The training dataset was used to develop the CMC model, while the test data was used to test the 
estimation ability of the newly developed model.

Molecular descriptors generation. Molecular descriptors of a compound are numerical chemical speci-
fications calculated from the chemical structure of the component. They are computed using certain mathemati-
cal rules that are available in specialized  software50,51. Firstly, the chemical structure of the compound should be 
accurately drawn in an appropriate software. In the present study, the structures of surfactant ions (anions) were 
drawn in ChemBio3D Ultra, which is a module of the ChemBioOffice  software52. Then, the drawn structures 
were optimized by minimizing the energy level using molecular mechanics (MM2). The optimized structures 
were saved as SDF  files53 and fed to the Dragon software for calculating the descriptors. The online version of 
Dragon software is freely  available54. Dragon software calculates different categories of descriptors, including (1) 
0D-constitutional descriptors (atom and group counts), (2) 1D-functional groups and atom-centered fragments, 
(3) topological, autocorrelations, connectivity indices, information indices, and eigenvalue-based indices, (4) 
weighted holistic invariant molecular (WHIM) and geometry, topology, and atom-weights assembly (GETA-
WAY) descriptors, and so on. For more information about molecular descriptors, please refer to the  literature55.

In the next step, descriptors with the same value for all compounds in the dataset, i.e.,non-informative 
descriptors, were excluded. Finally, a set of 1410 optimized descriptors were considered for each compound in 
the modeling process.

Selection of the most informative descriptors as surfactants variables. In the QSPR approach, 
after computing the descriptors, a small subset of the most effective descriptors should be selected as model 
chemical (e.g., structural) parameters along with other (basic) variables. In other words, a small number of 
descriptors should be chosen from the large pool. There are different methods for subset variable selection, such 
as genetic algorithm-based multivariate linear regression (GA-MLR)15, genetic function approximation (GFA)51, 
forward stepwise regression (FSR), replacement method (RM)56,57, enhanced replacement method (ERM)56,58, 
and so on.

In this study, the ERM was used to select the best subset. A detailed explanation of the ERM procedure can 
be found  elsewhere56,58,59. In the ERM method, the user determines the number of descriptors that the algorithm 
should find, and ERM will find them in the form of a multivariate linear regression. The main challenge is to 
determine a simple regression with a minimum number of descriptors that provides appropriate accuracy. To 
select the best descriptors in this study, we first attempted to find two descriptors using the training dataset. The 
ERM algorithm developed the best linear regression with two descriptors. Then, the number of descriptors was 
increased one by one to enhance the accuracy of the multivariate regression. For each regression, the correlation 
coefficient  (R2) and residual standard deviation (RSD) were calculated using the following formulas:

In the equations, yexp.i ,ycal.i  , and yexp . represent the experimental, estimated, and average of experimental values 
of objective function (log 10 CMC), respectively. n is the number of samples in the dataset (training dataset), 
and d is the number of descriptors in the linear regression. A lower value of RSD and a higher value of  R2 are 
desired. The results of the descriptor selection step have been shown in Fig. 1. It can be inferred from Fig. 1 that 
increasing the number of descriptors beyond five had no positive effect on the estimation capability of the linear 

(9)R2 = 1 −

∑n
i=1

(

y
exp.
i − ycal.i

)2

∑n
i=1

(

y
exp .
i − yexp .

)2

(10)
RSD =

√

√

√

√

√

n
∑

i=1
(y

exp .
i − ycal.i )2

n− d− 1

Table 1.  The ranges of basic variables in the present study.

Parameters Range

Temperature T (K) 273.15–363.15

NaCl equivalent salinity Seq (ppm) 0–70,131.36

pH pH 6.146–11.133

Critical micelle concentration Log 10 (CMC) −1.39794 to 2.99564
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regression. Therefore, a subset of five molecular descriptors was considered, and the determined descriptors are 
presented in Table 2.

Developing and validation of linear multi‑variable model for CMC. The determined descriptors 
along with T,  Seq and pH were utilized to generate a multivariate linear regression model for CMC. To evaluate 
the predictive performance of the model, several common statistical criteria were emplyed. The root-mean-
square deviation (RMSD), mean absolute error (MAE), and  R2 which are widely used parameters, were utilized 
in this study.

y
exp.
i ,ycal.i  , and n represent the experimental, estimated and number of samples of the dependent variable in 

the dataset, respectively. Lower values of RMSD and MAE, which indicate proximity to zero, are more desirable. 
The  R2 value should be close to unity. In addition to the common statistical criteria, several specific statistical 
techniques are used in the QSPR modeling approach to validate any QSPR linear model. The main QSPR vali-
dation methods include leave-one-out (LOO) cross-validation, leave-N-out (LNO) cross-validation, bootstrap-
ping, y-randomization, and external validation. Although the explanation of these specific techniques has been 
proposed in some  studies60,a brief review is presented here.

In LOO cross-validation, each sample in the training dataset is excluded once, and a new multivariate linear 
regression is generated without that sample. Using the new regression, the dependent variable of the excluded 
sample is estimated. The values of the correlation coefficient  (Q2) and root mean square error of cross-validation 
(RMSECV) are then computed using the following equations:

(11)RMSD =

√

√

√

√

(

1

n

) n
∑

i = 1

(y
exp.
i − ycal.i )2

(12)MAE =

(

1

n

) n
∑

i = 1

∣

∣

∣
y
exp.
i − ycal.i

∣

∣

∣

(13)RMSECV =

√

√

√

√

(

1

n

) n
∑

i = 1

(y
exp.
i − ycal.i )2

Figure 1.  The effect of number of molecular descriptors on the prediction capability in descriptors selection 
step.

Table 2.  The selected molecular descriptors as chemical variables.

Molecular descriptor Descriptor type Definition

Lop Topological descriptors Lopping centric index

CIC2 Information indices Complementary information content (neighborhood symmetry of 2-order)

EEig12x Edge adjacency indices Eigenvalue no. 12 from edge adj. matrix weighted by edge degrees

BEHp2 Burden eigenvalue descriptors Highest eigenvalue no. 2 of Burden matrix/weighted by atomic polarizabilities

G3s WHIM descriptors 3rd component symmetry directional WHIM index/weighted by atomic electro-
topological states
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where yexp.i ,ycal.i  , yexp . , and n represent the experimental, estimated, average of experimental values, and the 
number of samples in the training dataset, respectively.

LNO cross-validation is similar to LOO, with the only difference being that in LNO cross-validation, a 
group of samples is excluded instead of just one. The values of RMSECV and  Q2 are recalculated for LNO cross-
validation. In LOO cross-validation, repeating the test does not affect RMSECV and  Q2. However, in LNO ross-
validations, RMSECV and  Q2 can vary due to the repetition of the test. In this study, the LNO cross-validation 
test was repeated three times and the results were reported. In developing a QSPR linear model, the minimum 
acceptable values for statistical variables are  Q2 > 0.5 and  R2 > 0.6. A difference between  Q2 and  R2 that exceeds 
0.2–0.3 indicates overfitting in the QSPR linear modeling  process60.

In the bootstrapping technique, the entire dataset is randomly divided into training and test datasets mul-
tiple times. For each split, a respective multivariate linear regression is generated, and LOO cross-validation is 
performed. The values of  R2 and  Q2 are then calculated and their averages are reported (i.e.  R2

boot and  Q2
boot). In 

bootstrapping, a data point may be excluded once, multiple times, or never. In the present study, bootstrapping 
was performed 5000 times.

The y-randomization method is used to assess the possibility of chance correlation between the dependent and 
independent variables of a QSPR linear model. In the y-randomization test, the original matrix of independent 
variables values is fixed, and the vector of dependent variable is randomized. A regression is then constructed 
between the randomized variables. If there is no chance correlation, the resulting multivariate regression should 
be of poor quality. Y-randomization is performed multiple times, and the values of  R2 and LOO correlation 
coefficient  (Q2) are calculated for each regression (i.e.  R2

yi and  Q2
yi). The results of y-randomization are usually 

presented graphically as  R2
i versus  Q2

i. When  Q2
yi < 0.2 and  R2

yi < 0.2, there is no chance correlation  risk14,60. In 
the present study, y-randomization was performed 1000 times.

External validation is another method in which the main dataset is randomly split into structurally similar 
sets of training data and an external validation set (i.e., a test set). In the present study, at first, 10% of the entire 
dataset was randomly selected as the external validation set (i.e., the test set) and was used to evaluate the esti-
mation applicability.

After developing and evaluating the multi-variable linear model, the SGB and GP algorithms were applied 
to generate nonlinear models for CMC using the independent variables (i.e. the determined descriptors, T, and 
 Seq). Nonlinear models often provide more accuracy and estimation power.

Stochastic gradient boosting (SGB). In the current inquiry, the stochastic gradient boosting (SGB) tree 
framework was implemented over collected data to model CMC.

Stochastic Gradient Boosting is an improvement on the classic Gradient Boosting method, created by 
 Friedman61. By incorporating Breiman’s bagging  approach62, it boosts accuracy and efficiency by randomly 
sampling the training  data63,64. This results in better prediction  performance65, and the technique has been proven 
effective in many industries and  applications66–76.

In more general terms, Gradient Boosting (GB) is an effective algorithm that transforms weak hypotheses 
into strong ones by combining a series of ensemble learners made up of simple base or weak  learners77,78. A 
weak learner is defined as one whose performance is only slightly better than random chance, and in the case 
of GB, decision trees (such as regression trees) are commonly used as weak learners. To avoid overfitting, the 
construction of trees is often constrained by limiting the number of levels or choosing the best split points based 
on minimizing a loss function.

The overall goal of the algorithm is to minimize the loss of the model by adding weak learners using a gradient 
descent-like procedure. At each iteration, a new weak learner is added that focuses on the cases that the previous 
weak learner did not predict correctly, thus reducing the loss. The output of each generated tree is then added to 
the output of the sequence of trees to gradually improve the final output of the model.

Stochastic GB is a variation of GB where a subsample of the total training set is randomly selected for each 
iteration, and the base learner is fit on that subsample without  replacement61,64. This reduces the risk of overfit-
ting and allows for self-validation of the model internally by using out-of-bag error estimates. Additionally, the 
algorithm becomes faster since regression trees are generated on smaller datasets at each iteration. The review 
of the literature has shown the high ability of this new branch of decision tree algorithm in chemical engineer-
ing  areas79,80.

When developing the SGB model, the error values sharply decreased with an increasing number of trees until 
the error rate stabilized (see Fig. 2). The SGB algorithm selected a solution with 2736 number of trees, which was 
the solution that returned the minimum error in the form of RMSD for the test data set  (RMSDtest = 0.05203).

To achieve the most generalizable model, determining the learning rate was crucial. The learning rate is the 
specific weight at which consecutive simple trees are added to the prediction equation, and it is considered the 
most important parameter. To identify the optimal value, a sensitivity analysis was performed, which demon-
strated the effects of learning rate on the performance of the SGB model for predicting CMC, as illustrated in 
Fig. 3. The optimized parameter was determined to be 0.09. Using the SGB tree, the importance degrees of all 
the model parameters were also determined.

Genetic programming (GP). Genetic programing (GP) is an algorithm used in the present study to 
develop the CMC model. GP is a well-known machine learning approaches for optimization and modeling 
studies which was introduced in the 1990s by John  Koza81. The GP procedure is inspired by biological generation 

(14)Q2= 1−

∑n
i = 1 (y

exp.
i − ycal.i )2

∑n
i = 1 (y

exp.
i − yexp .)2
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phenomenon in which computer programs evolve evolutionarily in a machine learning algorithm to perform 
tasks.

In the GP process, a population of mathematical functions is first randomly generated from pre-determined 
user-defined mathematical operators. Then, some of these functions are randomly chosen to be arranged in the 
form of one or several “genes”. A Gene is represented as a chromosome-like syntactic tree structure that operates 
on input data, i.e., the training dataset(as shown in Fig. 4)82,83.

Figure 2.  The graph of RMSD over the successive boosting steps for the training and test samples using SGB 
method.
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Figure 3.  The effects of learning rate on the performance of the SGB model for predicting CMC.

Figure 4.  Schematic of a simple GP gene including the operators: + , ^, × , tanh.
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After the primary genes are determined from the first population (known as parents), the overall primary GP 
model is developed by a weighted summation of the genes with a bias term. However, the primary model does 
not provide the desired accuracy, and a modification process is required. In the next step, the tree structures 
of primary genes are modified by crossing over the best performing trees and cutting some sections of trees to 
be exchanged between themselves. This modification mainly results in a new population (next generation or 
children) due to changes in the mathematical  functions84.

The generation is iterated several times in a regular process until the last population is generated, which 
includes the most-optimized functions with a specific arrangement of genes to solve the  problem85. In the mod-
eling applications of GP, regression between the objective function and independent variables is also known as 
“multi-gene symbolic regression”. It is an effective technique that includes one or more genes (individual usual 
GP trees) providing simple and fast processing to perform  tasks83,86.

In this study, the number of populations and number of generations were set as 180 each, and the mathemati-
cal operators + , −, × , /, and exp (exponential) were employed. GP was run over the input data, and the output 
model with acceptable accuracy was obtained.

Results and discussion
Multi‑variable linear correlation of CMC. The multi-variable linear model for CMC of anionic sur-
factants in brine is presented below:

The variables of the new developed model have been presented in Tables 1 and 2. The determined descriptors 
(shown in Table 2) are “CIC2”87, “EEig12x”88, “Lop”88,89, “BEHp2”90, and “G3s”91.

CIC2 is a complementary information content of 2nd order neighborhood symmetry from the category of 
information indices descriptors. It is a measure of the degree of diversity of elements in the  structure87.

The Lop descriptor is a lopping centric index categorized in topological descriptors, which are usually 
obtained from a hydrogen-depleted molecular graph. A molecular graph is a labeled graph whose vertices cor-
respond to the atoms of the compound labeled with the kinds of atoms, and the edges correspond to chemical 
bonds labeled with the types of  bonds89.

Lop is an index defined as the mean information content derived from the pruning partition of a  graph88.
EEig12x is one of the edge adjacency indices descriptors, which stands for the 12th eigenvalue of the edge 

adjacency matrix weighted by edge degrees. The edge adjacency matrix derived from a molecular graph encodes 
the connectivity between graph  edges88.

BEHp2 belongs to the Burden eigenvalue category from 2D topological descriptors. It is a measure of mol-
ecule/ion polarizability defined as the 2nd highest eigenvalue of the Burden matrix, which is weighted by atomic 
 polarizabilities90,92.

G3s is a WHIM descriptor and is defined as the 3rd component symmetry directional WHIM index weighted 
by atomic electro-topological states. WHIM specifications are used to calculate 3D molecular information based 
on molecular size, shape, symmetry, diversity of atoms, etc.91.

The statistical parameters of the multivariate linear correlation, including QSPR specific validation param-
eters, are presented in Tables 3 and 4. The values of  R2, RMSD, and MAE show medium accuracy of the linear 
model. The validity of the linear model was checked by LOO cross-validation, LNO cross-validation, bootstrap-
ping, y-randomization, and external validation techniques. The LNO cross-validation parameters are shown in 
Table 4, and the bootstrapping test was performed 5000 times. The low difference between the values of  Q2

LOO, 

(15)

Log10(CMC) = 31.817705(±1.59767) + 0.002290(±0.00066) × T− 0.083577(±0.02999) × pH

− 0.000023(±0.000002) × Seq − 0.498878(±0.03992)× {CIC2} − 0.465377(±0.03149)× {EEig12x}

− 0.445544(±0.05699)× {Lop} − 7.805830(±0.44219)× {BEHp2} − 2.840368(±0.36536)× {G3s}

Table 3.  Statistical parameters of multivariate linear model for CMC of anionic surfactants in brine. The 
subscripts “total”, “train” and “test” are attributed to total dataset, training dataset and test dataset, respectively.

n total = 488 n train = 440 n test = 48

R2
total = 0.9059 R2

train = 0.9061 R2
test = 0.9047

RMSD total = 0.2382 RMSD train = 0.2367 RMSD test = 0.2514

MAE total = 0.1734 MAE train = 0.1711 MAE test = 0.1947

Q2
LOO = 0.8988 RMSECV LOO = 0.2456 Q2

boot = 0.8990

R2
boot = 0.9064 Q2

ext = 0.9048 R2
ext = 0.9047

Table 4.  Statistical parameters of LNO cross-validation for linear model of CMC.

1st 2nd 3th Average

Q2
L – 25% – O = 0.8940 Q2

L – 25% – O = 0.8943 Q2
L – 25% – O = 0.8991 Q2

L – 25% – O = 0.8958

RMSECV LNO = 0.2514 RMSECV LNO = 0.2511 RMSECV LNO = 0.2453 RMSECV LNO = 0.2493
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 Q2
LNO,  Q2

boot,  Q2
ext,  R2

boot, and  R2
ext indicates that the linear model has been developed without occurring overfit-

ting. The y-randomization test was repeated 1000 times, and the results are shown in Fig. 5. According to this 
test, the values of  Q2

yi and  R2
yi (i.e., y-randomization data points) are of poor quality compared to the linear 

model correlation coefficient  (R2) and  Q2
LOO (indicated as a red point in Fig. 5), which verifies that there is no 

risk of chance correlation in the multi-variable linear model of CMC.
The estimated CMC by Eq. (15) versus experimental data is presented in Fig. 6. Based on Tables 3 and 4 and 

Fig. 6, the linear model has acceptable accuracy. However, the prediction ability is not excellent enough. The 
results of non-linear models are proposed in the next section.

Non‑linear models of CMC. The SGB and GP programs were run over the input data to produce new 
models for the CMC of anionic surfactants in a brine solution. The execution of the SGB algorithm in this study 
follows the explanations in  Friedman61,64. The new GP model is a mathematical relation as follows:

Table 5 shows the statistical parameters of the presented models. The values of  R2, RMSD, and MAE represent 
the acceptable applicability of SGB and GP models and the high accuracy and superiority of the SGB method. 
Figures 7 and 8 show the estimated CMC versus the experimental values for the GP and SGB models, respectively. 
The calculated data by the SGB model has been scattered well on the 45 degree line (y = x), verifying excellent 
accuracy.

Figure 9presents the curves of cumulative frequency versus absolute errors of the objective function (Log 10 
(CMC)) for the SGB and GP models, as well as the linear correlation. The maximum absolute error of the SGB 
model in this figure is 0.18. Moreover, the absolute errors of 82.2% of all datasets are less than 0.01, and the 
absolute errors of 99.2% of the data are below 0.1 for the new SGB model. Figure 10 shows absolute errors over 
the total dataset for the linear (top plot), GP (middle plot), and SGB (bottom plot) models. As observed in Figs. 9 
and 10, the estimation accuracy has been enhanced from the linear model to the SGB model, and the accuracy 
of the SGB method is the highest.

The relative importance of independent variables, including descriptors (Lop, CIC2, EEig12x, BEHp2, and 
G3s), T, pH, and  Seq, has been determined by the SGB algorithm in the calibration of the SGB model, and the 
results have been depicted in Fig. 11. A higher value of a variable indicates stronger relative importance on the 

(16)

Log10(CMC)=0.0006095 Seq − 13.76{CIC2}+0.0003308
{

EEig12x
}

− 6.882
{

BEHp2
}

+0.001219
{

EEig12x
}2

−1.096
(

exp
(

−
{

EEig12x
}({

EEig12x
}

+{G3s}
))

+ exp
(

−2
{
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}2

))

+13.56 exp
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−
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Figure 5.  The result of y-randomization test for multi-variable linear model of CMC.
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response. As shown, the descriptor Lop is the more effective factor among the input variables in the develop-
ment of the SGB model.

The application of the proposed models has been shown in Table 6 for the estimation of the CMC of sodium 
dodecyl sulfate as a sample in the dataset.

Figure 6.  The estimated CMC versus experimental data for multivariate linear model over training and test 
datasets.

Table 5.  Statistical parameters of non-linear models for CMC of anionic surfactants in brine.

Statistical parameters

SGB model GP model

All Train Test All Train Test

R2 0.999395 0.999808 0.991658 0.954946 0.953866 0.963834

RMSD 0.019096 0.010993 0.052034 0.164829 0.165879 0.154869

MAE 0.008387 0.005457 0.036536 0.111650 0.111228 0.115514

Figure 7.  The estimated CMC versus experimental values for GP model over training and test datasets.
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The generation of new models with high accuracy for the CMC of surfactant solutions containing different 
types of salts based on the QSPR approach and the application of GP and SGB for producing non-linear models 
are novelties of the present study. Using a wide range of salinities and temperatures, as well as various types of 
anionic surfactants in the modelling procedure, has increased the estimation applicability and prediction per-
formance of the newly developed models.

Conclusion
The estimation of CMC is one of the most important interests of the academic and industrial communities deal-
ing with surfactants. The present study was conducted to obtain novel methods for the estimation of the CMC 
of well-known, highly-used anionic surfactants as functions of both physical parameters (T, pH and salinity) 
and chemical factors (Lop, CIC2, EEig12x, BEHp2, and G3s) and to avoid the expensive and time-consuming 
laboratory measurements. CMC estimation at different temperatures and salinities is considered novel and 
innovative. The QSPR molecular approach, along with the ensemble learning framework of stochastic gradient 
boosting (SGB) and genetic programming (GP) procedures, was used to produce models for CMC in brine. The 
implemented algorithms are reliable and applicable for predicting CMC. However, the output of SGB is more 
accurate in terms of statistical parameters. This inquiry also encourages the scientific and engineer communities 

Figure 8.  The estimated CMC versus experimental values for SGB model over training and test datasets.

Figure 9.  Cumulative frequency of the new developed models.
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Figure 10.  Absolute errors of data points over all dataset for linear model (top), GP model (middle) and SGB 
model (down). It is observed that the estimation accuracy has been increased from top to down.

Figure 11.  Relative importance of independent variables on the CMC based on the SGB algorithm.

Table 6.  Application of the new QSPR models of the present study for estimation of CMC of a sample 
component. a The abbreviation AE indicates absolute error calculated as : AE =|yexp. –  ycalc.|.

Surfactant Structure Physical variables
Descriptors of anionic part (without 
 Na+ ion) CMC

sodium dodecyl sulfate

 

T = 298.15 K
pH = 7
Seq = 309.75 ppm

Lop = 2.911
CIC2 = 2.838
EEig12x = 0
BEHp2 = 3.574
G3s = 0.275

log (CMC)exp. = 0.805
log (CMC)calc. _linear model = 0.516 
 (AEa = 0.289)
log (CMC)calc. _GP model = 0.729 
(AE = 0.076)
log (CMC)calc. _SGB model = 0.804 
(AE = 0.001)
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to further investigate the use of the novel branch of soft computing frameworks. Developing such models for 
CMC provides new applications in the simulation and control of surfactant systems, as well as prediction of 
CMC for newly designed anionic surfactants.

Data availability
All the literature datasets analyzed in this study are available at a reasonable request from the corresponding 
authors.
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