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Simulating individual movement 
in fish
Thomas W. Pike * & Oliver H. P. Burman 

Accurately quantifying an animal’s movement is crucial for developing a greater empirical and 
theoretical understanding of its behaviour, and for simulating biologically plausible movement 
patterns. However, we have a relatively poor understanding of how animals move at fine temporal 
scales and in three-dimensional environments. Here, we collected high temporal resolution data 
on the three-dimensional spatial positions of individual three-spined sticklebacks (Gasterosteus 
aculeatus), allowing us to derive statistics describing key geometric characteristics of their movement 
and to quantify the extent to which this varies between individuals. We then used these statistics 
to develop a simple model of fish movement and evaluated the biological plausibility of simulated 
movement paths using a Turing-type test, which quantified the association preferences of live fish 
towards animated conspecifics following either ‘real’ (i.e., based on empirical measurements) or 
simulated movements. Live fish showed no difference in their response to ‘real’ movement compared 
to movement simulated by the model, although significantly preferred modelled movement over 
putatively unnatural movement patterns. The model therefore has the potential to facilitate a 
greater understanding of the causes and consequences of individual variation in movement, as well as 
enabling the construction of agent-based models or real-time computer animations in which individual 
fish move in biologically feasible ways.

The way in which an animal moves is a fundamental component of its behaviour and ecology, underpinning how 
it interacts with both its biological and physical environments1,2. In fish, this has been most commonly investi-
gated at the landscape level3 although finer-scale movements are known to play an important role in mediating 
short-term behavioural interactions. For example, behaviours such as predator inspection4–6, coordinated group 
movement7, and dynamic courtship displays8–11 require individuals to be acutely sensitive to how, where, and 
when other individuals are moving, and to adjust their own movement accordingly, often over small distances and 
short timescales. Indeed, fish have emerged as a particularly important group for understanding the link between 
fine-scale movement patterns and the evolution, function, and mechanisms underpinning social behaviours, 
and movement is (either implicitly or explicitly) an integral component of many empirical studies on fish social 
behaviour. For example, studies exploring the responses of live fish to robotic12,13 or computer animated14–19 
stimulus fish typically recognise the importance of biologically plausible movement, and so design their stimuli 
to move in ways that elicit natural behavioural responses in observers. However, these movement patterns may 
be highly stylised (i.e., they utilise the general concepts of fish-like movement without considering the finer-
scale components12) or based on a small number of exemplar movement paths which, while extracted from ‘real’ 
movement data14, may fail to encapsulate the variation inherent within the larger population or over time. They 
are also often designed to match how humans (rather than natural receivers, such as predators or conspecifics) 
perceive a given species’ movement 16,20.

Given the comparative paucity of appropriate movement data, we therefore have a poor understanding of 
the statistical rules underpinning individual fish movement at the spatial and temporal scales most relevant to 
behaviours such as shoaling, coordinated movement, and mate assessment (i.e., at a resolution in the order of 
millimetres and seconds, or finer)21,22. This not only potentially limits the comparisons that can be made both 
within and between species, but also precludes the inclusion of biologically plausible movement data in numerical 
simulations, and when controlling virtual or robotic stimulus fish.

The primary motivation of this study was to develop a biologically informed model of locomotory behaviour 
in three-spined sticklebacks (Gasterosteus aculeatus), an important model species in studies of behaviour and 
neuroethology23, which could be used to simulate their movement dynamics. Because fish intrinsically move 
within a three-dimensional environment and behavioural changes can occur very rapidly24–26 it was important 
to first quantify the three-dimensional movement of individual fish at a sufficiently high temporal resolution 
that movement paths could be created that encapsulate fine-scale movements. So that the resulting model could 
simulate a range of random, but biologically plausible, movement paths it was also important that the movement 
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we quantified was representative of the variation present in the population. However, just because a model can 
recreate the statistical properties of data, it does not necessarily generate movement patterns that are perceived 
as ‘real’ 27–29. To address this, Herbert-Read and colleagues29 advocated the use of a Turing-type test in order to 
evaluate the effectiveness of animal movement models, by asking human observers whether or not they could 
distinguish between the movements of real animals and those simulated by a model. Here, we take this idea but 
pose it within a more biologically relevant framework, by presenting live sticklebacks with animated conspecifics 
endowed with either ‘real’ (i.e., empirically determined) or simulated movement patterns in a two-choice asso-
ciation task. To ‘pass’ the test we would expect live fish not only to respond to the simulated movement, but that 
their preference for simulated movement is statistically indistinguishable to that elicited by real-life movement.

Results
Characterising individual movement.  Individual fish moved in a characteristic saltatory manner, com-
prising forward movement in an approximately straight line followed by a stop, a brief pause and/or an abrupt 
change in direction (Fig. 1b). Although all individuals showed the same general pattern of movement, there 
was marked variation between individuals in how their step lengths and relative turn vectors were distributed 
(Figs. 2a, 3a).

In all cases step lengths could be well described by a gamma distribution (Fig. 2b), whereby the majority of 
steps tended to be relatively short (i.e., representing slow movement; clustered data points in Fig. 1b) occasionally 
interspersed with periods of longer steps (i.e., fast movement; spaced out data points in Fig. 1b). The median step 
length ranged between 0.20 and 9.15 mm (mean ± SD, 4.15 ± 2.05 mm) and the 95th percentile varied between 
0.45 and 26.48 mm (mean ± SD, 11.45 ± 6.24 mm), indicating that some fish moved comparatively little (e.g., 
Fig. 2d), while others moved almost continuously for the entire data collection period (e.g., Fig. 2c). Fish also 
showed a very high degree of temporal autocorrelation in step length, with the mean ± SD of first order autocor-
relations for the sample being 0.81 ± 0.08 (randomisation tests: all p < 0.001; Fig. 3).

The distributions of relative turns tended to be elliptical, with greater spread laterally than dorsoventrally, 
and were distinctly leptokurtic, being characterised by a pronounced central peak indicating that fish predomi-
nantly maintained their current movement direction between successive time steps (i.e., the turn angle between 
successive time steps tended to be near zero, with only occasional turns at larger angles; Fig. 4b); although some 
individuals exhibited a much greater range and frequency of turns compared to others (e.g., Fig. 4c,d). Overall 
distributions of relative turn vectors were poorly described by single Kent distributions (Fig. 4b), primarily 
because the concentration and ellipticity parameters ( κ and β , respectively) were strongly predicted by step 
length (Fig. 5a). For all individuals, both concentration and ellipticity increased non-linearly as step lengths got 
longer, such that when fish were moving fast (i.e., had long step lengths) their movement was predominantly 
forwards with a comparatively small probability of making large turns. In contrast, when fish were moving rela-
tively slowly, while their modal direction of movement was still forwards, they exhibited a much greater range 
of turn angles (Fig. 5b,c). The relationships between step length and both concentration and ellipticity were well 
described by power functions (Fig. 5a).

Body size (measured as standard length) did not predict the dissimilarity between distributions of either 
step length (distance matrix regression: pseudo-t = 0.005, p = 0.953) or relative turn vectors (pseudo-t = 0.036, 

Figure 1.   (a) Geometry of the tracking system, showing the true location of the circular white tag (dashed 
outline) along with its apparent location (solid outline) resulting from refraction at the air–water interface 
(denoted by the grey shaded region). C denotes the virtual pinhole camera that produces the undistorted image 
(i.e., the hypothetical camera after removal of lens distortion), r1 and r2 are the two virtual rays cast from the 
camera’s centre of projection, and θ1 and θ2 represent the incident and refracted angles, respectively, of one of 
the rays. See text for full details. (b) Representative 60 s movement path segment. Each point denotes the fish’s 
position at 0.1 s intervals, with the colour representing depth ( z = 0 is at the water’s surface). The fish started at 
the point marked ‘ × ’ and the centre of the tank was located at the origin.
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p = 0.459), suggesting that the observed inter-individual variation in movement could not be attributed to dif-
ferences in size between fish.

Preference tests.  All focal fish exhibited a preference, by entering one of the choice zones within 90 s of 
the start of the trial (mean ± SD latency to respond, 11.07 ± 4.84 s), although the latency to enter a choice zone 
did not differ depending on whether that zone was in front of a virtual fish exhibiting modelled or real move-
ment (modelled: 11.06 ± 4.23 s, real: 11.92 ± 4.71 s; two-sample t-test: t30 = 0.54, p = 0.591) or modelled versus 

Figure 2.   Summary of the observed inter-individual variation in step lengths. (a) Metric multidimensional 
scaling (MDS) plot showing the (dis)similarity between empirical distributions of step lengths. Each data point 
represents an individual fish, and histograms showing the distribution of step lengths over the 60 min period of 
data collection for the labelled data points are shown (b), (c) and (d). The histogram in (b) is overlaid with the 
best-fitting gamma distribution (solid line). The data point to the top right of the plot in (a) denotes a fish that 
exhibited almost no movement throughout the 60 min of data collection, and so is considered an outlier.

Figure 3.   (a) First order autocorrelation of step length for a representative individual, with the histograms 
showing the marginal gamma-distributed steps lengths at each lag. (b) Distribution of autocorrelation values 
from the overall sample of 60 fish.
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Figure 4.   Summary of the observed inter-individual variation in relative turn vectors. (a) Metric 
multidimensional scaling (MDS) plot showing the (dis)similarity between empirical distributions of step 
lengths. Each data point represents an individual fish, with contour plots showing the distribution of relative 
turn vectors over the 60 min period of data collection for the labelled data points shown in (b), (c) and (d). 
In each case the spherical distribution has been ‘flattened out’ to show horizontal and vertical turns along the 
azimuth and elevation axes, respectively, and darker colours represent regions of higher density. The data point 
to the top right of the plot in (a) denotes a fish that exhibited almost no movement throughout the 60 min of 
data collection, and so is considered an outlier.

Figure 5.   (a) Power relationship between step length (mm) and the concentration ( κ ; circles) and ellipticity ( β ; 
triangles) parameters of the best-fitting Kent distribution for each subset of the data, for a single representative 
fish. Data points denote the midpoint of each step length subset (breadth, 1 mm), with lines indicating the 
fit of the non-linear models and shaded regions the bootstrapped 95% confidence intervals. Only subsets 
containing ≥ 1000 data points were used. The interpretation of these parameters can be seen in the contour 
plots (b, c), which show the distribution of relative turn vectors over the 60 min period of data collection for 
step lengths (b) on the interval [1mm, 2mm) and (c) on the interval [9mm, 10mm) , highlighting the increase in 
concentration (i.e., reduction in spread) and increase in ellipticity with longer step lengths. In each plot darker 
colours represent regions of higher density, and contours from the best-fitting Kent distribution have been 
superimposed (solid lines).
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unnatural movement (modelled: 11.15 ± 5.64 s, unnatural: 8.98 ± 3.52 s; t30 = 0.96, p = 0.345). Fish showed no sig-
nificant first-choice preference, over and above chance, for virtual fish displaying movement simulated using the 
model over real movement (binomial test: p = 0.860), but significantly preferred virtual fish exhibiting modelled 
but ‘natural’ movement over unnatural movement (p = 0.002) (Fig. 6).

Discussion
In this paper we quantify the three-dimensional movement of individual three-spined sticklebacks at a biologi-
cally relevant temporal frequency (10 Hz), using data collected from a representative number of individuals 
(n = 60) over comparatively large time spans (60 min). This allowed us to estimate key geometric characteristics 
of their observed movement in terms of the distribution of step lengths and relative turn vectors, as well as 
quantifying the strength of temporal autocorrelation in step length. The saltatory movement we observed is 
characteristic of three-spined sticklebacks30, and indeed animal movement in general31, and has been reported in 
a number of other fish species where it is typically associated with exploratory behaviour32–34. There was evidence 
of considerable between-individual variation in movement behaviour, with individual fish showing characteristic 
patterns of movement35 despite the consistency of the experimental context. Moreover, this encompassed much of 
the variation evident to human observers of stickleback behaviour (personal observation). While the underlying 
cause of this variation is not known, it is unlikely that it was caused by intrinsic factors such as the motivation to 
feed (not only did we attempt to standardise hunger levels prior to data collection, but previous work has found 
no difference in the locomotory behaviour of food-deprived and well-fed fish36) or extrinsic factors such as 
water temperature which, while known to affect activity levels in fish37, was held constant throughout the study. 
Furthermore, we could find no evidence that standard length predicted either step length or relative turn vectors, 
suggesting that the movement behaviour we quantified were not affected by body size (cf.38). Although not quan-
tified explicitly here, there is evidence that the movement behaviour of individual fish is highly repeatable35,39, 
potentially indicative of personality differences, and there is growing evidence of individual consistency in (and 
correlation between) movement-related traits40,41.

The primary motivation of this study was to develop a biologically informed model of movement behaviour 
in fish, using three-spined sticklebacks as a model. The empirical data were used in the construction of a simple 
model of fish movement, which was capable of generating movement paths that we assume appeared biologically 
plausible to conspecifics. Certainly, when given a choice between two virtual fish, one following an empirically 
determined movement path and the other following a movement path generated by the model, they exhibited no 
significant preference either way. This is strengthened by the fact that live fish significantly preferred to associate 
with virtual fish exhibiting movement simulated by the model compared to fish that moved in what appeared to 
human observers to be an unnaturally stilted manner. This suggests that fish were not simply responding to the 
presence of a conspecific (in which case we would have expected their choice to be random) but could perceive 
differences in their movement and were choosing to associate with the fish that moved in the most biologically 
plausible way. We know that fish can make shoal choice decisions based on the behaviour of the stimulus fish 
(e.g., based on their overall activity levels42) and so it is entirely feasible that they could pick up on comparatively 
subtle differences in movement. Whether this was because they perceived it as ‘unnatural’ is not known, and it 
remains possible that they were in fact responding to perceived differences in movement indicative of a potential 
predation threat43,44, nutritional status45,46 or parasite infection47, for example. However, our results do highlight 
the potential utility of using Turing-type tests with animals to assess the perceived realism of simulated data, 
and this would be an interesting area to explore in greater depth.

Figure 6.   Relative proportion of live focal fish whose first-choice preference was for virtual fish displaying 
movement simulated using the model presented here, in trials where the choice was between modelled and real 
movement, and trials in which the choice was between modelled ‘natural’ movement and unnatural movement. 
Please see text for full details. Asterisks denote a significant difference from chance (i.e., a relative preference of 
0.5), indicated by the dashed line: **, p < 0.01.
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To our knowledge there are no comparable, biologically informed three-dimensional movement models for 
fish at the temporal and spatial resolution considered in this study, and so this model has widespread potential for 
furthering both the theoretical and experimental understanding of fish behaviour. While it has been developed 
using empirical data for three-spined sticklebacks, it is likely to be applicable to a range of small fish species used 
in behavioural research, including zebrafish (Danio spp.), goldfish (Carassius auratus), and guppies (Poecilia 
reticulata). For example, it could be used to simulate biologically relevant movement in animated or robotic 
fish which, while widely used in studies on mate choice14,15,17,19,48,49, anti-predatory behaviour50,51, and shoal 
preference18,52–54, rarely try and emulate realistic movement patterns (although see14). Because the model can be 
used to generate movement in real time, it also has the potential to be reactive to the behaviour of the other (live 
or virtual) fish, and allow the creation of interactive experiments that incorporate feedback from biological or 
environmental events15. Furthermore, it could be used in spatially explicit individual-based movement models 
(e.g.,55), potentially increasing their predictive or explanatory power over more general approaches (such as 
correlated random walks56) and allowing for more realistic extrapolation over a range of spatiotemporal scales 
(from local up to landscape-levels57). Finally, it may be used to create null models in studies of animal movement, 
including the assessment of non-random grouping behaviour58. The model therefore has considerable potential to 
facilitate a greater understanding of the causes and consequences of individual variation in movement behaviour.

Methods
Source of fish and holding conditions.  Adult three-spined sticklebacks were purchased from a com-
mercial supplier (The Carp Co., Tonbridge, UK), and housed across several 50 L plastic tanks (at a density of 
approximately 0.6 fish L−1) filled with dechlorinated tap water. Each tank contained an air stone and sponge filter. 
The temperature of the room was maintained at a constant 8 ± 1°C, and the lighting schedule was a constant 
12L:12D. The fish were fed to satiation daily on frozen bloodworm, and partial water changes were performed 
daily. They were housed under these conditions for approximately 6 months until the start of the study.

This study followed the ARRIVE guidelines59 and all methods adhered to the ASAB Guidelines for the Use 
of Animals in Research. The study was approved by the Research Ethics Committee of the University of Lincoln 
(reference CoSREC211).

Collection of individual movement data.  Data on the movement of individual fish were collected using 
the procedure described by AlZoubi et al.60. In brief, fish were individually marked by attaching a white circu-
lar tag (7 mm diameter and weighing approximately 8.4 mg) to the middle of their three dorsal spines61. This 
method of tagging does not affect behaviour62 and allows fish to be monitored under low light conditions against 
dark backgrounds61; conditions which are known to minimise stress in this species63.

Following tagging, individual fish were fed two large bloodworms (Chironomus sp. larvae) to standardise 
hunger levels, before being transferred to a black, circular test tank (30 cm diameter at the top, tapering to 27.5 cm 
at the base) containing 8 cm water64 and allowed to acclimatise for 60 min. Following acclimatisation, a remotely 
controlled overhead camera (GoPro Hero 3; GoPro Inc, San Mateo, CA) started recording video (1920 × 1080 
pixel resolution, 30 fps) of their subsequent movements for a further 60 min. Lighting was provided by fluorescent 
ceiling lamps, located so that there was no glare from the water surface. In total, movement data was collected 
in this way from n = 60 fish (mean ± SD standard length, 41.8 ± 2.33 mm).

Custom tracking software was used to analyse the video footage and obtain information regarding the posi-
tion of each fish at a sampling rate of 0.1 s, which corresponds to the response latency of fish65. Prior to the onset 
of data collection, we used the Matlab Camera Calibration Toolbox66 to estimate the intrinsic parameters (the 
effective focal length, principle point of the image plane, and lens distortion factors67) of the overhead camera 
by taking 20 images of a checkerboard pattern at different perspectives. This allows geometric distortion to be 
removed so that images can be treated as conventional pictures taken using a (virtual) perspective camera68. 
Furthermore, we also determined the extrinsic parameters of the camera (i.e., it’s rotation and translation) with 
respect to the surface of the water in the test tank, by imaging a checkerboard calibration target floating on the 
water’s surface67. Although we attempted to position the camera as close to perpendicular to the water surface as 
possible, this nonetheless allowed us to compensate for inevitable small deviations. The geometry of the tracking 
system is shown in Fig. 1a.

The tag was highly visible in each video frame, being white against the black background of the tank, and 
so could be located efficiently by first converting the frame to greyscale, and then isolating the tag using global 
thresholding with a pre-determined threshold69; the tag was always the largest fully connected region of pixels in 
the thresholded image. The edges of the tag were then identified using a Canny edge detector70, and the positions 
of the detected edge points corrected for distortion of the camera lens71. Because the perspective projection of 
the circular tag in any arbitrary orientation is an exact ellipse72, we next fitted an ellipse to the corrected edge 
coordinates using the least-squares approach described by Fitzgibbon et al.73, which provided information on 
the length and orientation of its semiminor and semimajor axes with subpixel accuracy60. This information could 
then be used to estimate the three-dimensional position of the tag (and hence the fish)60,61, as described below.

Regardless of the true orientation of the circular tag, the semimajor axis of the ellipse formed by its perspective 
projection in the image frame will always be directly proportional to the tag’s true diameter74, which is known 
precisely. It is therefore possible to find the three-dimensional position of the tag as follows. First, the two points 
on the periphery of the tag corresponding to the extremes of the semimajor axis are projected onto the water’s 
surface using the relationship

(1)x = XR + t,
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where x is the (known) location of a point in image coordinates, X is the (unknown) location of the point in 
world coordinates, and R and t are the extrinsic parameters (see above) denoting the three-dimensional rota-
tion and translation, respectively, of world coordinates relative to image coordinates67. Two virtual rays, cast 
from the camera’s centre of projection and each passing through one of the projected points, are then refracted 
at the air–water interface using Snell’s law, n1sinθ1 = n2sinθ2 (where θ1 is the incident angle, θ2 is the refracted 
angle, and n1 and n2 are the refractive indices of air and water, respectively75) and the tag’s location determined 
as the point where the rays diverge by 7 mm (i.e., the diameter of the tag in world coordinates)76 (Fig. 1a). Tag 
coordinates are reported as (x, y, z) in mm, where z represents depth from the water surface ( z = 0 mm) to the 
tank floor ( z = 80 mm); the refractive index of water was assumed to be 1.33377.

The accuracy of this approach was assessed by imaging tags placed at 32 known locations distributed approxi-
mately uniformly around the xy plane of the tank at 3 different depths (0 mm, 40 mm, and 80 mm), and estimat-
ing their position as described above. The overall root-mean-square error (RMSE; the square root of the mean 
squared distance between the actual and estimated locations) was 1.49 mm (0.92 mm at the surface, 1.25 mm at 
a depth of 40 mm, and 1.80 mm at the tank floor) (Supplementary Figure S1).

Characterising individual movement.  Statistics summarising the movement of each individual fish over 
the 60 min (36,000 frames) of data collection were calculated as described below. All data processing and statisti-
cal analysis was conducted in R 3.6.378. Missing position data (which occurred in approximately 1.9% of frames, 
for example when a tag appeared blurred or was obscured by the fish’s body position) was imputed using cubic 
spline interpolation (with the na_interpolation function in the imputeTS package79) and then noise was removed 
using a zero-phase forward and reverse digital filter, using the coefficients of a third-order Butterworth filter with 
the lowest filter cut-off frequency set such that none of the underlying signal was lost80. The direction of move-
ment was inferred from the change in the fish’s noise-corrected position between consecutive time steps. In line 
with previous studies57,81,82 we considered the geometric characteristics of the observed movement in terms of 
step length (the Euclidean distance between two consecutive positions, in mm) and relative turning vector (the 
relative change in direction between two consecutive positions)81.

As has been found in other species81, distributions of step lengths could be well approximated by gamma 
distributions (fitted using the fitdist function in the fitdistrplus package83); see Results. Fits to other putative 
distributions (including normal, Cauchy, Weibull, logistic, and log-normal distributions) were compared using 
the Akaike Information Criteria (AIC), but in all cases the difference in AIC scores between these and the best-
fitting (gamma) distribution was > 10 suggesting they fitted the data substantially less well84. Because step lengths 
between consecutive time points are unlikely to be independent (i.e., individuals will tend to continue moving 
at approximately the same speed between successive time points), for each individual we also calculated the 
first-order autocorrelation in step length at a lag of 0.1 s85 using Spearman rank correlations, and tested whether 
these differed significantly from zero (i.e., independence) using randomisation tests86.

Relative turn vectors, representing displacements on the sphere, were modelled using Kent distributions87. 
The Kent distribution can be considered a generalisation of the von Mises–Fisher distribution which allows for 
distributions of any elliptical shape, size, and orientation on the surface of the sphere87,88. They were therefore 
appropriate for the turn data obtained here which tended to exhibit a greater spread laterally than dorsoventrally 
(see Results). The probability density function of the Kent distribution is given by

where κ ( κ > 0 ) determines the concentration or spread of the distribution, β ( 0 ≤ 2β ≤ κ ) determines its ellip-
ticity, c(κ ,β) is a normalisation constant, and γ1, γ2, γ3 are orthogonal unit vectors describing the mean, major, 
and minor axes, respectively87. The larger the values of κ and β , the more concentrated and elliptical the distribu-
tion will be, respectively. Kent distributions were fitted using the kent.mle function in the Directional package89.

Fitting a Kent distribution to the relative turn vectors for an entire movement path for a given fish tended to 
result in a very poor fit. The primary reason for this was that the shape of the relative turn vector distribution 
varied as a function of step length: for example, when the fish were moving fast (i.e., had long step lengths), the 
distributions tended to be narrow with a pronounced peak in the direction of travel meaning that fast-moving 
fish were less likely to make abrupt lateral turns; in contrast, when fish were moving slowly (i.e., had relatively 
short step lengths), the distributions tended to be much broader meaning that slow-moving fish were very likely 
to abruptly change direction. To accommodate this, the relative turn vector data were subset based on their cor-
responding step lengths (specifically, we considered subsets spanning 1 mm intervals of step length: [0 mm, 1 
mm), [1 mm, 2 mm), and so on, for which the sample size was ≥ 1000), and separate Kent distributions fitted to 
each subset. The non-linear relationship between step length and the concentration and ellipticity parameters 
of the associated Kent distribution of relative turn vectors were then modelled using power functions of the 
general form g

(

y
)

= kyd , estimated using non-linear least-squares (with the nls function in the stats package).
To quantify the variation in movement behaviour between individual fish we constructed dissimilarity matri-

ces for both step length and relative turn vectors, using the Hellinger distance90 as a measure of dissimilarity 
between the empirical distributions. These were then visualised using metric multidimensional scaling (MDS) 
plots by plotting the first two principal coordinates91. Finally, we tested whether body size predicted aspects of 
movement behaviour using distance matrix regressions (implemented using the MRM function in the ecodist 
package92), in which the response variable was the dissimilarity matrix for either step length or relative turn 
vectors, and the predictor was a matrix containing the Euclidean distances in standard length between pairs of 
fish. P values were computed using 999 permutations93.
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Modelling individual movement.  We next constructed a simple model of stickleback movement, param-
eterised using the empirical data. In the model, individual fish i have a position vector ci and a unit direction 
vector vi in continuous three-dimensional space. Time is partitioned into discrete time steps t  with a regular 
interval τ , where here τ is set to 0.1 s to match the sampling rate of the empirical data94. At each time step, the 
position and direction of the fish is updated as follows.

First, a random step length si(t) is drawn from a gamma distribution with shape parameter ai and rate param-
eter bi . If t = 0 then this is simply a random draw from this distribution; however, if t > 0 then a correlated 
random value is drawn from a bivariate distribution with Gamma(ai,bi ) marginals and a given rank correlation 
structure95. Specifically, the Gamma(ai,bi ) distributed step length at time step t − 1 is transformed to a uniform 
distribution on the unit interval [0,1] by computing its cumulative distribution function (CDF), and then to a 
standard normal distribution by applying an inverse normal CDF. A normally distributed correlated random 
value can then be obtained using96

where z1 is a random value drawn from a standard normal distribution, and the Spearman’s rank correlation 
coefficient ρs,i (denoting the strength of first order autocorrelation) is mapped to a Pearson’s correlation coef-
ficient ρi using the relationship97

Applying the above steps in reverse transforms z0 back to a Gamma(ai,bi ) distribution, yielding si(t) with the 
desired rank correlation. This ensures that when ρs,i > 0 , consecutive step lengths will show some degree of cor-
relation, allowing fish to exhibit the full extent of movement heterogeneity we observed empirically. This includes, 
for example, both rapid bursts of movement (when consecutive step lengths are large) as well as sustained bouts 
of relatively low activity or inactivity (when consecutive step lengths are small or zero).

Next, the direction vector at time t  , vi(t), is determined by drawing a random unit vector from a Kent distri-
bution, parameterised using the observed power-law relationships between si(t) and both concentration, κ , and 
ellipticity, β (i.e., as step length increases, the Kent distribution of direction vectors becomes increasingly con-
centrated and elliptical, albeit non-linearly; see Results). Consistent with the empirical data, the mean direction 
vector of this distribution is taken to be the heading at the previous time step (so the modal direction of travel 
is always forwards) and the major and minor axes are assumed to be parallel with the lateral and dorsoventral 
axes of the fish, respectively. Finally, the fish’s position at time step t  is given by

Preference tests.  In order to test the ability of the model presented above to realistically simulate stickle-
back movement behaviour, we ran a Turing-type preference test29 in which live fish (n = 32) were given a single 
two-choice association trial where they were presented with two animated conspecifics, each of which moved 
around the virtual environment using a different set of movement rules. One virtual fish of each pair followed a 
random movement path simulated using the model, while the other followed a section of real movement path 
extracted directly from the empirical data. In each case, movement paths were paired so that real and simu-
lated paths had the same movement statistics (i.e., were based on data from the same, randomly selected real 
individual).

The general construction and presentation of the animated fish closely followed the procedure described in 
Pike17. The stimulus consisted of a digital model of a three-spined stickleback (TurboSquid, Product ID: 172706) 
that was coloured uniform grey, except for the fins (which were white and semi-transparent) and pupils (which 
were black). The model was sized so that it appeared life-sized (i.e., 41.8 mm standard length) when at the ‘front’ 
of its virtual environment. This environment was uniformly grey and contained no landscape features. Anima-
tions were generated in real time using custom-written Matlab (MathWorks, Natick, MA) functions17, and were 
presented at 10 frames per second to match the rate at which the empirical data were sampled.

For simulated movement, parameter values were randomly selected from one of 59 measured individuals 
(one fish was excluded because it exhibited almost no movement throughout the period of data collection; see 
Results). Movement was simulated within a virtual circular tank with the same dimensions as the test tank. The 
fish started at a random location (drawn from a random uniform position within the cylindrical volume of the 
tank), and movement paths were generated over 1200 timesteps (2 min). To constrain movement within the tank’s 
boundaries, if the fish’s estimated position three timesteps in the future (assuming it stayed on the same trajec-
tory and maintained the same step length) fell outside the tank, random values of step length, si(t) , and direc-
tion vector, vi(t) , were repeatedly drawn until its estimated position fell within the tank boundary. This ensured 
consistency in a fish’s movement statistics (Supplementary Figure S2). Real movement paths consisted of 2 min 
sections of movement extracted from the empirical movement data, using a randomly determined start time.

To confirm that focal fish were using characteristics of the virtual fish’s movement to inform their choice, 
rather than simply responding to the presence of a conspecific, we also ran a second test in which focal fish (n = 32 
naïve individuals) were presented with a binary choice between two virtual fish that differed in how ‘natural’ 
their movement was. In these trials both fish exhibited simulated movement (as described above), except that for 
one fish of each pair step lengths si(t) were drawn from a two-point distribution on [0, 20] , with the probabilities 
of drawing each value set so that both fish had the same mean step length. Turns were determined in the same 

(3)z0 = ρ · si(t − τ)+
√

1− ρ2 · z1,

(4)ρi = 2sin

(

ρs,i
π

6

)

.

(5)ci(t) = ci(t − τ)+ vi(t)si(t).
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way as in the main model. This caused it to move in an unnaturally stilted manner, at least to human observers 
(Supplementary Figure S2).

For each trial, an experimental fish was selected haphazardly from one of four holding tanks and transferred 
individually to a transparent plastic cylinder (8 cm diameter) located in the centre of a 33 × 18 × 19 cm glass 
experimental tank filled with 10 cm water. The long sides of the tank were covered with opaque white card, while 
calibrated 22 inch flat-screen CRT monitors (Iiyama VisonMaster 513, MA203DT; 800 × 600 px resolution, 180 
Hz refresh rate) placed at each end of the tank were used to display the animated stimulus fish17 (Supplementary 
Figure S3). The fish was immediately shown two simultaneous animation sequences, one presented on each moni-
tor. Which monitor (i.e., which side of the tank) showed the simulated movement was randomised for each trial. 
After 30 s the focal fish was released from the cylinder and was able to swim freely within the experimental tank 
for a further 90 s. Throughout each trial the experimental tank was monitored by a camera mounted directly 
overhead, allowing the position of the focal fish to be tracked in real time17. For data collection, the tank was 
divided into three virtual zones, one immediately in front of each monitor (with a width of 5 cm, termed ‘choice 
zones’) and one in the centre of the tank (‘neutral zone’); if the fish entered one of the choice zones (which we 
defined as any part of the focal fish’s body crossing the zone demarcation line) it was assumed to be exhibiting a 
choice. We recorded which choice zone was entered first and the latency (s) to make this choice. After the trial 
ended the fish was removed from the test tank and replaced in a different holding aquarium to ensure that no 
fish was used more than once.

We assessed focal fishes’ relative preference for the virtual fish of each pair that followed a movement path 
simulated by the model, over the one following either a real or an ‘unnatural’ movement path, by comparing 
first-choice preferences using binomial tests. We also tested whether the latency to make their first choice dif-
fered between stimuli using two-sample t-tests. However, if focal fish were unable (or unwilling) to differentiate 
between the different types of movement path, then we would fail to reject our null hypothesis of no deviation 
from chance levels of preference. It was therefore important that our sample afforded sufficient statistical power 
to minimise the possibility that any null result is in fact a false negative (Type II error). We determined the 
minimum sample size necessary to detect a ‘medium’ effect (sensu Cohen, 1988) of first-choice preference with 
a power of 80% using the pwr.p.test function in the pwr package for R98, yielding n = 32.

Data availability
The datasets generated and analysed during the current study are available in the University of Lincoln Reposi-
tory, https://​doi.​org/​10.​24385/​55426. Code is available on GitHub, https://​github.​com/​thoma​swpike/​fishs​im.
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