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Signatures of geostrophic 
turbulence in power spectra 
and third‑order structure function 
of offshore wind speed fluctuations
So‑Kumneth Sim 1, Joachim Peinke 2 & Philipp Maass 1*

We analyze offshore wind speeds with a time resolution of one second over a long period of 20 months 
for different heights above the sea level. Energy spectra extending over more than seven decades give 
a comprehensive picture of wind fluctuations, including intermittency effects at small length scales 
and synoptic weather phenomena at large scales. The spectra S(f) show a scaling behavior consistent 
with three‑dimensional turbulence at high frequencies f, followed by a regime at lower frequencies, 
where fS(f) varies weakly. Lowering the frequency below a crossover frequency f

2D
 , a rapid rise of fS(f) 

occurs. An analysis of the third‑order structure function D
3
(τ) of wind speed differences for a given 

time lag τ shows a rapid change from negative to positive values of D
3
(τ) at τ ≃ 1/f

2D
 . Remarkably, 

after applying Taylor’s hypothesis locally, we find the third‑order structure function to exhibit a 
behavior very similar to that obtained previously from aircraft measurements at much higher altitudes 
in the atmosphere. In particular, the third‑order structure function grows linearly with the separation 
distance for negative D

3
 , and with the third power for positive D

3
 . This allows us to estimate energy 

and enstrophy dissipation rates for offshore wind. The crossover from negative to positive values 
occurs at about the same separation distance of 400 km as found from the aircraft measurements, 
suggesting that this length is independent of the altitude in the atmosphere.

Understanding offshore wind properties is a central problem for forecasting wind power and for estimating wind 
farm power outputs. Due to the turbulent nature of wind flows in the atmosphere, this is a challenging problem. 
For three-dimensional (3D) homogeneous isotropic turbulence, a description in terms of Kolmogorov’s theory 
is possible. Its hallmark is a scaling of kinetic energy spectra with the wavenumber k according to a k−5/3 law 
(K41 scaling)1,2. This scaling corresponds to a f −5/3 scaling in the frequency domain when applying Taylor’s 
 hypothesis3. Atmospheric turbulence is, however, different because, apart from seasonal and diurnal influences, 
scaling features are affected by geometric  constraints4. An improved understanding of its behavior is one of 
the grand challenges in wind energy  science5. For offshore wind, where obstacles such as buildings, trees, and 
mountains are absent, one could ask whether a generic characterization of wind speed fluctuations over many 
orders of time or frequency scales is possible.

Spectra of horizontal wind speeds v = (v2x + v2y )
1/2 , with vx and vy being the components parallel to the Earth’s 

surface, show a deviation from K41 scaling. When a measurement at a small height h in the boundary layer is 
performed, an isotropic and homogeneous inertial (IHI) range of 3D turbulence can no longer be assumed for 
length scales larger than h. In energy (power) spectra S(f) of wind speeds, the corresponding crossover frequency 
fIHI ≃ v̄h/h , with v̄h the mean wind speed at height h, marks the onset of an intermediate regime f2D < f < fIHI 
at lower frequencies, where fS(f) varies weakly. This regime is sometimes referred to as the spectral-gap6–8 and 
its features have been discussed controversially. There is evidence that its properties are dependent on the meas-
urement height h9,10. Several studies suggest that the spectrum in this regime can show an f −1  scaling11–14 and 
different models have been developed to explain such  scaling15–19. Other fitting functions have been proposed 
also for describing the  behavior20,21.

For a long time, it has also been debated whether atmospheric turbulence is characterized by scaling proper-
ties of 2D  turbulence22–26. For isotropic 2D turbulence, the seminal paper by  Kraichnan22 predicts a regime of f −3 
scaling to occur at low frequencies as fingerprint of a forward enstrophy cascade, followed by an f −5/3 scaling 
at even lower frequencies due to an inverse energy cascade. For geostrophic winds constrained by rotation and 
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 stratification27,28, the theory by  Charney29 predicts that the potential enstrophy is the relevant conserved quan-
tity analogous to 2D turbulence. Geostrophic turbulence behaves like 2D  turbulence29,30 because of its forward 
potential enstrophy cascade and conserved total  energy31,32. The theory of quasi-2D geostrophic turbulence yields 
one regime of f −3 scaling in energy spectra. Nevertheless, energy spectra obtained from aircraft measurements 
show two scaling regimes with f −5/3 and f −3 scaling. However, as pointed out by  Lindborg25, their appearance 
is not in agreement with the theoretical prediction for isotropic 2D turbulence, because the order of the regimes 
is reversed. This strongly suggests that the observed f −5/3 scaling regime is not due to 2D turbulence. Strati-
fied  turbulence33,34 and cascades of inertia gravity  waves27,35 are commonly discussed as possible explanations.

Here we show that spectra S(f) of offshore wind speeds measured in the North Sea exhibit the commonly 
observed main features for frequencies f > f2D as discussed above. For f < f2D , S(f) rises strongly with decreas-
ing f and shows a behavior consistent with the theoretical predictions for quasi-2D geostrophic turbulence in 
an interval around 10−5 Hz . This interval, however, is quite narrow and it is difficult to identify the f −3 scaling 
clearly.

By studying the wind speed fluctuation in the time domain, we provide further evidence that geostrophic 
turbulence dominates wind speed fluctuations for f < f2D . This evidence comes from analyzing third-order 
structure functions D3(τ ) , i.e. the third moment of differences between velocities separated by a time τ . The 
function D3(τ ) changes sign from  negative1 to positive values at time lags τ ≃ 1/f2D , where a positive D3(τ ) 
indicates a forward enstrophy  cascade32. The zero-crossing of D3(τ ) at 1/f2D is remarkably sharp. By revisiting 
spectra and third-order structure functions obtained from aircraft  measurements36,37, we find that frequencies 
or wavenumbers corresponding to r2D agree with corresponding crossover frequencies to a f −3 scaling regime.

Data set and data analysis
Wind speeds were measured at the FINO1 platform in the North Sea, which is located about 45 km north from 
the island  Borkum38, see Fig. 1. They were sampled by three-cup anemometers over 20 months, from Septem-
ber 2015 to April 2017, for eight different heights h between 30m and 100m . The time resolution is �t = 1 s , 

Figure 1.  FINO1 platform, located at Alpha Ventus wind farm at Borkum West in the North Sea 
(54.3o N–6.5o W). Figure Wind park alpha ventus adapted from Lencer (CC BY-SA 3.0).
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yielding time series with N ∼= 5× 107 speed values for each height (for further details on the data sampling and 
instrumentation, see FINO - Database information).

The time series contain sequences of missing values of different lengths. These “not a number” (NaN) entries 
require special care in the data analysis, in particular when calculating energy spectra. Single missing values 
occur typically once a day, i.e. at about every 105 th entry in the time series. A single NaN entry at a time tNaN has 
been replaced by the interpolated value between the two wind speeds at the times tNaN ±�t . In the resulting 
time series vt of wind speeds, the fraction FNaN of remaining NaN entries is given in Table 1. Time intervals with 
successive NaN entries are typically much longer than one second, indicating a temporary failure of the meas-
urement device. The mean duration T̄NaN of the respective intervals is 12 minutes for the measurement heights 
h = 60m and 100m , and almost one hour for h = 30m , see Table 1. How we handle these longer time intervals 
of successive NaN entries is explained below.

Diurnal variations of the offshore wind speeds did not show up as significant patterns in spectra or structure 
functions and we therefore did not apply a corresponding detrending of the data. We furthermore did neither 
consider seasonal variations nor changes of meteorologic  stability20, because we expect them to have only a weak 
effect on our principal results. Seasonal variations may affect our findings at very long times and corresponding 
low frequencies only.

Results of our analysis are presented for the three measurements heights h = 30m , 60m , and 100m . The 
mean v̄h and standard deviation σh of the wind speeds for these heights are listed in Table 1.

Energy spectra. For calculating energy spectra, we have used two methods to cope with longer periods of 
missing values.

In the first method, we determined spectra Sα(f ) separately for all time intervals α with existing successive 
data. These spectra were averaged in bins equally spaced on the logarithmic frequency axis, yielding Save(f ).

Specifically, let {vn}α = {v(α)n | n = 0, . . . ,Nα − 1} be the α th sequence of wind speeds without NaN values, 
α = 1, . . . ,Nseq , where Nseq is the number of these sequences. The discrete Fourier transform of {vn}α is

where m(α)
min = −int((Nα − 1)/2) and m(α)

max = int(Nα/2) . The energy spectral density (“energy spectrum”) of {vt}α 
at the frequency f (α)m = m/Tα with Tα = Nα�t is

These values S(α)m  for frequencies f (α)m  were averaged in ten bins every decade with equidistant spacing on a 
logarithmic frequency axis. The left and right border of the jth bin are denoted as f −j  and f +j  , respectively. The 
averaged energy spectrum in the jth bin is

where Ij(.) is the indicator function of the jth bin interval [f −j , f +j [ , i.e. Ij(f ) = 1 for f ∈ [f −j , f +j [ and zero oth-
erwise. The S̄j value gives Save(f ) at the frequency f = (f −j f +j )1/2,

In the second method, each interval of successive missing values was linearly interpolated between the two 
wind speed values terminating the interval. The resulting series covers the total time span of 20 months and we 
calculated its energy spectrum Stot(f ) . This spectrum should agree with Save(f ) for frequencies f � 1/T̄NaN and 
perhaps higher frequencies. Indeed, as shown in Fig. 2 below, the spectra Stot(f ) (full circles) agree with Save(f ) 
(open circles) in the intermediate frequency range 10−4 Hz � f � 10−2 Hz , and even up to frequencies of 10−1 Hz 
(not shown). This demonstrates that Stot(f ) is reliable for low frequencies f < 1/T̄NaN.

(1)v̂(α)m =
Nα−1
∑

n=0

v(α)n e−2π imn/Nα , m = m
(α)
min ,m

(α)
min + 1, . . . ,m(α)

max,

(2)S(α)m = S
(α)
−m = 2�t2

Tα

|v̂(α)m |2, m = 1, . . . ,m(α)
max.

(3)S̄j =
∑Nseq

α=1

∑m
(α)
max

m=1 S
(α)
m Ij(f

(α)
m )

∑Nseq

α=1

∑m
(α)
max

m=1 Ij(f
(α)
m )

,

(4)Save(fj) = S̄j .

Table 1.  Mean values v̄h and standard deviations σh of offshore wind speeds for three measurement heights 
at the FINO1 platform in the North Sea. The number FNaN gives the fraction of NaN entries in the time series 
that remain after having interpolated single NaN entries. The time T̄NaN is the mean duration of intervals with 
successive NaN entries after single NaN interpolation.

h 100m 60m 30m

v̄h [ms
−1] 9.2 8.6 8.2

σh [ms
−1] 4.8 4.6 4.3

FNaN 0.09% 0.09% 0.35%

T̄NaN
12min 13min 55min
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Structure functions. In the time domain, characteristic turbulence features can be identified in the scaling 
behavior of structure functions. The structure function Dq(τ ) of qth order at time lag τ is the qth moment of the 
velocity fluctuation [vt − vt+τ ],

Here, 〈. . .〉t means an average over all times. We determined the structure functions without replacing missing 
values by taking the average over all existing pairs (vt , vt+τ ) . Knowing Dq(τ ) , one can transform this to a func-
tion Dq(r) with r = v̄hτ , where v̄h is the mean wind speed averaged over the whole time series given in Table 1. 
This refers to applying Taylor’s hypothesis “globally”.

In a refined analysis, we take into account fluctuations of mean wind speeds on the scale τ . This corresponds to 
a method sometimes referred to as local Taylor’s hypothesis. Specifically, for a given pair of times t, t + τ we first 
calculated the average wind speed v̄t,t+τ in the interval [t, t + τ [ , v̄t,t+τ =

∑τ−1
τ ′=0 vt+τ ′/τ . This gives a distance 

rt,t+τ = v̄t,t+τ τ corresponding to Taylor’s hypothesis, i.e. a pair of values (r,�v(r)) = (rt,t+τ , vt − vt+τ ) . The val-
ues �v(r)q are subsequently averaged in fifty bins every decade with equidistant spacing on the logarithmic r axis, 
yielding Dloc

q (r) , where the superscript indicates the local use of Taylor’s hypothesis. For comparison of Dloc
q (r) 

with Dq(τ ) , we can transform Dloc
q (r) back to a function depending on a time lag by using Dloc

q (τ ) = Dloc
q (r/v̄h) . 

Differently speaking, applying the local Taylor’s hypothesis amounts to calculating the right-hand side of Eq. (5) 
for a transformed τ ′ = (v̄t,t+τ /v̄h)τ.

In our analysis of the wind speed fluctuations in the time domain, we focus on the structure function D3(τ ) 
and the kurtosis given by

When using Taylor’s hypothesis locally, we insert Dloc
2 (τ ) and Dloc

4 (τ ) in this equation, yielding κ loc(τ ).

(5)Dq(τ ) =
〈

[vt − vt+τ ]q
〉

t
.

(6)κ(τ) = D4(τ )

D2(τ )2
.

Figure 2.  Frequency-weighted energy spectra in a double-logarithmic representation for three different heights 
(a) h = 100m , (b) h = 60m , and (c) h = 30m . Open circles refer to fSave(f ) , where Save(f ) is obtained by an 
averaging over all spectra of sub-sequences without missing values (see the description of the energy spectra 
calculation). Full circles refer to the total spectrum Stot(f ) , where linearly interpolated wind speeds were taken 
in all intervals of missing data. Green crosses mark spectra calculated from ten minutes averaged wind speeds 
in the period January 2005–July 2021. The vertical lines separate the various regimes: the blue line at frequency 
fIHI = v̄h/(3h) separates the scaling regime of 3D turbulence from the intermediate regime, the red line at 
frequency f2D separates the intermediate regime from the regime of quasi-2D geostrophic turbulence, and the 
black line at frequency f× marks the onset of uncorrelated wind speed fluctuations (white noise behavior). 
The theoretical scaling laws expected in the regimes of geostrophic and 3D turbulence are indicated by orange 
lines, as well as the white noise behavior at very low frequencies. The inset in (a) shows energy spectra obtained 
from aircraft measurements [extracted from Ref.36 and mapped to the frequency domain by applying Taylor’s 
hypothesis with a mean wind speed 30ms

−1.].
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Results and discussion
Figure 2a shows the frequency-weighted energy spectrum fS vs. f for the measurement height h = 100m in a 
double-logarithmic representation. When comparing the data in Fig. 2a with the corresponding frequency-
weighted energy spectra for the other measurement heights in the range h = 30− 90m , we have found almost 
the same functional behavior. This is demonstrated in Fig. 2b and c, where we show the results for h = 60m and 
30m . Similarly, the structure functions Dq(τ ) in the time domain are nearly independent of h.

Figure 3a and c show the results for the third-order structure function for h = 100m . We have plotted 
D3(τ )

1/3 in a semi-logarithmic representation to make changes of the function for small values easier visible. 
In Fig. 3a, D3(τ )

1/3 is displayed (indicated by “global”), and Dloc
3 (τ )1/3 in Fig. 3c (indicated by “local”). The cor-

responding results for the kurtosis κ(τ) and κ loc(τ ) are shown in Fig. 3b and d. Overall, the results in Fig. 3a and 
b are similar to that of their counterparts in Fig. 3c and d, although there are differences in detail.

In the following, we first discuss our results for the energy spectra and structure functions in subsections 
referring to different frequency and respective time regimes. In a final subsection, we compare our findings for 
the third-order structure function in the crossover regime to quasi-2D geostrophic turbulence with literature 
results obtained from aircraft measurements.

IHI regime of 3D isotropic turbulence. Above a frequency

with v̄h the mean wind speed [see Table 1], we see in Fig. 2a the signature of 3D turbulence, i.e., a behavior con-
sistent with the K41 scaling. The border fIHI of this frequency regime is marked by the vertical blue lines in the 
figure, and the K41 scaling behavior by the solid lines with slope (−2/3).

(7)fIHI ∼
v̄h

h
,

Figure 3.  (a, c) Cubic root of the third-order structure function D3(τ ) , and (b, d) kurtosis κ(τ) as a function 
of the time lag τ for the measurement height h = 100m . Parts (c) and (d) show the results for Dloc

3
(τ )1/3 and 

κ loc(τ ) , when applying the local Taylor’s hypothesis (see description of the data analysis). Vertical blue, red, and 
black lines correspond to the crossover frequencies in Fig. 2. In (a, c), the sharp change from negative to positive 
values at τ � 1/f2D indicates the transition to quasi-2D geostrophic turbulence. In (c), the orange line in the 
short-time (IHI) regime of 3D turbulence marks the function −(4/5)εIHIv̄hτ with εIHI = 3× 10

−3
m

2
s
−3 [cf. 

Eq. (8)], and the orange line in the regime of turbulence induced by gravity waves marks the function −2εv̄hτ 
with ε = 2.5× 10

−5
m

2
s
−3 [cf. Eq. (10)]. In (d), the orange line with slope (-0.2) indicates corrections to K41 

scaling corresponding to an intermittency factor µ = 0.45 . At large time lags τ > 1/f× , κ(τ) is close to three, 
corresponding to a Gaussian distribution of velocity fluctuations.
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For the structure functions, the theory of isotropic 3D  turbulence1 predicts a negative

where εIHI is the dissipation rate in the isotropic homogeneous inertial range. Taking into account the intermit-
tency corrections to K41  scaling39, the kurtosis should scale as

where µ is the intermittency factor and quantifies the amplitude of the logarithmic correction in the scaling of 
the energy dissipation rate with r. Values of µ lie in the range 0.2-0.540–42.

Both D3(τ ) and Dloc
3 (τ ) in Fig. 3a and c are negative in the regime τ � τIHI = 1/fIHI . For the kurtosis shown in 

Fig. 3b and d, the time τIHI marks a crossover time from a regime where κ(τ) decreases to another regime where 
it is nearly constant. That κ(τ) is much larger than 3 for small τ reflects fat non-Gaussian tails in the distribution 
of wind speed fluctuations for short  times43.

As for the laws (8) and (9), the data in Fig. 3c and d can be well fitted to the respective equations, while this 
is not the case for the data in Fig. 3a and b. This shows that applying the local Taylor’s hypothesis is needed here.

When fitting −(4/5)εIHIv̄hτ to the data for Dloc
3 (τ ) in Fig. 3b (orange line), we find εIHI = 3× 10

−3
m

2
s
−3 

for the dissipation rate. This value compares well with results reported in other studies of turbulence in the 
atmospheric boundary  layer44. When fitting Eq. (9) to the data for κ loc(τ ) in Fig. 3d (orange line), we obtain a 
slope corresponding to µ = 0.45 . Deviations from the respective line could be explained by the fact that cup 
anemometers loose precision for time lags approaching one second.

Intermediate regime of negative third‑order structure function. When f becomes smaller than 
fIHI , Fig. 2a–c shows an intermediate regime (IR) where fS(f) first varies weakly and the K41 scaling is absent. In 
this regime, the third-order structure function remains negative, see Fig. 3a and c.

On scales 10−3 Hz � f < fIHI in the IR, fS(f) is almost constant, or, equivalently, S(f ) ∼ f −1 . Also, D3(τ ) and 
κ(τ) remain nearly constant in the corresponding time interval. We believe that this behavior reflects turbulent 
wind patterns strongly influenced by the Earth’s surface, similarly as those found in wall turbulence  experiments45 
for Reynolds numbers larger than 6× 104 and in atmospheric boundary  layers11,14. We therefore refer to the 
regime 10−3 Hz � f < fIHI as that of “wall turbulence”, see Fig. 2a and denote the lower limit of this regime as fwt , 
i.e. fwt ≃ 10−3 Hz . The scaling S(f ) ∼ f −1 can be reasoned when considering wall turbulence to be governed by 
attached  eddies46. Several models have been discussed to explain this  scaling15–19. An f −1 scaling in the energy 
spectra corresponds to a logarithmic dependence of D2(τ ) on τ47. The second-order structure function follows 
this logarithmic behavior approximately for times 1/fIHI � τ � 103 s (not shown), similarly as it has been found 
in near-surface atmospheric turbulence on  land48.

Below fwt in the IR, fS(f) increases with decreasing f. The structure function D3(τ ) in the corresponding time 
interval first decreases to larger negative values, and after passing a minimum rapidly rises towards zero. Inter-
estingly, similar features have been seen in the analysis of wind speed data sampled by aircraft. Energy spectra 
obtained from aircraft measurements are shown in the inset of Fig. 2a. These data were extracted from Ref.36 for 
different wavenumbers and mapped to the frequency domain by applying Taylor’s hypothesis with a mean wind 
speed 30ms−1 typical for the stratosphere. As will be discussed further below, the frequency range f2D < f < fwt 
is likely connected to turbulent behavior induced by gravity waves.

Transition to quasi‑2D geostrophic turbulence. The IR regime terminates at a time lag τ2D , above 
which D3(τ ) becomes positive, see Fig. 3a and c. We interpret f2D as the frequency, below which quasi-2D geo-
strophic turbulence is governing wind speed fluctuations. According to the theory of geostrophic  turbulence29, 
a scaling fS ∼ f −2 is predicted due to a forward cascade of potential  enstrophy31, analogous to the enstrophy 
cascade of ideal isotropic 2D  turbulence22. Indeed, Fig. 2a–c show a sudden rapid of fS increase towards lower f 
for f � f2D . When f is close to f2D , the data approach a line indicating the expected scaling law fS ∼ f −2 . How-
ever, the spectral data alone do not provide convincing evidence for a transition to 2D turbulence. This is due 
to the limited extent of the frequency interval, where the data are consistent with the expected scaling behavior.

Strikingly, the transition becomes very well identifiable in Fig. 3a and c. Third-order structure functions of 
quasi-2D geostrophic  turbulence32 are similar to those of 2D turbulence, which are positive in  general49,50. The 
third-order structure functions D3(τ ) in Fig. 3a and c indeed display a very sharp transition from negative to 
positive values at τ = τ2D ∼ 1/f2D.

At the frequency f = 1/day one could have expected a peak to occur due to diurnal variations. Such a peak 
has indeed been observed in the early analysis of onshore wind data by Van der  Hoven6. A diurnal peak does not  
occur in Fig. 2a–c. We believe that this is because of weaker diurnal temperature variations of oceans compared 
to land masses. For identifying scaling laws of atmospheric turbulence, this is an advantage as well as the absence 
of mountains or other heterogeneities on land that can inject long-lived coherent structures.

3‑day peak and white noise behavior at low frequencies. For τ � τ× , κ(τ) in Fig. 3b and d reaches 
a value κ(τ) ≃ 3 , reflecting Gaussian distributed wind speed fluctuations. The time τ× has a value of about 
3 days and corresponds to a frequency f× = 1/τ× , where fS(f) in Fig. 2a–c runs through a peak maximum. This 
peak has been attributed to the motion of low and high pressure areas with linear dimension of about 103 km
6. If we assume Taylor’s hypothesis to hold even at large time scales of order τ× , the corresponding spatial scale 
r× = v̄hτ× ≃ 3× 103 km agrees with this length scale of low and high pressure areas.

(8)D3(r) = −4

5
εIHIr,

(9)κ(τ) ∼ τ−4µ/9,
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For r � r× , wind speed fluctuations can be expected to become uncorrelated. Accordingly, the energy spec-
trum should become constant for f < f× . To test this expectation, one needs very long time series to suppress 
numerical noise in the spectra. The FINO1  project38 also provides ten minutes averaged wind speeds in the 
long period January 2005 until July 2021. Taking these data, we calculated energy spectra S10min(f ) with the 
same method as used for obtaining Stot . The results are represented by the green crosses in Fig. 2a–c and agree 
with Stot and Save for frequencies below f2D . In the low-frequency regime f < f× , they indeed show a behavior 
fS10min ∼ f  of a white noise spectrum. The particular high value of S10min at the frequency of 1/year reflects the 
seasonal cycle of winds at the yearly time scale.

Comparison of third‑order structure function at low altitude with results from aircraft meas‑
urements. The third-order structure functions obtained from the wind speeds measured at low altitudes of 
∼ 100m above the sea behave very similarly to those obtained from aircraft measurements at very high altitudes 
of ∼ 10 km . For this comparison, we display our results for D3 as a function of the distance r in Fig. 4a and b, 
where for transforming the time lags τ to distances r, we used in (a) the mean wind speed ( r = v̄hτ) , and in (b) 
the local Taylor’s hypothesis. The results from aircraft measurements were taken from Cho and  Lindborg37 and 
are redrawn in Fig. 4c. The third-order structure functions in Fig. 4a–c show the same overall behavior: a regime 
of negative D3 at small r2D � v̄hτ2D (red symbols) is followed by a regime of positive values at large r2D � v̄hτ2D.

A merit of applying the local Taylor’s hypothesis in our analysis becomes clear when comparing the data in 
Fig. 4a and b. While in Fig. 4b scaling regimes become visible, this is not the case in Fig. 4a. Notably, the results 
in Fig. 4b show a linear variation of D3 with r in the regime of negative D3 , and an r3-dependence in the regime 
of positive D3 , see the corresponding lines in the figure. These lines were obtained by least-square fits in the r 
intervals 10 km < r < 200 km and 600 km < r < 1500 km.

It is insightful to compare the energy dissipation rate ε and the enstrophy flux η at the different altitudes, which 
can be extracted from the amplitude factors of the scaling laws. In the regime of linear variation of D3 with r, the 
theory predicts, when incorporating Coriolis  forces51,

Our analysis yields ε = 2.5× 10
−5

m
2
s
−3 , which is of similar magnitude as ε = 6× 10

−5
m

2
s
−3 obtained from 

the aircraft  data51. For the forward enstrophy cascade, the theory  predicts25,32,51

Our analysis gives η = 6× 10−17 s−3 , which is about 20 times smaller than the value η ≃ 1.5× 10−15 s−3 
reported for the aircraft measurements.

The length scale r2D ≃ 500 km , where D3 crosses zero, can be estimated. Geostrophic turbulence should arise 
when rotation and stratification constrain synoptic-scale winds to be nearly  horizontal27,28. The length scale 
at which rotation becomes as important as stratification is described by the Rossby deformation radius with 
r ≃ 500 km as a standard  estimation34, which is the same as r2D . A dimensional  analysis30,52,53 that requires only 
the enstrophy flux η and the energy dissipation rate ε yields a further estimation of r2D . Assuming ηr3

2D
∼ εr2D , 

we find r2D ∼ √
ε/η ≃ 600 km from the data in Fig. 4b, and 

√
ε/η ≃ 200 km from the aircraft measurements in 

Fig. 4c. These estimates are of the same order of magnitude.
In the analysis of the aircraft measurements, the regime of linear variation D3(r) ∼ r is related to a scal-

ing regime S ∼ k−5/3 of corresponding wavenumbers k in kinetic energy  spectra54. Gravity waves are com-
monly believed to be the physical mechanism leading to the corresponding scaling behaviors with the same 
functional form as for 3D isotropic  turbulence25,27,34,37,54. We can ask whether the energy spectra for the wind 
speeds measured at low altitudes reflect this finding. The frequency interval corresponding to the r regime 

(10)D3 = −2εr.

(11)D3(r) =
1

4
ηr3

Figure 4.  Third-order structure functions as function of separation distance r for low altitudes by applying 
Taylor’s hypothesis with (a) a globally averaged velocity, (b) with local averages of velocities, and (c) for high 
altitudes taken from aircraft measurements. Blue crosses correspond to positive values of D3 and red dots 
to negative ones. The theoretical scaling laws expected in the regimes of geostrophic and 3D turbulence are 
indicated by black lines.
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10 km < r < 100 km is 10−4 Hz < f < 10−3 Hz . In this regime, the local slopes in the double-logarithmic plots 
in Fig. 2a–c indicate a behavior fS ∼ f −2/3 (or S ∼ f −5/3 ), shown by the orange dashed line in Fig. 2a.

Conclusions
Our analysis shows that the correlation behavior of offshore wind speed fluctuations at times between a few 
hours and several days is in agreement with the theory of quasi-2D geostrophic turbulence. While features of 
this turbulence were seen in previous studies based on aircraft measurements, we have found them here for low 
altitudes in offshore wind. The third-order structure function in the time domain shows a sharp transition from 
negative to positive values at a time τ2D . Transforming the third-order structure function D3 from the temporal 
to the spatial domain, it is strikingly similar to the aircraft data, if the local Taylor’s hypothesis is used for the 
transformation. In that case, both the linear variation with the distance in a regime of negative D3 (3D turbulence) 
and the cubic variation with the distance in a regime of positive D3 (2D geostrophic turbulence) become visible. 
The transition between negative and positive D3 occurs at about the same length scale 400 km for the offshore 
wind at a height 100m and the wind measured by aircraft at a height of about 10 km . This strongly suggests that 
the length scale of the transition to 2D geostrophic turbulence is independent of the altitude.

We have given a comprehensive overview of the spectral behavior of offshore winds covering times from 
seconds to years. At low frequencies f ≪ f× ≃ 1/3 days , a white noise behavior is found, i.e. correlations 
between wind velocities are not seen in the spectrum S(f). Around f× , a peak appears in the frequency-weighted 
spectrum fS(f) that can be explained by the motion of low- and high-pressure areas in the troposphere. For 
f > f× , the spectral energy decreases with increasing frequency. In a regime f× < f < f2D = 1/τ2D , it decays as 
S(f ) ∼ f −3 as predicted by the theory of geostrophic turbulence. For higher frequencies f > f2D , results from 
aircraft  measurements36,54 show a weaker decay S(f ) ∼ f −5/3 , which has been interpreted as resulting from 3D 
turbulence induced by gravity waves. For the wind measured at a low altitude h ∼ 100m , we find indications 
of such a regime for f close to f2D , but with increasing f the weighted spectrum fS(f) soon becomes flat, before it 
enters for f > fIHI a regime of 3D isotropic turbulence. The crossover frequency fIHI is about v̄/h , where v̄ is the 
mean wind speed. We believe that the intermediate regime f2D < f < fIHI has two parts: one at high frequency 
due to wall turbulence with a behavior S(f ) ∼ f −1 , and a second one at higher frequencies, which is influenced 
by gravity waves. A scaling behavior according to gravity wave induced 3D turbulence, however, becomes clearly 
visible only at higher altitudes.

Our findings shed new light onto the characterization of wind speed fluctuations from micro- to synop-
tic scales and beyond. Frequencies of the order of f2D correspond to mesoscale processes on length scales of 
10-100 km . A better understanding of the relation between atmospheric phenomena on these mesoscales and 
microscales governing air flow around wind turbines and wind power plants, is considered as a grand challenge 
in wind energy  science5. This in particular concerns multiscale approaches, where a detailed simulation on 
microscales has to be connected to coarse-grained approaches on large scales. We believe that our findings on 
geostrophic 2D turbulence below f2D , the associated scaling of wind speed fluctuations, the indications of gravity-
wave induced 3D turbulence close to f2D , and the overall characterization of the different frequency regimes can 
improve the modeling of offshore wind flows across magnitudes of time scales.

Data availability
The wind velocity were measured at the FINO1 platform in the North Sea. The FINO1 project is supported by 
the German Government through BMWi and PTJ. The database is accessible via https:// www. fino1. de/ en.
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