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High‑accuracy morphological 
identification of bone marrow 
cells using deep learning‑based 
Morphogo system
Zhanwu Lv 1*, Xinyi Cao 2, Xinyi Jin 2, Shuangqing Xu 1 & Huangling Deng 1

Accurate identification and classification of bone marrow (BM) nucleated cell morphology are crucial 
for the diagnosis of hematological diseases. However, the subjective and time‑consuming nature of 
manual identification by pathologists hinders prompt diagnosis and patient treatment. To address 
this issue, we developed Morphogo, a convolutional neural network‑based system for morphological 
examination. Morphogo was trained using a vast dataset of over 2.8 million BM nucleated cell images. 
Its performance was evaluated using 508 BM cases that were categorized into five groups based on 
the degree of morphological abnormalities, comprising a total of 385,207 BM nucleated cells. The 
results demonstrated Morphogo’s ability to identify over 25 different types of BM nucleated cells, 
achieving a sensitivity of 80.95%, specificity of 99.48%, positive predictive value of 76.49%, negative 
predictive value of 99.44%, and an overall accuracy of 99.01%. In most groups, Morphogo cell analysis 
and Pathologists’ proofreading showed high intragroup correlation coefficients for granulocytes, 
erythrocytes, lymphocytes, monocytes, and plasma cells. These findings further validate the 
practical applicability of the Morphogo system in clinical practice and emphasize its value in assisting 
pathologists in diagnosing blood disorders.

The morphological examination of bone marrow (BM) nucleated cells plays a crucial role in the diagnosis of vari-
ous hematological diseases, including acute leukemia (AL), chronic leukemia (CL), myelodysplastic syndrome 
(MDS), plasma cell myeloma (PCM), and hemorrhagic disease. It is considered one of the most critical diagnostic 
procedures, alongside immunological diagnosis and cytogenetics diagnosis according to the diagnostic guide-
lines of hematopoietic cancers issued by the World Health Organization (WHO)1–6. Typically, BM morphology 
assessment involves skilled technicians performing a differential count followed by verification and diagnosis 
by experienced hematopathologists. However, this process heavily relies on the expertise of technicians and 
pathologists and is time-consuming, which limits the overall efficiency of BM  assessment7–9. Therefore, there is 
a pressing need for an automated approach to conducting standardized BM cell differential counts.

A convolution neural network (CNN) is a kind of feedforward neural network that consists of convolution 
computation and depth  structure10. CNNs, being representative algorithms of deep learning, have gained wide-
spread usage in computer-aided  systems11. Their exceptional ability to extract image features was showcased 
when CNNs achieved top performance in the ImageNet 2012 competition. Since then, numerous studies have 
concentrated on CNN development and its application in clinical settings, to reduce the workload of medical 
professionals in object recognition and image classification and improve the precision of clinical  diagnosis8,12–14. 
Automated pathology analysis systems developed based on CNN models are mainly used for histopathology 
and peripheral blood morphology, and there are fewer reports on the identification of BM nucleated cells until 
the last five years when they have been rapidly developed 14–17. By combining CNN and Gabor, Huang et al. cre-
ated the innovative MGCNN framework for classifying blood cells. In comparison to conventional CNNs, this 
unique approach significantly increases classification accuracy but comes at a higher computational  cost18. Liu 
et al. were able to analyze 200 fields in 16 min using a faster Region-Convolutional Neural Network (R-CNN) for 
BM imaging cell detection, taking an average of 4.8 s per image and achieving an accuracy of 0.496. However, the 
microscope’s focus had to be manually adjusted throughout the observation to maintain a clear field of  view19. 
Eckardt et al. used a multi-step deep learning methodology to separate cells from pictures of BM to discriminate 
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between acute myeloid leukemia (AML) and healthy cells and to forecast the state of the Nucleophosmin 1 (NPM1) 
mutation, the most prevalent mutation in AML. However, this system requires the manual selection of areas for 
disease classification as judged by the pathologist, making the results potentially  erroneous20. To detect acute 
lymphoblastic leukemia (ALL) in microscopic blood pictures, Atteia et al. are optimized using the Bayesian 
optimization technique. On a holdout test set, the best CNN model determined by the Bayesian optimization 
approach for ALL detection recorded 100% accuracy, specificity, and  sensitivity21.

The Morphogo system we have developed overcomes many of these limitations, enabling efficient and accu-
rate identification and classification of BM nucleated cells. According to our previous research, The Morphogo 
system integrates digital imaging of BM smear with artificial intelligence-based automatic BM cell differential 
count and has shown high accuracies in identifying various cell types, including granulocytic cells, erythroid 
cells, lymphoid cells, plasma cells, and monocytic cells, and even metastatic cancer  cells6,8,22,23. We are committed 
to further improving the Morphogo system to enhance its performance and clinical value in assisting with the 
diagnosis of hematologic diseases.

Methods
Sources and classification of samples. This was a retrospective study. 508 BM cases were collected from 
Kingmed Diagnostics from October 2021 to December 2021. Following the recommendations of pathologists, 
the BM smears were divided into five groups, denoted G1–G5, based on the extent of pathological and cell mor-
phological changes. The diseases grouped within each category are as follows: G1: Relatively normal cases; G2: 
Disorders with quantitative abnormalities primarily affecting mature cells, including anemia, bleeding/throm-
bosis, myeloproliferative neoplasms (MPN), chronic myeloid leukemia (CML); G3: Disorder follow-up cases; 
G4: Malignant hematological disorders characterized by a substantial proliferation of blasts and immature cells, 
including acute leukemia (AL), Multiple myeloma (MM); G5: Disorders associated with a higher occurrence of 
abnormal cells, including megaloblastic anemia (MgA), myelodysplastic syndrome (MDS), Chronic lymphopro-
liferative disease (CLPD). All BM smears underwent appropriate staining using the Wright-Giemsa method, 
ensuring the quality aligned with the recommendation of the nation guide to clinical laboratory procedures 
(NGCLP, fourth edition) or the international council for Standardization in Hematology (ISH)8. The study was 
approved by the Ethics Committee of Guangzhou Kingland Medical Laboratory Center. The detailed informa-
tion of the enrolled BM cases was listed in Table 1.

System workflow. Morphogo system is a CNN-based Artificial Intelligence (AI) system developed by 
Hangzhou Zhiwei Information and Technology Ltd that is used to perform a differential count of BM nucleated 
cells automatically.

The workflow is as follows: (1) The Morphogo system initiates an automated scan of the BM smear using a 
40 × objective lens, capturing a whole slide image (WSI) in the process. This enables the system to count mega-
karyocytes and identify the adaptive area for cell analysis. (2) Subsequently, the system switches to a 100 × objec-
tive lens to capture images of the designated area. Using CNN, the system identifies BM nucleated cells within 
this area and performs a differential cell count until a specified number of cells are obtained. (3) Before finalizing 
and releasing the cell morphology report, the data undergoes review by a pathologist. (Fig. 1).

Morphogo system evaluation. To evaluate the cell classification performance of the Morphogo system 
in different hematological diseases, the BM nucleated cells were categorized into 25 categories: proerythro-
blast, early erythroblast, intermediate erythroblast, late erythroblast, myeloblast, promyelocyte, neutrophilic 

Table 1.  Grouping and basic information of BM smear samples. MPN myeloproliferative neoplasms, CML 
chronic myeloid leukemia, AL acute leukemia, MM multiple myeloma, MgA megaloblastic anemia, MDS 
myelodysplastic syndrome, CLPD chronic lymphoproliferative disease.

Group Sample Number

G1 Relatively Normal 111

G2

Anemia 33

Bleeding/Thrombosis 26

MPN 11

CML 11

Others 17

G3 Disorder Follow-up 152

G4

AL 60

MM 39

Others 1

G5

MgA 6

MDS 18

CLPD 12

Others 11
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myelocyte, neutrophilic metamyelocyte, band neutrophil, segmented neutrophil, eosinophilic myelocyte, eosin-
ophilic metamyelocyte, band eosinophil, segmented eosinophil, basophil, monoblast, promonocyte, monocyte, 
lymphoblast, prolymphocyte, mature lymphocyte, plasmablast, immature plasma, plasma cell and others includ-
ing smudge cell, histocyte, and mast cell according to WHO classification. Cell classification performance was 
evaluated in terms of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), 
and  accuracy14,24. Accurately identifying individual morphological categories can be challenging, particularly 
when closely related categories exhibit morphological similarities. Recognizing this uncertainty in the mor-
phological identification of BM nucleated cells, we incorporate the concept of tolerance classes, wherein certain 
mispredictions by the CNN model are deemed acceptable even if they differ from the precise labels provided by 
pathologists. This consideration was called tolerance  classes25. The presence of tolerance classes is illustrated in 
Fig. 2, where the light blue color indicates tolerable mix-ups. For example, the confusion between myelocyte and 
promonocyte falls within the realm of tolerance. furthermore, we collected and compared the results of patholo-
gists’ proofreading of all BM smears with the output of the Morphogo system, using kappa values as a metric to 
assess the agreement between the two approaches in disease diagnosis.

Establishment of algorithms. In the process of Morphogo scanning and analyzing BM smears, intelli-
gent algorithms play an important role. There are several key algorithms involved in this process. The first is the 
slide scanning area algorithm, which extracts the slide area to be observed by mimicking the human task-based 
visual object attention mechanism to determine the 40 × scanning coverage. The second is the auto-focal plane 
algorithm. When the camera rapidly captures more than 100 images with varying sharpness at different object 
distances, the Sobel operator is applied to extract the gradient values in different directions of the images. By 
quantifying image clarity using a dedicated function, the algorithm identifies the clearest regions within each 
image and an image fusion algorithm is then employed to merge these regions, ensuring the best clarity for every 
nucleated cell within the field of view.

Then, the 40 × full-slide assembling algorithm is utilized to introduce feature changes while maintaining a 
consistent scale, and the key points of the image are identified by the Gaussian differential function, and the key 
points are matched based on Ransac algorithm, achieving seamless assembly of the image and generating a WSI. 
Once the WSI is obtained, an area selection algorithm is used to select an optimal area for 100 × cell imaging. In 
100 × cell images, a cell segmentation method based on saturation clustering is employed to accurately separate 
and locate the nucleated cells for differential count. Finally, the classification of BM nucleated cells is realized by 
a deep learning algorithm. This algorithm utilizes expert-labeled cell images and incorporates different types of 
cell morphological characteristics. By leveraging and the updated big data platform, which provides a continually 
expanding dataset, the algorithm achieves accurate classification and analysis of BM nucleated cells.

Training of algorithm. The Morphogo system, which has been trained by more than 2.8 million BM nucle-
ated cells, has now developed and refined to the point where it can automatically scan and analyze BM smears 
in less than 10 min while detecting more than 35 different types of nucleated cells (Table 2). The training of the 
algorithm was run on a server equipped with Intel Core i9 10, 900X, 16G × 4 ADATA DDR4, NVIDIA GeForce 
RTX 2080 Ti cards, and CUDA Version 10.2. The optimal algorithm for cell categorization was obtained after 
several training sessions. Subsequently, 385,207 BM cell images in this paper were used as validation datasets.

Figure 1.  Workflow design for Morphogo analysis and pathologist review.
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Statistical analysis and interpretation. Excel version 2016 was used to analyze the sensitivity, specific-
ity, PPV, NPV, and accuracy of Morphogo’s cell classification by assuming pathologists’ annotations as the abso-
lute true cell classification. The correlations of cell proportions were plotted by GraphPad Prism 7.0. Kappa and 
ICC for two different methods were performed by IBM SPSS Statistics 20 to evaluate the consistency. To inter-
pret the correlation, the r-value is as follows: r less than 0.09 was no correlation; 0.1–0.3 was a weak correlation; 
0.3–0.5 a was a moderate correlation. 0.5–1.0 was a high  correlation26. The relationship between K value and 
consistency is as follows: K = 0–0.20, extremely weak consistent; K = 0.21–0.40, weak consistent; K = 0.41–0.60, 
moderately consistent; K = 0.61–0.80, strongly consistent, and K = 0.81–1.0, almost perfect  consistent27. Unless 
otherwise indicated, all data were displayed as mean and standard deviation (x̅ ± s) and analyzed by two-tailed 
Student’s t-test. p < 0.05 were considered statistically significant differences.

Statement. All of the above methods were performed by the relevant guidelines and regulations.

Ethical approval. This study was approved by the Ethics Committee of Guangzhou Kingmed Diagnostics 
Medical Laboratory Center. Because abandoned samples of routine clinical detections were collected and clini-
cal case information was used, the Ethics Committee of Guangzhou Kingmed Diagnostics Medical Laboratory 
Center therefore has approved the application for performing the study with the exemption of informed consent 
from all participants.

Results
Highly accurate classification of BM nucleated cells by Morphogo system. The high-resolution 
digital images of BM nucleated cells from the ROI were acquired using the Morphogo system. These cell images 
were categorized into 25 categories (Fig. 3). Cell classification results predicted by the Morphogo system and 
annotated by pathologists were shown in a confusion matrix (Fig. 2). The dataset consisted of 385,207 single-cell 
images. The row displayed cell classification results from the Morphogo system, and the column showed results 
from pathologists’ proofreading. The dark blue pane located diagonally illustrated the number of nucleated cells 
classified by the Morphogo system which were entirely consistent with pathologists’ proofreading. The white 
pane represented cells that were classified as different types by the Morphogo system and pathologists proofread-
ing. Cell numbers shown in light blue panes represented cells that were easily confused either between different 
maturing stages within the same lineage or between morphologically related cell types, so their misclassification 
was considered tolerable.

To evaluate the cell classification performance of the Morphogo system under different pathological condi-
tions, the Morphogo system was applied to patient cases with more than 14 types of hematological diseases. The 

Figure 2.  The summary of cell classification results obtained by Morphogo pre-classification and pathologists’ 
proofreading. The confusion matrix displays the count of cell images within each of the 25 morphological 
categories of BM nucleated cells. Rows represent the preliminary classifications by the Morphogo system, 
while columns reflect the pathologists’ review. Diagonal entries in the matrix indicate the instances where the 
Morphogo system’s classification aligns with the pathologists’ review. Mix-ups that are considered tolerable are 
highlighted in light blue.
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evaluation indicators were calculated for each disease condition and are shown in Table 3. The sensitivity in the 
classification of BM nucleated cells by the Morphogo system was an average value of 80.95%. The Morphogo 
system exhibited a sensitivity of more than 95% in the identification of 9 categories of BM nucleated cells. For 
specificity, the test sample yielded an average of 99.48% for all classes of BM nucleated cells. The value of PPV 
varied greatly in different classes of BM nucleated cells, ranging from 30.45% to 99.69%, with an average value of 
76.49%. The Morphogo system showed a more than 95% PPV value among Neutrophilic metamyelocytes, Band 
neutrophils, Segmented neutrophils, Intermediate erythroblasts, Monocytes, and others. The average value of the 
NPV was more than 99%, ranging from 95.43 to 100.00%. And the NPVs of eosinophilic metamyelocyte, band 
eosinophil, and plasmablast ahead of the other cells have a value of 100.00%. The Morphogo system performed 
a high accuracy in the classification of BM nucleated cells by 95.55–99.98%, with an average value of 99.01%. 
Therefore, the results of our study showed that the Morphogo system had high sensitivity, specificity, PPV, NPV, 
and accuracy in the classification and counting of BM nucleated cells.

Morphogo system was in substantial agreement with pathologists’ proofreading in the iden-
tification of BM nucleated cells. To better understand the agreement of BM nucleated cells between 
the Morphogo system and pathologists proofreading, we performed the correlation analysis and consistency 
analysis between the Morphogo system and pathologists proofreading in the classification and counting of BM 
nucleated cells. The results were shown in Fig. 4. Morphogo system showed positive correlation between pathol-
ogists and Morphogo system in the classification of myeloblast (r = 0.6009, Fig. 4A), promyelocyte (r = 0.8008, 
Fig. 4B), neutrophilic myelocyte (r = 0.8912, Fig. 4C), neutrophilic metamyelocyte (r = 0.8954, Fig. 4D), band 
neutrophil (r = 0.9923, Fig. 4E), segmented neutrophil (r = 0.9982, Fig. 4F), eosinophilic myelocyte (r = 0.8039, 

Table 2.  Classes of BM cells pre-classified by Morphogo.

Number Class of Cells

1 Myeloblast

2 Promyelocyte

3 Neutrophilic myelocyte

4 Neutrophilic metamyelocyte

5 Band neutrophil

6 Segmented neutrophil

7 Eosinophilic myelocyte

8 Eosinophilic metamyelocyte

9 Band eosinophil

10 Segmented eosinophil

11 Basophil

12 Proerythroblast

13 Early erythroblast

14 Intermediate erythroblast

15 Late erythroblast

16 Megaloblastic early erythroblast

17 Megaloblastic intermediate erythroblast

18 Megaloblastic late erythroblast

19 Lymphoblast

20 Prolymphocyte

21 Mature lymphocyte

22 Atypical lymphocyte

23 Monoblast

24 Promonocyte

25 Monocyte

26 Plasmablast

27 Immature plasma cell

28 Plasma cell

29 Histocyte

30 Smudge cell

31 Phagocyte

32 Mast cell

33 Erythrocyte

34 Mitosis

35 Platelet
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Fig.  4G), eosinophilic metamyelocyte (r = 0.8691, Fig.  4H), band eosinophil (r = 0.8134, Fig.  4I), segmented 
eosinophil (r = 0.9878, Fig. 4J), basophil (r = 0.9204, Fig. 4K), proerythroblast (r = 0.6903, Fig. 4L), early erythro-
blast (r = 0.8878, Fig. 4M), intermediate erythroblast (r = 0.9817, Fig. 4N), late erythroblast (r = 0.9930, Fig. 4O), 
lymphoblast (r = 0.7923, Fig. 4P), prolymphocyte (r = 0.7724, Fig. 4Q), mature lymphocyte (r = 0.7785, Fig. 4R), 
monoblast (r = 0.7071, Fig. 4S), promonocyte (r = 0.2038, Fig. 4T), monocyte (r = 0.9489, Fig. 4U), plasmablast 
(r = 0.9985, Fig. 4V), immature plasma cell (r = 0.5702, Fig. 4W), plasma cell (r = 0.9963, Fig. 4X) and others 
(r = 0.9695, Fig. 4Y), the P values of these 25 classes of BM nucleated cells were less than 0.001.

It was shown that the cell classification results of the Morphogo system were in general agreement with that of 
pathologists proofreading in the identification of BM nucleated cells, as evidenced by kappa value (0.461–0.987), 
except for promonocytes (Table 4). The Morphogo system exhibited almost perfect agreement with patholo-
gists’ proofreading in the classification of neutrophilic metamyelocyte, band neutrophil, segmented neutrophil, 
eosinophilic myelocyte, eosinophilic metamyelocyte, band eosinophil, segmented eosinophil, basophil, early 
erythroblast, intermediate erythroblast, late erythroblast, mature lymphocyte, monocyte, plasmablast, plasma 
cell, and others, with the kappa value of more than 0.813. However, the classification of myeloblast, promyelocyte, 
lymphoblast, prolymphocyte, monoblast, and immature plasma showed only moderate agreement between the 
Morphogo system and pathologists’ proofreading, with Kappa value from 0.461 to 0.566. Overall, correlation 
and consistency results collectively supported that the Morphogo system maintained a substantial agreement 
with pathologists’ proofreading in identifying BM nucleated cells.

The Morphogo system has high application value in the diagnosis of hematological dis-
eases. To further verify the application value of the Morphogo system in the diagnosis of hematological 
diseases, the diagnoses made based on the Morphogo system were compared to the pathologists proofreading. 
The evaluation was made for each sample group (G1–G5) in terms of intraclass correlation coefficient (ICC) 
and 95% CI. As shown in Table 5, except for the progenitors, ICC between the two different methods was high 
for granulocytes, erythrocytes, lymphocytes, monocytes, and plasma cells in the G1, G2, G3, and G5 groups 
(ICC ≥ 0.818, P < 0.01), and slightly lower for G4. Based on these results, the diagnosis results of the Morphogo 
system for most hematological diseases should be correct.

Figure 3.  Sample images of BM cells classified by Morphogo.
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The Morphogo system automatically records the time it takes to scan BM smears and identify 
BM cells. Morphogo system can complete automatic scanning continuously, and efficiently, with a success 
rate of 99.4%. The average time of a single slide scan is 7:46 (min), and most of the slide scanning time is concen-
trated in 5–9 min. The Morphogo system takes 7.46 ± 0.002 min/sheet to identify and count BM cells (Table 6). 
These results suggest that the Morphogo system can assist in the artificial diagnosis of hematologic diseases, 
which greatly saves time.

Discussion
One of the most challenging steps in the workup of diagnosis of blood diseases is the morphological classification 
of BM nucleated cells, and the effectiveness of the classifier determines its utility in blood disorder diagnostics. 
CNN models, currently the leading classification framework, have shown superior performance compared to 
manual cellular morphological feature detection 8,25,28 in recognizing and classifying diverse medical images. 
Our results, obtained using Morphogo, a cell morphology analysis system created using CNN models, indicate 
that rapid advancements in artificial intelligence will enable automated hematologic disease screening systems 
to realize their full potential.

To enhance the CNN’s ability to discern potential relationships between BM nucleated cells during the learn-
ing process, we trained the CNN on the discriminative features of BM nucleated cells using 2.3 million BM cell 
images. We then tested the trained model on over 0.5 million cell images collected from various hospitals. This 
extensive database is beyond the reach of most models. The Morphogo system can now identify more than 35 
classes of BM nucleated cells, including certain pathological cell types, and a few non-hematopoietic cells. Our 
results showed that the Morphogo system achieves high sensitivity, specificity, PPV, NPV, and accuracy in the 
classification and counting of 25 classes of BM nucleated cells. Moreover, the Morphogo system’s cell differential 
results were in substantial agreement with those of pathologists’ proofreading. Furthermore, the Morphogo 
system has the capability to automatically scan, identify and count BM nucleated cells, with an average process-
ing time of 7.46 min. This indicates a substantial potential for the Morphogo system to enhance the efficiency 
of BM cell morphology analysis.

The study provided pathologists with a potential application of AI in the morphology examination of BM 
smears. However, as previous research has reported, even experienced pathologists find it challenging to identify 
small differences between cells with similar morphological characteristics are difficult to  identify25. For example, 

Table 3.  Performance of Morphogo system to classify BM nucleated cells. Sensitivity = TP/(TP + FN) 
* 100%; Specificity = TN/(TN + FP) * 100%; PPV = TP/(TP + FP) * 100%. NPV = TN/(FN + TN) * 100%; 
Accuracy = (TP + TN)/(TP + FP + TN + FN) *100%. TP true positive, TN true negative, FP false positive, FN 
false negative.

Class of Cells
Number of 
Cells Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

Myeloblast 6663 65.65 98.83 49.75 99.39 98.26

Promyelocyte 6261 87.88 96.97 32.40 99.79 96.82

Neutrophilic myelocyte 22,030 73.74 99.50 89.93 98.42 98.03

Neutrophilic metamyelocyte 22,154 85.92 99.78 95.93 99.15 98.98

Band neutrophil 35,968 98.48 99.66 96.73 99.84 99.55

Segmented neutrophil 49,027 98.99 99.81 98.71 99.85 99.71

Eosinophilic myelocyte 862 97.56 99.93 76.87 99.99 99.93

Eosinophilic metamyelocyte 1766 99.77 99.85 75.43 100.00 99.85

Band eosinophil 1247 99.52 99.92 79.70 100.00 99.92

Segmented eosinophil 2141 98.74 99.96 92.84 99.99 99.95

Basophil 973 79.45 99.96 83.93 99.95 99.91

Proerythroblast 236 81.36 99.96 54.70 99.99 99.95

Early erythroblast 2949 86.64 99.84 80.55 99.90 99.74

Intermediate erythroblast 18,278 95.04 99.87 97.37 99.75 99.64

Late erythroblast 40,030 98.01 98.96 91.58 99.77 98.86

Lymphoblast 2626 59.41 99.58 49.46 99.72 99.31

Prolymphocyte 7589 65.44 98.02 39.86 99.30 97.37

Mature lymphocyte 52,295 85.01 97.21 82.70 97.64 95.55

Monoblast 1786 59.35 99.77 54.39 99.81 99.58

Promonocyte 3016 8.99 99.84 30.45 99.29 99.13

Monocyte 7717 82.32 99.94 96.43 99.64 99.58

Plasmablast 1429 100.00 99.98 93.77 100.00 99.98

Immature plasma 2637 37.05 99.91 74.64 99.57 99.48

Plasma cell 4166 94.74 99.94 94.45 99.94 99.88

Others 91,361 84.62 99.92 99.69 95.43 96.29
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a promonocyte is often misidentified as a monocyte. Both manual counting and smart counting are affected by 
staining differences, and increasing the training data does not significantly improve  accuracy29. The current 
Morphogo system cannot accurately distinguish subtle differences between morphologically similar cells. This 
limitation may explain why the sensitivity and PPV performance were not satisfactory in the identification of 
promonocytes. Furthermore, the image quality of BM nucleated cells depends on several factors such as the 
quality of BM smear preparation, the pathological condition, and the imaging  process13. These factors can con-
tribute to inaccuracies in BM cell identification. The morphology of blasts in AL of G4 is more uniform, while 
in MDS of G5, blasts tend to be polymorphic and  malformed13. Consequently, blasts are easier to be identified 
and classified in AL, and difficult to be identified in MDS, which might be the cause of the higher misdiagnosis 
rate in some cases when using the Morphogo system compared to pathologists’ manual review. However, due 
to the large number of BM samples processed daily and the laborious and time-consuming nature of BM cell 
differential counting, some laboratories only count 100–200 cells in each BM smear. By utilizing the Morphogo 
system, they can review AI-based cell differential count results on a computer screen, dramatically improving 
the efficiency of laboratory work. The Morphogo system can analyze a larger number of cells in a shorter time, 
allowing pathologists to review more cells and avoid misdiagnosing critical morphological changes, ultimately 
reducing the misdiagnosis rate. Furthermore, the Morphogo system provides a standardized and digital approach 
to cell differential counting, enabling more reliable and repeatable assessment of morphology, and enhancing the 
overall quality control of BM morphology assessment. It also facilitates better comparison and communication 
among technicians and pathologists, ultimately leading to more effective patient care.

This study employed a single-center method, where all BM smears were prepared in the same laboratory and 
digitally processed. The performance evaluation of the Morphogo system focused on identifying BM nucleated 
cells in common hemato-pathological conditions, and the dataset reasonably reflects the morphological changes 
of most cell types. However, this study still had some limitations. Firstly, it was limited to 14 common diseases, 
and the number of cases was insufficient to determine whether the Morphogo system’s AI performance would 
be consistent across all common hematopathological diseases and rare conditions. Secondly, efforts should be 
made to minimize the impact of staining variations on categorization strategies. Last but not least, we did not 
specifically collect samples of cells with dysplastic abnormalities during the initial development of the algorithm, 

Figure 4.  The correlation analysis of Morphogo pre-classification and pathologists’ proofreading. (A)–(Y) 
shows the scatter plot of linear regression lines of the percentage of BM cells after paired counting of BM smears 
in 508 patients.
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serving as a training sample. As a result, when performing the statistical analysis, we discovered that the quanti-
ties of various types of qualitative cellular changes were not sufficient. In the future, further studies should be 
conducted using a larger number of BM samples that encompass a broader range of hematological diseases 
from multiple laboratories. This would help to further validate the BM cell identification performance of the 
Morphogo system more comprehensively.

Table 4.  Evaluation of the consistency between Morphogo pre-classification and pathologists’ proofreading of 
BM cells using the Cohen kappa coefficient.

Class of Cells Kappa P value

Myeloblast 0.557 0.000

Promyelocyte 0.461 0.000

Neutrophilic myelocyte 0.800 0.000

Neutrophilic metamyelocyte 0.901 0.000

Band neutrophil 0.973 0.000

Segmented neutrophil 0.987 0.000

Eosinophilic myelocyte 0.860 0.000

Eosinophilic metamyelocyte 0.858 0.000

Band eosinophil 0.885 0.000

Segmented eosinophil 0.957 0.000

Basophil 0.816 0.000

Proerythroblast 0.654 0.000

Early erythroblast 0.834 0.000

Intermediate erythroblast 0.960 0.000

Late erythroblast 0.940 0.000

Lymphoblast 0.536 0.000

Prolymphocyte 0.483 0.000

Mature lymphocyte 0.813 0.000

Monoblast 0.566 0.000

Promonocyte 0.136 0.000

Monocyte 0.886 0.000

Plasmablast 0.968 0.000

Immature plasma 0.493 0.000

Plasma cell 0.945 0.000

Others 0.892 0.000

Table 5.  Correlation analysis between Morphogo and manual proofreading among 5 groups (ICC and 95% 
CI). ICC intraclass correlation coefficient.

Cell Series G1 G2 G3 G4 G5

Blasts 0.083
(− 0.104–0.265)

0.593
(0.992–0.996)

0.216
(0.060–0.363)

0.835
(0.764–0.886)

0.203
(− 0.086–0.461)

Granulocytes 0.995
(0.992–0.996)

0.998
(0.997–0.998)

0.995
(0.994–0.997)

0.855
(0.791–0.900)

0.996
(0.992–0.998)

Erythroblasts 0.996
(0.994–0.997)

0.989
(0.984–0.993)

0.996
(0.995–0.997)

0.995
(0.993–0.997)

0.989
(0.980–0.994)

Lymphocytes 0.956
(0.937–0.970)

0.893
(0.844–0.927)

0.912
(0.880–0.935)

0.531
(0.374–0.658)

0.831
(0.715–0.902)

Monocytes 0.944
(0.919–0.961)

0.818
(0.740–0.874)

0.980
(0.972–0.985)

0.815
(0.737–0.871)

0.945
(0.903–0.969)

Plasma cells 0.943
(0.918–0.961)

0.992
(0.988–0.995)

0.998
(0.997–0.998)

0.826
(0.752–0.880)

0.896
(0.820–0.941)

Table 6.  The time required for Morphogo to scan a digital BM slide and count 600 nucleated cells.

Method Time (min)

Morphogo 7.46 ± 0.002
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Conclusion
CNN-based Morphogo system could classify and count BM nucleated cells to assist pathologists to diagnose 
hematological diseases. The Morphogo system is a potential digital analysis system that provides a more objective 
and efficient method for BM morphology assessment.

Data availability
All data generated or analyzed during this study are included in this manuscript and supplementary informa-
tion files.
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