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Physics‑informed deep learning 
to forecast M̂

max
 during hydraulic 

fracturing
Ziyan Li 1, David W. Eaton 1* & Jörn Davidsen 2,3

Short-term forecasting of estimated maximum magnitude ( ̂M
max

 ) is crucial to mitigate risks of induced 
seismicity during fluid stimulation. Most previous methods require real-time injection data, which are 
not always available. This study proposes two deep learning (DL) approaches, along with two data-
partitioning methods, that rely solely on preceding patterns of seismicity. The first approach forecasts 
M̂

max
 directly using DL; the second incorporates physical constraints by using DL to forecast seismicity 

rate, which is then used to estimate M̂
max

 . These approaches are tested using a hydraulic-fracture 
monitoring dataset from western Canada. We find that direct DL learns from previous seismicity 
patterns to provide an accurate forecast, albeit with a time lag that limits its practical utility. The 
physics-informed approach accurately forecasts changes in seismicity rate, but sometimes under- 
(or over-) estimates M̂

max
 . We propose that significant exceedance of M̂

max
 may herald the onset of 

runaway fault rupture.

Hydraulic fracturing (HF), a fluid stimulation method to enhance permeability by producing fractures in low-
permeability reservoir rocks1, typically produces microearthquakes (MEQs) with moment magnitude MW < 0. 
However, HF can also induce moderate earthquakes (MW > 4)2–6, which are associated with the activation of pre-
existing faults7. Obtaining a probabilistic estimate of the largest expected event magnitude ( M̂max ) for a given 
HF operation is important for hazard assessment8 and could inform proactive real-time mitigation strategies 
for induced seismicity that are required in some advanced monitoring systems9,10.

Various approaches have been developed to estimate M̂max for fluid-induced seismicity. For example, the 
expected distribution of earthquake magnitudes can be expressed in terms of the net injected fluid volume (∆V) 
and the seismogenic index (∑), a proposed area-specific seismotectonic parameter that characterizes the expected 
seismic activity level in response to fluid injection11. This expression has been used to develop a probabilistic 
estimate for maximum magnitude12, which scales linearly with log10 ∆V. The same volumetric scaling relationship 
has been derived using a different theoretical approach, based on Griffith’s crack equilibrium criterion13. Here, 
the maximum magnitude estimate applies to the case of arrested rupture, a concept where the fault rupture zone 
is confined to a subsurface region in which pressure is perturbed by fluid injection. This concept has also been 
used to develop a geometrical constraint for maximum magnitude, based on the spatial distribution of MEQs14. In 
another formulation, the expected maximum seismic moment for an injection-induced earthquake is expressed 
as the product of the shear modulus of the medium and the net injected fluid volume15. With the exception of 
the geometrically constrained approach14, which requires MEQ hypocentre locations to be determined, all of 
these methods use net injected volume ∆V as a parameter for estimating M̂max.

During HF operations, seismic observations can be used to identify operational MEQs1 as well as induced 
seismic events that occur on nearby faults16–19. Operational MEQs typically occur in clusters that extend away 
from the wellbore, usually perpendicular to the direction of minimum horizontal stress20,21. In some cases, a 
reactivated fault is characterized by delayed event occurrence relative to the start time of an injection stage, 
coupled with oblique orientation of seismicity clusters with respect to the principal stress directions16–19. Fault 
reactivation is often marked by an increase in seismicity rate, accompanied by a decrease in the Gutenberg-
Richter b-value22,23. Although such changes in spatiotemporal pattern of seismicity may be subtle, their detection 
using deep learning (DL) methods could provide an avenue for improved short-term forecasting.

Li et al.24 developed a method for real-time operational forecasting of M̂max during stimulation. Their method 
estimates seismic efficiency ratio (SER), an empirically determined fraction of the maximum expected cumulative 
seismic moment based on injected volume25. The SER is calibrated during an initial time window of the injection 
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program, and thereafter the maximum available seismic moment is assumed to be the difference between the 
projected seismic moment using the SER and the observed cumulative seismic moment. Like other methods 
discussed above, a disadvantage of this approach is that it requires access to injection volumetric data in real 
time, which may not be available to an independent observer.

To overcome this limitation, we propose two DL approaches for short-term forecasting of the expected 
maximum magnitude ( M̂max) of induced seismic events during hydraulic fracturing. The first approach forecasts 
M̂max directly using DL. The second approach, which we refer to as physics-informed DL, uses DL to forecast 
the seismicity rate and then estimates M̂max using a formulation proposed by Van der Elst et al.12. This approach 
utilizes the maximum-likelihood value of M̂max and its associated probability distribution, assuming that earth-
quake magnitudes follow the Gutenberg-Richter (G-R) relationship. It relies on determination of the number of 
observed events (Nc) within a certain time window that fall above the magnitude of completeness (Mc) and the 
slope of the semilogarithmic magnitude-frequency distribution (b-value) from the G-R relationship. To enable 
the DL models to learn temporal patterns and trends in the seismicity data, we investigate two data partitioning 
methods to obtain sequential data samples for training and testing.

Results
To test our methods, we use observations of induced seismicity that occurred during HF treatment of four hori-
zontal wells that were stimulated in 2016, over a period of four weeks26. Well C (Fig. 1) was stimulated first, in a 
series of stages from north to south, followed by wells A, B, and D, which were stimulated concurrently using a 
zipper-fracturing scheme1. For the training dataset, we use MEQs that occurred during HF of well C. Events that 
occurred during HF of wells A, B, and D provide the testing dataset for the DL models. The hourly seismicity 
rate varied between 0 and 60 events above the magnitude of completeness per hour, with maximum observed 
magnitude of MW 3.1 (see “Methods”).

We apply both direct DL and physics-informed DL (PIDL) models to forecast the maximum likelihood 
value of M̂max . The time-series input data is generated from the seismicity catalogue using two different data-
partitioning methods. Method 1 scans the catalogue using a moving time window of fixed duration with a regular 
time step. The parameter of interest—i.e. the number of seismic events for PIDL model and the maximum mag-
nitude for the direct DL model – is determined within each moving window frame. Method 2 uses a cumulative 
approach, where the window size is progressively increased by fixed duration at each step. We use a multi-layer 
perceptron network architecture for both DL models. This is a type of fully connected feed-forward artificial 
neural network with threshold activation ("Methods"). In the case of the direct DL, the output is the forecasted 
maximum magnitude. In the case of the PIDL model, to determine the maximum likelihood value of M̂max we 
make probabilistic short-term (a few hours) forecast using the formulation in12, as a function of the number 
of seismic events and the b-value. For both data partitioning methods, we consider two b-value scenarios, one 
where we use the directly estimated b-value of the current time window, and another one where we fix b = 1 to 
approximate a scenario involving fault activation22. Altogether, we evaluate six distinct approaches (Supplemen-
tary Materials, Table S1) that allow us to compare direct DL with physics-informed DL models, as well as the 
influence of data partitioning methods and the choice of b-value.

Direct forecast.  The results of direct DL models to forecast M̂max are presented in Fig. 2. The first data-
partitioning method estimates M̂max for a 24-h period, extending from 18 h prior to the current time to 6 h after 
the current time, while the second data-partitioning method uses a cumulative approach to forecast M̂max . In 
the latter case, the calculated value of M̂max increases monotonically and covers a time window from the start 
of the analysis to 6 h ahead of the current time. Both data-partitioning methods exhibit higher R2 for training 
compared to the test set, which is normally expected. Overall, the R2 values are close to 1; however, when a jump 
occurs, there is a time lag between the observed and predicted values, reflecting the dominance of past observa-
tions included in the forecast time window. This time lag limits the practical utility of this direct DL approach 
for short-term operational forecasting of M̂max.

Physics‑informed forecast.  Instead of directly forecasting M̂max , the physics-informed approach uses DL 
to forecast the seismicity rate (represented here by the number of events above the magnitude of completeness 
within the current time window, Nc), from which M̂max is estimated. Figure 3 shows the time series for the 
observed value of Nc and the forecasted value of N̂c , for both data-partitioning methods. In the case of the fixed-
window method, Nc fluctuates, as expected for HF stimulations that vary in location and intensity, whereas for 
the cumulative method, Nc and N̂c both increase monotonically. The higher R2 value for method 2 reflects the 
preponderance of prior data within the cumulative time window.

Using N̂c , we can calculate M̂max based on the GR relation for different choices of b-value ("Materials and 
methods"). Figure 4 shows two scenarios, one that uses a maximum-likelihood floating estimate of the b-value27–29 
for the current time window, and another with a fixed value of b = 1 that is broadly representative of fault 
activation22. To forecast M̂max , the use of a fixed b-value allows for faster response with a margin of safety, since 
accurate determination of b requires a relatively large sample size (> 1000 MEQs)30. The fixed-window method 
with a floating estimate of b appears to track temporal fluctuations for small seismic magnitudes (MW < 2), but it 
fails to forecast larger events (Fig. 4a). This can be ameliorated by fixing b to unity, which leads to a forecast that 
approximates the upper limit for most seismic events but still fails to provide a forecast envelope for the largest 
observed events. For the cumulative data partition method, M̂max increases monotonically over time (Fig. 4c), as 
expected. In all cases the forecast has a low R2 value (Fig. 4b,d), indicating that for this approach the calculated 
value is not suitable for a direct forecast, although it could provide a forecast of the envelope of M̂max.
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Figure 5 shows DL and PIDL results, highlighting the 95% confidence region for the PIDL calculation based 
on the GR magnitude distribution12. As noted previously, the DL method provides a closer fit to the observed 
magnitude distribution, but a time lag limits the utility of this approach for forecasting purposes. In the case of 
this field experiment26, a TLP was in effect at the time of the HF program31, with a ML 2.0 yellow-light threshold 
requiring reduced operations and a ML 4.0 red-light threshold requiring operational suspension. Under this 
TLP, the yellow-light condition was triggered on 2016/11/10 and on 2016/11/25. The red-light threshold was 
not exceeded.

Discussion
Traffic-light protocols (TLPs) are a reactive-control approach used to mitigate risks of induced seismicity based 
on discrete response thresholds that invoke a specific action, such as modifying (or suspending) HF stimulation 
upon the occurrence of events that exceed a specific magnitude1. Using this framework, approaches to mitigate 
risk, as opposed to hazard, have recently been introduced32. Although TLPs have been implemented in many 
jurisdictions to manage induced seismicity risks associated with hydraulic fracturing6,33 or enhanced geothermal 
systems34, their underlying assumptions have been called into question; for example, most TLPs are based on a 

Well C is stimulated Well A,B and D are zipper fractured
Training Data Testing Data

D C B AD C B A

Training Data Testing Data
(a)

(c)

(b)
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Figure 1.   Induced seismicity dataset: (a) Seismic event epicenters for the training period, coloured by 
occurrence time. Four horizontal wells, drilled at ~ 3.4 km depth, are shown as black solid lines. (b) As in (a) but 
for the testing period. (c) Hourly seismicity rate. (d) Maximum moment magnitude during moving 1-h time 
windows.
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tacit assumption that anomalous larger events are preceded by weaker precursory seismicity, or that curtailment 
of fluid injection will necessarily lead to an immediate reduction in the level of seismicity35,36. Occurrence of 
HF-induced seismicity in the presence of a TLP show that these assumptions are not universally applicable37. 
Adaptive (or advanced) TLPs have been proposed9,10,24,38, but these methods require real-time access to stimula-
tion data, such as the injection rate. Since this type of data is not always available in real time to an independent 
observer, we focus here on a purely data-driven approach.

Figure 2.   Direct DL models. (a) Forecasted M̂max for 24-h time windows using the fixed window method. 
Blue symbols represent the observed Mmax in each time window. The orange and green symbols represent the 
forecasted M̂max for training and testing datasets, respectively. To show the seismicity with higher temporal 
resolution, the grey dots show the observed maximum moment magnitude within moving 1-h time windows. 
(b) Scatter plot comparing forecasted with observed M̂max using method 1. (c,d) As in (a,b), but using the 
cumulative data partition method.

Figure 3.   DL forecast for number of events N̂c above the magnitude of completeness. (a) Fixed time window 
method for the training and testing windows. (b) Scatter plot comparing the forecasted N̂c with measured 
measured Nc. (c,d) As in (a,b) but using the cumulative data partition method.
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Figure 4.   Physics-informed DL (PIDL) models to forecast M̂max . (a) The PIDL model to forecast M̂max for 24-h 
time windows using fixed (orange) and floating (green) b-values. Blue symbols represent the observed Mmax in 
each time window. (b) Scatter plots of forecasted M̂max vs. measured Mmax for the fixed window approach. (c,d) 
As in (a,b) but using the cumulative data partition method.

Figure 5.   Comparison of direct and physics-informed deep learning (PIDL) models for forecasting M̂max . (a). 
Fixed-window calculations, where the blue symbols show the maximum magnitude in 6-h time windows and 
the shaded region shows a forecast envelope based on a 95% confidence region for the PIDL curve, assuming 
time-varying b-value. (b) As in (a) for the cumulative approach.
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The fixed-window PIDL calculations (Fig. 5a) exhibit fluctuating levels of M̂max that we propose could serve 
as the basis for a type of adaptive TLP system. For example, based on the 95% confidence region using the fixed-
window PIDL approach, the yellow-light threshold was exceeded during the training period on 2016/11/01, and 
it was exceeded during the testing period on 2016/11/22. Had this PIDL-based criterion been used to trigger TLP 
responses, it would have provided a forecast with several days of advance notice to apply operational reduction 
during the testing period. Although the floating b-value PIDL method is shown, essentially the same advance 
notification would apply using a fixed value of b = 1 (Fig. S4), despite its more conservative nature. The use of 
a training data set restricted to a single well further shows that this advance notification successfully extends 
to other wells and different injection protocols in the same geological setting suggesting that the fixed-window 
PIDL approach has a degree of transferability.

The phenomenon of runaway rupture, wherein the slip region of an induced earthquake outgrows the fault 
area perturbed during stimulation13, can lead to exceedance of forecast magnitudes7. In this scenario, the maxi-
mum slip surface area is limited by the physical fault dimensions rather than stimulation parameters12. For 
example, the 2017 MW 5.5 Pohang earthquake in Korea has been cited as an example of runaway rupture39. As 
illustrated in Fig. 5, four events occurred during this HF program that exceed the magnitude range of the 95% 
confidence region based on the fixed-window PIDL approach. As a proof-of-principle, we interpret such exceed-
ance to herald the possible onset of runaway fault rupture; accordingly, an adaptive TLP developed using this 
PIDL approach could incorporate a red-light threshold using this criterion rather than a specific fixed magnitude 
level. Further testing is needed to establish the robustness of this observation.

In summary, our findings provide a proof-of-principle that a fixed-window PIDL approach could serve as 
a basis for an adaptive TLP system. While many studies have explored methods to forecast induced seismicity 
associated with industrial activity, including hydromechanical models that combine fluid pressurization and rate-
and-state friction40 or related mechanisms41,42, models to predict maximum seismic magnitude using injection 
data12,15,24,25 and machine learning models to forecast induced seismicity rates using highly related features43, 
these models require access to injection data and/or geomechanical parameters, e.g. poroelastic stress, stress rate 
and rate-state friction parameters, which are typically not available at all or at least not in real-time. In contrast, 
our PIDL approach to forecast M̂max , while requiring a training period, is exclusively based on the observed seis-
mic catalog and allows real-time forecasting. Using a fixed b-value further eliminates the potential pitfall of large 
uncertainties arising from estimating it over small time windows adding to the robustness of the PIDL approach.

Methods
Study area.  The HF treatment we analyze here is the Tony Creek Dual Microseismic Experiment (ToC2ME) 
dataset26, which was acquired by the University of Calgary in 2016. This HF simulation program is located within 
the Duvernay shale play in western Canada, within an area noted for susceptibility to HF-induced seismicity2,3,6. 
The ToC2ME acquisition systems included a 68-station shallow borehole array, six broadband seismometers, 
and one strong-motion accelerometer26. A resulting seismicity catalog obtained using an automated method44 
contains > 10,000 events, with a maximum magnitude of 3.1 MW. Overall, the observed seismicity is charac-
terized by b >  > 1, as expected for operational MEQs1; however, individual event clusters associated with fault 
activation show a marked drop in b-value45. Based on the b-value stability method28,29 and the maximum likeli-
hood method27, we determine Mc using the first 1000 MEQs in the catalogue finding Mc = – 0.15 (Fig. S1). Since 
the sensors used in the study are fixed and the event depths remain approximately the same throughout the HF 
program46, we assume that Mc is fixed at this value (– 0.15) for the duration of the experiment.

DL model framework.  We use multi-layer perceptron (MLP) networks47, which are a fully connected class 
of feedforward artificial neural network composed of multiple layers of perceptron with threshold activation. 
MLP networks learn a function that maps a sequence of input observations to an output observation.

Each MLP network consists of one input layer, two hidden layers, and one output layer. The input layer 
receives data and passes it to the first layer. The hidden layers perform mathematical computations on inputs and 
return a forecasted value as the output layer. Each neuron is fully connected to all the neurons in the preceding 
layer and those in its next layer. The neuron combines input with weights and outputs a value from the activation 
function of the sum of input-weight products. The output ĥout can be generally expressed as

where w is the weight of input x, b is the bias, n is the number of inputs, f  is the activation function used to 
standardize the output coming out of the neuron.

We apply the rectified linear units (ReLU) activation function for the two hidden layers to perform the 
forecast, which is linear for all positive values and zero for all negative values. Mathematically, it is defined as

The algorithm consists of feedforward and backpropagation phases. In the feedforward phase, inputs are 
combined with the initial random weights in a weighted sum and subjected to the activation function. The 
outputs from neurons are then used as inputs to the next layer. Each layer feeds the next one with the result of 
their computation, which goes through the hidden layers to the output layer. The error of the forecasted output 
is stored. We apply a Mean Squared Error (MSE) loss function in 1st MLPs to calculate the output,

(1)ĥout = f

(
n∑

i=1

wixi + b

)
,

(2)f (x) = max(0, x).
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In the backpropagation phase, the errors evaluate the derivatives of the loss function with respect to the 
weights ∇loss . The gradient then updates the weights with respect to the loss function,

where wt is the gradient at current iteration, wt−1 is the gradient at the previous iteration, and α represents the 
learning rate,

In each iteration, the gradient is computed across all input and output pairs after the weighted sums are 
forwarded through all layers until the output is estimated. As an example, the specific inputs and outputs for the 
different DL models are given in Table S1 and Figs. S2 and S3. The weights of the first hidden layer are updated 
with the value of the gradient, i.e. we use the efficient Adam stochastic gradient descent47 optimized using MSE. 
This process continues until the gradient for each input–output pair converges, meaning the newly computed 
gradient has not changed more than a specified convergence threshold compared to the previous iteration.

PIDL models.  For the PIDL models, rather than forecasting M̂max directly, we estimate the number of events 
( ̂Nc) above the magnitude of completeness (Mc) for a time period that extends into the future ahead of the cur-
rent time. The value of N̂c is then used to estimate the corresponding maximum-likelihood value of M̂max using 
a formula developed in12,

Mc is treated as a constant (and estimated from the data), whereas two different approaches are used for the 
b value in this expression. In the first approach a current estimate of b is obtained from the seismicity catalogue. 
In the second approach, the b value is set to 1 to consider the possibility of an abrupt reduction in b value due 
to fault activation. In practice, such a reduction in b value cannot be detected immediately due to a time lag 
imposed by the requirement for the number of observations to estimate b in a robust manner30. This approach 
also provides an estimate for the maximum magnitude bounds for a specific confidence level q, expressed as

Data availability
Data and codes supporting the findings of this manuscript are available from the corresponding author upon 
request. The seismic catalog for this study (Catalog_Rodriguez-Pradilla2019_PhDThesis.csv) can be found at: 
https://​github.​com/​ToC2ME/​ToC2ME/​tree/​master/​Rodri​guez-​Pradi​lla.
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