
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13808  | https://doi.org/10.1038/s41598-023-40400-5

www.nature.com/scientificreports

A new method to compile global 
multi‑hazard event sets
Judith N. Claassen 1*, Philip J. Ward 1,2, James Daniell 3,4, Elco E. Koks 1, 
Timothy Tiggeloven 1 & Marleen C. de Ruiter 1

This study presents a new method, the MYRIAD‑Hazard Event Sets Algorithm (MYRIAD‑HESA), that 
compiles historically‑based multi‑hazard event sets. MYRIAD‑HESA is a fully open‑access method 
that can create multi‑hazard event sets from any hazard events that occur on varying time, space, and 
intensity scales. In the past, multi‑hazards have predominately been studied on a local or continental 
scale, or have been limited to specific hazard combinations, such as the combination between 
droughts and heatwaves. Therefore, we exemplify our approach by compiling a global multi‑hazard 
event set database, spanning from 2004 to 2017, which includes eleven hazards from varying hazard 
classes (e.g. meteorological, geophysical, hydrological and climatological). This global database 
provides new scientific insights on the frequency of different multi‑hazard events and their hotspots. 
Additionally, we explicitly incorporate a temporal dimension in MYRIAD‑HESA, the time‑lag. The 
time‑lag, or time between the occurrence of hazards, is used to determine potentially impactful 
events that occurred in close succession. Varying time‑lags have been tested in MYRIAD‑HESA, and 
are analysed using North America as a case study. Alongside the MYRIAD‑HESA, the multi‑hazard 
event sets, MYRIAD‑HES, is openly available to further increase the understanding of multi‑hazard 
events in the disaster risk community. The open‑source nature of MYRIAD‑HESA provides flexibility 
to conduct multi‑risk assessments by, for example, incorporating higher resolution data for an area of 
interest.

On August 14th 2021, Haiti was hit by a magnitude 7.2 earthquake that destroyed significant parts of its infra-
structure. It claimed approximately 2000 lives, and injured over 12,000  people1. Three days later, tropical storm 
Grace raged over the country, forcing the population to shelter in damaged buildings that had become unstable 
due to the destructive effect of the earthquake. Moreover, Grace produced heavy rainfall over the affected area 
causing several landslides, blocking roads, and hampering rescue efforts as well as humanitarian aid  missions1. 
Additionally, Haiti was in the midst of the COVID-19 pandemic, which further hindered disaster response 
because of the stringent health and safety  protocols2. These hazardous events that hit Haiti in close succession 
can be classified as a multi-hazard event. Multi-hazard is defined by the United Nations Office for Disaster Risk 
 Reduction3 as “The specific contexts where hazardous events may occur simultaneously, cascadingly or cumulatively 
over time, and taking into account the potential interrelated effects.”

The risks generated by such a multi-hazard event are referred to as multi-risk4. The necessity for a better 
understanding of multi-risk is recognized internationally in the IPCC 6th Assessment Report and the Sendai 
Framework for Disaster Risk  Reduction5,6. To increase this understanding, the multi-hazard component (i.e., all 
the individual hazards a location faces and their interaction) needs to be better determined and  understood7–12.

In the field of multi-hazards, various multi-hazard interrelations have been defined. We divide these inter-
relations into four categories, noting that they are not mutually exclusive:

(1) Compound hazards: Compound weather and climate events are defined as a combination of multiple driv-
ers and/or hazards that contribute to  risk13

(2) Consecutive hazards: Two or more disasters that occur in succession, and whose direct impacts overlap 
spatially before recovery from a previous event is  completed10

(3) Triggering hazards: One hazard causes another hazard to occur, which can result in hazard chains, networks, 
or  cascades14.

(4) Amplifying hazards: When one hazard increases the probability of another hazard  occurring14.
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These complex multi-hazard interrelations have been studied in the past. However, these studies predomi-
nately focus on a local or continental scale, and have been limited to specific hazard combinations (pairs), such as 
the joint occurrence of wind and  precipitation15–25. Research that has analysed a more extensive array of hazard 
interactions on a global scale pays particular attention to compound hazard events, which are confined to the 
interaction of climate  hazards11,23,26,27. While the extensive compound event research has contributed significantly 
to our understanding of multivariate hazards, it is also important to consider hazards from various hazard classes 
(i.e., geophysical, meteorological, climatological, and hydrological), as the events in Haiti in 2021 have  shown10.

Furthermore, the Haiti example highlights that the time after a first natural hazard can be of importance, 
where the initial hazard, the earthquake, left the country more vulnerable and exposed to a tropical cyclone 
three days  later10,28. Despite the awareness that time between hazards is important to consider, there are only a 
few studies that assess the temporal aspect across hazard classes, possibly due to its  complexity29–31. Hence, more 
work is needed to understand the temporal aspect of multi-hazards events while accounting also for all natural 
hazard classes and including more than two hazards at the time.

Whilst the aforementioned studies have made advances in identifying links between different hazards, the 
lack of a method to compile a coherent database on multi-hazard events has been highlighted in the literature 
as a major challenge in advancing our understanding of multi-hazard  risk7. Therefore, in this study we pre-
sent a state-of-the-art method for compiling global multi-hazard event sets, the MYRIAD—Hazard Event Sets 
Algorithm (MYRIAD-HESA), and apply the method to compile the first global multi-hazard event set database 
(MYRIAD-HES). The aim of this paper is to use the database to demonstrate how frequently multi-hazards of 
varying combinations occur, and where their hotspots are located, while accounting for different time-lags in 
between hazards. The MYRIAD-HES incorporates historic single-hazard events data (including geophysical, 
meteorological, hydrological, and climatological hazards) collected from various sources with an overlapping 
timespan from 2004 to 2017. The MYRIAD-HESA has been developed to compile multi-hazard event sets based 
on spatial and temporal overlap. The algorithm enables a time-lag to be introduced for each hazard, where 
multiple hazards are considered a multi-hazard event if they occur within a given time-lag. To consider time 
in between events, various time-lags are tested to understand the effect that a time-lag has on the number and 
type of multi-hazard events.

Methodology
This methodology first provides an explanation of how the event sets have been developed with and without a 
time-lag in section “Compiling multi-hazard event sets”. Following this, the single-hazard input data and data 
processing methods are described in section “Single natural hazard datasets”.

Compiling multi‑hazard event sets. In this section, we describe MYRIAD-HESA, the algorithm used 
to compile MYRIAD-HES, of which the code is publicly  available32. A visual overview is presented in Fig. 1, and 
the steps are further explained below.

To produce the multi-hazard event sets, we require information on where and when a hazard occurred by 
using single hazard event data. Each single hazard footprint consists of a polygon that represents the spatial extent 
where the hazard occurred (hereinafter referred to as event polygon). Additionally, each hazard has a starting 
date, an end date, and a measured intensity if applicable.

In this study, two hazards are a pair if both their event polygon and timeframe overlap, as seen in Fig. 1a. For 
example, Hazard 2 and Hazard 4 overlap in space, but not in time, and are therefore not a pair. However, Hazard 
4 does overlap in space and time with Hazard 3, these are a pair. A hazard can also be classified as a dynamic 
hazard. Dynamic hazards are those for which there is information on their spatial development through time. 
For example, a wildfire can spread or diminish over the span of its lifetime, leading to multiple event polygons 
for each individual timestep. Therefore, if one or both hazards in a hazard pair are dynamic hazards, the dynamic 
polygons at each time step have to be checked to see whether the two hazards truly overlap at one point in space 
and time before they can be considered a pair (as seen in Fig. 1b). Each individual hazard is noted by a unique 
id. A hazard pair is therefore noted as a row with two columns where the first column includes the id of the first 
hazard and the second column includes the id of the second hazard. The pairs are all ordered based on the start 
date of the individual hazards. However, hazards in a group can also have the same start date. In this case, the 
hazard that occurs first in the data will be listed as the first hazards. Hence, no prior hazard relationship knowl-
edge is implemented into the method.

After all the hazard pairs are known, they can be put into hazard groups. These hazard groups are the final 
multi-hazard events. A pair can form a group with other hazard pairs if all individual hazards overlap with one 
another. For example, if there is a hazard pair (Hazard  1, Hazard 2) and a hazard pair (Hazard  2, Hazard 3), these 
two pairs can form a group if hazard pair (Hazard  1, Hazard 3) also exists. In this case the hazard event will 
consist of Hazard  1, Hazard 2 and Hazard 3 (see Fig. 1a).

To also consider multi-hazard events where the second event occurs after the first one has ended, a time-lag 
can be introduced (see Fig. 2a). Such a time-lag is the number of days after the first event during which a second 
event can occur. Two events must overlap spatially to be considered a hazard pair, but no longer have to overlap 
directly in time. The algorithm enables a time-lag to be introduced for each hazard where multiple hazards are 
considered a multi-hazard event if they occur within one another’s time-lag. Various time-lags based on the 
hazard intensity are tested to understand the impact of a time-lag on the number and type of multi-hazard events 
globally. The time-lag has also been applied to the dynamic hazards, as can be seen in Fig. 1b.

Single natural hazard datasets. In this paper, MYRIAD-HESA has been exemplified using available 
hazard data on a global scale. Hazard event data have been collected for eleven different natural hazard types 
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(see Table 1) that have each also been listed in the UNDRR Hazard Definition and Classification  review33. The 
datasets used were selected based on their global coverage and available timespan. For several natural hazards, 
a global footprint database is available, for example, shakemaps for earthquakes. However, for hazards where no 
global footprint database exists, such as heatwaves, reanalysis products have been obtained. An overview of the 
data sources used is presented in Table 1.

Below, we discuss the data processing steps taken for each of the hazard types listed in Table 1. A visual 
summary of how polygons of each natural hazard type have been defined, is presented in Fig. 3. The following 
subsections can be read in conjunction with both Table 1 and Fig. 3.

Earthquake. A record of historic earthquakes has been obtained from the US Geological Survey’s (USGS) 
Earthquake Catalogue as  shakemaps34. Shakemaps are automatically generated shaking and intensity maps that 
combine instrumental data with information about local geology at the location of the event. For this study, only 
earthquakes with an MMI (Modified Mercalli Intensity) of five or higher have been selected. According to the 
MMI scale, this is the lowest intensity where damages are expected to  occur44. For each shakemap, the extent of 
the event (the event polygon) is based on the outer bound of the area that is hit by an MMI of 5 or higher.

Volcanic eruption. A record of volcanic eruptions can be found at the Smithsonian Institution Global Volcan-
ism Program (GVP)35. The GVP is a database of all Holocene confirmed eruptions, including their longitude, 
latitude, start time, end time, and Volcanic Explosivity Index (VEI). The VEI uses the volume of erupted pyro-
clastic material (ashfall and other ejecta), and the eruption cloud height to assign an intensity value on a scale 
of 0 to  845. In the World Atlas on Natural Disaster Risk46 a relationship has been derived between the radius of 
influence, L , and the VEI (see Eq. 1).

This relationship has been used to create circular event polygons based on the calculated radius of influence.

Landslides. Landslide events have been obtained from the Global Fatal Landslide Database that has been devel-
oped at the University of  Sheffield36. As the name suggests, the database only includes landslides that have caused 
at least one fatality. Key information provided on each landslide includes: the main cause (both human-induced 

(1)L = 3.0408e
0.6956VEI

Figure 1.  Example of how MYRIAD-HESA operates without a time-lag. This figure shows both hazard pairs 
and hazard groups. (a) Hazards are a hazard group if all hazards overlap with each other in space and time as 
a pair. Here, there are two hazard groups, which are referred to as Events. Event 1 is encompassed by the black 
solid line, while Event 2 is encompassed by the black dashed line. Event 1 consists of three hazard pairs between 
Hazard 1, 2, and 3. Event 2 consists of one hazard pair between Hazard 3 and 4. (b) A dynamic hazard has to 
overlap with the other hazards during at least one of the overlapping time-steps. Here, Hazard 1 is a dynamic 
hazard. Therefore, it’s event polygon can change over time. Hazard 2 and Hazard 3 are not dynamic hazards. 
Their polygons remain the same between their start time and end time.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13808  | https://doi.org/10.1038/s41598-023-40400-5

www.nature.com/scientificreports/

and natural), the longitude, latitude, and a polygon of impact. Some of the polygons have a low precision cover-
ing the bounds of an entire country. These polygons have instead been defined as a circular event polygon with 
the provided longitude and latitude as a center and a radius of 0.2 decimal degrees. The 0.2 degrees are based 
on the average area of the polygons with higher precision. Furthermore, for the purpose of this study, only the 
natural hazard-induced landslides have been selected, as so-called NaTech (Natural-Technological)10 hazards are 
outside of the scope of this paper.

Tropical cyclones. The tropical cyclone events are obtained from two data sources. Firstly, the International 
Best Track Archive for Climate Stewardship (IBTrACS), a repository of tropical cyclone tracks. This database 
includes, amongst other variables, the name, the location of the eye at three or 6-hourly intervals, the maximum 

Figure 2.  Example of how MYRIAD-HESA operates with a time-lag. (a) Two or more hazards are considered a 
multi-hazard event if they occur at the same location, and at the same time or within each other’s time-lag. Here, 
there is one hazard group, Event 1, that is encompassed by the black solid line. Event 1 consists of 6 hazard pairs 
between Hazard 1, 2, 3, and 4 (b) The time-lag is also applied to the separate timesteps of a dynamic hazard. 
Here, Hazard 1 is a dynamic hazard. Therefore, its polygon at timestep 3 (t3) is a combination of its polygons at 
timestep 1, 2 and 3, when a time-lag of two timesteps has been applied.

Table 1.  Overview of the different data types and sources used in this research, including the intensity units, 
years available and whether dynamic hazard data is available.

Hazard class Hazard type Acronym Name and source Intensity unit Years available Dynamic hazard

Geophysical

Earthquake eq ShakeMaps Earthquake  Catalogue34 Richter Magnitude [–] 1900–present No

Volcanic eruption vo Global Volcanism  Program35 Volcanic Explosivity Index (VEI) [–] 1345 BCE–present No

Landslide ls Global Fatal Landslide  Database36 [–] 2004–2017 No

Meteorological

Tropical cyclone tc
IBTrACS37 Saffir-Simpson Scale 1850–present

NoThe Willis Research Network Global Tropical 
Cyclone Wind Footprint  dataset38 [ms−1] 1989–2020

Coldwave cw ERA-539 Kelvin 1979–Present Yes

Heatwave hw ERA-539 Kelvin 1979–Present Yes

Extreme wind ew ERA-539 [ms−1] 1979-Present Yes

Hydrological
Tsunami ts Global Historical Tsunami  Database40 Wave height [m] 2000 B.C.–present No

Flood fl The Global Flood  Database41 [-] 2000–2018 No

Climatological
Drought dr Global Drought  Observatory42 SPI-3 1981–2022 Yes

Wildfire wf Global Wildfire  Dataset43 [–] 2000–present Yes
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wind speeds at those times, as well as the intensity level on the Saffir-Simpson  Scale37. Secondly, we make use 
of the Willis Research Network Global Tropical Cyclone Wind Footprint dataset (WRN-TC), with modeled 
wind footprints based on track information provided by IBTrACS. The event polygons in our analysis have been 
defined based on the outer bounds of the WRN-TC footprint. Aside from the footprint, WRN-TC only provides 
the tropical cyclone name and year of occurrence. Based on the name and year, the footprint is linked back to 
IBTrACS to identify the start time and end time of each tropical cyclone.

Coldwave and heatwave. Both the coldwaves and heatwaves have been derived from the ERA5 reanalysis 
hourly temperature data at 2 m height. This data have been used to derive the daily mean temperature for each 
grid cell.

A heatwave is generally defined as an above normal temperature for multiple consecutive  days47. In line with 
previous studies, we have defined heatwaves as a period where the daily mean temperature at 2 m (above sea-
level) is above  95th percentile for three subsequent days or  more20,23,47. Using the 95th percentile for a particular 
location and day of the year enables the identification of relatively warmer periods in colder climates and winter 
months. The event polygon is based on overlapping and adjacent grid cells where the heatwaves occur at the 
same time. As an intensity indicator, the maximum temperature measured in any of the grid cells included in a 
polygon is recorded with the event.

Coldwaves have been estimated using a similar approach, where instead of the 95th percentile, the daily tem-
perature has to be below the 5th percentile for three or more consecutive days. Here, the minimum temperature 
measured in any of the grid cells included in a polygon is recorded with the event.

For both the heatwave and the coldwave events, a cut-off value has been used to reduce the number of events 
to the most likely disaster. If the heatwave’s maximum temperature is below 0 degrees Celsius, the event is 
removed. Likewise, if the cold waves minimum temperature is above 0 degrees, it is excluded.

Extreme wind. The ERA5 six hourly instantaneous 10 m wind gust data have been used to identify extreme 
wind events. First, the maximum wind gust per day was calculated. Following that, the 99th percentile was 
computed per grid cell. A 99th percentile instead of a 95th percentile was selected to obtain the most extreme 
events. We define an extreme wind event as a day when the maximum wind gust is above the 99th percentile at 
a particular location. The event polygon is defined based on overlapping and adjacent grid cells where the 99th 
percentile is exceeded at the same time. Overlapping event polygons on consecutive days are combined, and 
the start date is the first day on which the extreme wind is recorded, while the end date is the last day on which 
extreme wind is recorded. For the extreme wind event, the maximum wind speed has to be above 15  ms−1 to be 
included. This cut-off value is selected to limit the number of events to those with a larger likelihood of being 
hazardous. While wind is also an element of the tropical cyclone data, it has been included in this study to repre-
sent additional extreme wind events that are not classified as tropical cyclones, such as winter storms.

Figure 3.  Overview of how the polygons have been defined for each individual hazard.
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Tsunami. The tsunami events in the Global Historic Tsunami database include the date, cause, magnitude of associ-
ated earthquakes, longitude and latitude, maximum water height, and the number of  runups40. The number of runups 
refers to the location where tsunami effects occurred on shore, which is available in an additional dataset. The runup 
locations have been linked to the tsunami source, the point where the tsunami originated from. Both the source and 
the runup locations are relevant to include, as the source can overlap with the hazard that caused the tsunami, such 
as an earthquake, and the runup locations may overlap with further hazards on land, such as triggered landslides. 
Coordinates of the runup locations and the tsunami sources are used to create an estimate of a single event polygon by 
adding a buffer of 1 decimal degree (approximately 111 km) to each location.

Flood. The Global Flood Database includes an estimate of flood extent for large flood events from 2000 to 2018 
with the use of satellite  imagery41. The inundated area of each event has been used to create the event polygon. 
There are a total of 913 flood events in this dataset.

Drought. Drought events have been obtained from the Global Drought Observatory’s (GDO) SPI-3 (three-month 
Standardized Precipitation Index) global  database42. The GDO provides the SPI-3 at a monthly resolution. According 
to the definition used by Ridder et al.23, a drought is defined when the SPI-3 is below − 1.3. The final event polygon is 
defined based on overlapping and adjacent grid cells where the SPI-3 is low in consecutive months.

Wildfire. The wildfire events in the global wildfire dataset have been obtained through a data-mining approach 
using NASA’s MODIS burnt area product Collection 6 (MCD64A1)43,48. The global burned area products, 
derived from satellite imagery, provide information on spatial and temporal attributes of all areas affected by 
fires, but they do not contain information on single wildfire events. Therefore, Artés et al.43 used a clustering 
algorithm to combine single day wildfires into multi-day wildfire events if the fire was active on consecutive days. 
As the dataset includes millions of events, only those that are above 5  km2 in final polygon size are considered 
in our analysis. This increases the likelihood that an event is actually a wildfire, as MODIS can also registers 
industry as a fire.

Results and discussion
Multi‑hazard pairs. Figure 4 shows the global hotspots of hazard pairs in the data without a time-lag. Some 
notable areas, with a large amount of hazard pairs, include northeast India, Bangladesh, East China, Taiwan, 
Japan, parts of Southeast Asia, Madagascar, southeast USA, UK, and northern Australia. There are noticeably 
also locations where no hazard pairs were registered based on the data used, such as in central Africa and the 
north-central part of South America. This does not mean there are no natural hazards at these locations, rather 
that there was no hazard overlap detected in our compiled event sets based on historical records.

The two most prominent hazard pairs globally are the combination of droughts and heatwaves as well as the 
combination of heatwaves and extreme wind (See Fig. 5 and Supplementary Table 1). The link between drought 
and heatwaves is evident, as high temperatures can lead to dry conditions and dry conditions can further increase 
temperatures. Moreover, the combination of a drought and a heatwave is a typical compound event that has 
received much attention in the past years as they usually lead to severe impacts on socioeconomic factors, are 
widespread, and are likely to intensify under climate  change20,26,49–51. In contrast, the link between heatwaves 

Figure 4.  The total number of hazard pairs on a logarithmic scale between 2004 and 2017 showing the hazard 
pair hotspots globally. White areas are the ocean or a place with no hazard pairs.
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and extreme wind is less evident in literature. The frequent overlap between heatwaves and extreme wind could 
be due to the relationship between rising hot air and convective storms that occur in summer. However, the 
frequent overlap may also be caused by the nature of the data. As explained in section “Coldwave and heatwave”, 
heatwaves are based on above average temperatures of specific calendar days. This means that heatwaves during, 
for example the European winter storm season, may not necessarily be a typical ‘hot’ summer day. An extreme 
example of such a winter heatwave are the unprecedented temperatures Europe experienced in January 2023, 
where the temperature was 10  Co above the average and records were broken by 4 °C52. A seasonality analysis 
of the overlap between heatwaves and extreme wind reveals that the majority of pairs occur during the winter 
season (see Supplementary Fig. 1). Therefore, this overlap likely represents above average temperature winter 
days in combination with wind storms, and not summer heatwaves that drive convective storms.

The hazard pair that occurred the most between 2004 and 2017, varies strongly between the various geo-
graphic locations (see Fig. 5). Hotspots (as shown in Fig. 4) are often dominated by a combination of tropical 
cyclones and extreme wind. This is to be expected as tropical cyclones are defined by their high wind speed. 
While extreme wind and tropical cyclones are not technically two separate hazards, extreme wind was included 
to also represents storms that are not tropical cyclones. A clear overlap between the two indicate that extreme 
wind could be a reasonable proxy for storm data.

Additionally, a more spatially scattered, but prominent hazard pair is that of wildfires and heatwaves. This 
pair can predominately be observed in sub-Saharan Africa, known as the African savannah fires. While indeed 
more than half of the burned area globally occurs in the African savannahs, it should be noted that these are 
often human-ignited, a fire source that is difficult to distinguish in the  data53. The pair is also prominent in South 
America, near the Amazon as well as in Portugal, Australia, Eastern Europe and Russia.

We observe many pairs that include a flood, such as in the UK where the combination between floods and 
extreme wind are the most frequent hazard pair. Here, the extreme wind event is likely a storm that is paired 
with storm surge and/or extreme precipitation, commonly referred to as a compound flood. Various research 
has shown that these compound floods occur most frequently as a consequence of European winter  storms54,55, 
however, they can also occur during summer with devastating impacts, as has been observed during the July 
2021 UK  floods56. Likewise, floods are prominent in Bangladesh, in a flood to flood hazard pair. This is not sur-
prising as 80% of Bangladesh is a flood plain and the largest number of people affected due to a natural hazard 
in Bangladesh since 1972 can be attributed to  floods57.

Furthermore, tsunami-related pairs are visible on the coastlines for California (U.S.A), New Zealand, Japan, 
and Sumatra (Indonesia). They are often paired with earthquakes, as can be expected since earthquakes are the 
main cause of tsunamis, but they are also coinciding with droughts, which is more surprising. We suspect there 
is likely no link between the two, and the frequent overlap occurs due to the large spatial scale and the duration 
of a drought (see supplementary Table 2).

Figure 5.  The most frequent hazard pair globally. Here, there is no distinction which hazard occurs first in 
the pair, for example, ‘dr & hw’ could be a drought followed by a heatwave as well as a heatwave followed by a 
drought. The acronyms for each hazard are inlcuded in Table 1. White areas are the ocean or a place with no 
hazard pairs.
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As Fig. 5 only shows the most frequent hazard pair spatially, it does not show all possible pairs and their 
frequency. Therefore, the total number of unique hazard pairs per continent is provided in Fig. 6. Here, a couple 
of interesting observations stand out. Firstly, there are a high number and a large variety of hazard pairs in Asia, 
most notably in comparison to Europe and Australia. This difference may be due to the size of each continent, but 
also its geographic and diverse topography. Most notably landslides appear significantly more in Asia compared 
to other continents. This may be due to a registration bias, as reporting on landslides tend to be for those with 

Figure 6.  Heatmaps showing the number of hazard pairs per continent. Hazard 1 is the hazard that has started 
first, followed by Hazard 2. The acronyms for each hazard are inlcuded in Table 1. The total number of hazard 
pairs identified is 13,764. The different continents are represented in the Supplementary materials Fig. 2.
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the largest impacts. For example, EM-DAT shows that approximately 54% of the registered high-impact land-
slides between 1910 and 2022 occurred in Asia. On the other hand, landslides that occur in remote regions with 
relatively smaller amounts of impacts are generally not reported, and it could be that there are more urbanised 
areas susceptible to landslides in  Asia36,58,59.

Secondly, there are many pairs that include wildfires. This is because wildfires are the most frequent individual 
hazard event type in the database (see Supplementary Table 2). Similarly, the single hazards derived from the 
ERA-5 data are abundant in pairs due to their high amount of global data availability.

Overall, the heatmaps show that there is a large variety of hazard pairs possible globally and that the second-
ary hazard (Hazard 2), can be preceded by a variety of initial hazards (Hazard 1). This is illustrated well by the 
columns where landslides are the secondary hazards, for example in Asia. The landslides are often a second 
hazard following an earthquake, flood, extreme wind, or a tropical cyclone. There is also a large overlap between 
landslides, possibly due to the same trigger, or a primary landslide initiating a secondary landslide. The con-
nection between landslides and their possible trigger can be better understood by the hazard groups described 
in the next section.

Multi‑hazard groups. In addition to hazard pairs, hazards can overlap in larger numbers as hazard groups 
(see Fig. 2). Between 2004 and 2017, 131,318 hazard groups have been identified. Hazard groups are listed based 
on order of occurrence of the individual hazard, meaning that the hazard with the earliest start date is first in the 
list. Of these groups, 485 original hazard combinations were determined. The original hazard groups vary greatly 
in frequency of occurrence, from 1 to 33,381 times, where an occurrence of 1 means that the particular order of 
hazards has only occurred once.

Figure 7 shows all unique hazard combinations and the frequency of occurrence. The majority of the groups 
have a wildfire as a first hazard, while the lowest number of groups has a tsunami as a first hazard. Across all 
groups, most hazard groups do consist of only two hazards, a hazard pair. However, groups of three hazards are 
also not uncommon. The largest groups predominately occur with an earthquake as a first hazard (Fig. 7b). The 
largest group has eleven hazards in it, and consists of three earthquakes and nine landslides. This is partially 
due to overlapping earthquakes that could be an initial earthquake and its aftershocks. Large earthquakes with 
many aftershocks are also a known cause for tsunamis, as seen in the tree map. Other large groups include many 
landslides. These landslides could all be triggered by the same earthquake or have triggered one another as a 
consequence of slope instability caused by an initial landslide, as discussed in the previous subsection. These 
results reflect those of Gill and  Malamud60, where different hazard interactions were identified. Here it is noted 
that an earthquake can trigger a multitude of landslides and that a landslide can trigger and increase the prob-
ability of a secondary landslide.

Time‑lag. In the previous section we assumed that hazards have to overlap in both space and time to form a 
pair or group. However, the impacts of two, or more, hazards can also be interrelated through time in-between 
hazards. Therefore, it is of interest to investigate how the multi-hazard events respond to a time-lag between 
hazards. In this section, North America serves as a case study to illustrate the impact of a time-lag.

By definition, a larger time-lag between hazards results in more hazard pairs, as each hazard will have a 
larger time frame in which hazards can overlap. This is also evident in the total number of hazard pairs in the 
United States (Fig. 8). The relative increase between different time-lags appears to be larger in the first 10 to 30 
days, compared to the difference between 180 and 360 days (see Supplementary Fig. 3). Furthermore, the major 
hotspots remain similar through time. While the hotspot does expand in the south of the continent, Florida 
remains the region with the largest number of hazard pairs.

To better understand the hotspots with varying time-lags, the most frequent hazard pair at each location are 
shown in Fig. 9. Here it is clear that the south of the continent is dominated by tropical cyclone related hazard 
pairs, regardless of the time-lag. However, the hazard that is paired with the tropical cyclone does vary. A time-lag 
of 0 to 10 days still shows spots of overlap with floods, a known consequence of tropical cyclones. This hazard pair 
is relatively less frequent, in comparison to other hazard pairs, with larger time-lags as the flood usually occurs 
during the tropical cyclone event, or shortly after. Time-lags between 10 and 90 days show that tropical cyclones 
overlap with themselves most frequently. This can be explained by the Atlantic hurricane season, which runs from 
June to November. A notable hurricane season included in this database occurred in 2004. For the first time in 
the US hurricane record, four hurricanes hit Florida in close succession, namely, Hurricane Charley in August 
followed by Frances, Ivan and Jeanne in September. Frances and Jeanne hit the same coast at virtually the same 
location, which had also not been recorded before during the same season. While the secondary hazard, hurri-
cane Jeanne, was not as intense compared to hurricane Frances, Jeanne caused leftover storm debris to fly around, 
and further tear apart already weakened buildings. Hence Jeanne likely caused more damage than it would have 
if it occurred in isolation. Furthermore, it was difficult to attribute total damages to the individual  hurricanes61,62. 
Attributing damages is a common challenge when hazards occur in close succession as consecutive hazards. For 
example, attributing all further damages to the secondary hazard may lead to an incorrect damage assessment, 
while incorporating a time-lag to observe hazards that occurred previously can help understand how a hazards 
of a particular magnitude managed to cause the observed  damages10.

Following the hurricane season, no more overlaps between tropical cyclones were registered with a time-lag 
beyond the duration of the season. This allows other hazard pairs to become more frequent with a time-lag of 180 
to 360 days. The more frequent hazard pair with longer time-lags are between tropical cyclones and extreme wind 
or heatwaves, as these events occur all throughout the year, hence will be registered with an additional time-lag.
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The remainder of North America shows a general expansion of many hazard pairs that already occurred 
with no time-lag, such as a heatwave and a drought, a flood and extreme wind, a drought and extreme wind, a 
heatwave and extreme wind, as well as a flood and a heatwave.

Implications of the methodology. While MYRIAD-HESA aims to successfully incorporate hazards 
from varying hazard classes into one database, our results show that the difference in how each of the haz-
ard footprints has been defined strongly influences the resulting hazard pairs and groups. The most frequent 
groups/pairs often include the hazards derived from ERA-5 data, wildfires (based on the MODIS product) and/
or droughts (based on SPI-3). These all have good global coverage and are based on thresholds, resulting in a 
large number of small events. Comparatively, observation-based data, such as landslides and tsunamis, have 

Figure 7.  (a) Tree-map of all the unique hazard groups and their frequency of occurrence. The outer rectangles 
represent the first hazard in a group. The nested rectangles within represent the following hazards in the group, 
where each level in the hierarchy is the next hazard in the list, from  hazard1 to  hazardn. The rectangles are sized 
based on the frequency of occurrence. However, because some groups occurred four orders of magnitude more, 
the box sized have been weighted to be able to properly visualize the less frequent groups as well. This implies 
that the size is not directly proportional to the frequency, but the sizes of the rectangles at each hierarchy level 
are ordered from large to small for higher to lower frequencies respectively. Therefore, the most frequent hazard 
is still represented by the largest box. (b) A zoom into the hazard groups that have an earthquake as first hazard. 
The acronyms for each hazard are inlcuded in Table 1. The interactive treemap is available as a .html file in 
the supplementary material. The interactive tree map allows to zoom into different hazard groups and includes 
quantitative information on the frequency of occurrence of each group.
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Figure 8.  The number of hazard pairs in the US with varying time-lags (in days) on a logarithmic scale.

Figure 9.  The most frequent hazard pairs in North America with varying time-lags from 0 to 360 days. The 
acronyms for each hazard are inlcuded in Table 1.
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fewer individual hazard events. Hence, they occur in fewer multi-hazard pairs/groups. Additionally, the size and 
duration of each event also impacts the number of hazard pairs. Each natural hazard occurs on varying spatial 
and temporal scales (see Fig. 1 of Gill and  Malamud60). Tropical cyclones are spatially large weather systems, 
while not being nearly as frequent as, for example, a wildfire. Therefore, a tropical cyclone will have more hazard 
overlaps compared to hazards with a typically smaller spatial footprint, such as a volcanic eruption. Likewise, 
hazards with a longer duration, such as droughts that have an average duration of 61 days, will have a higher 
likelihood to overlap with a secondary hazard (see Supplementary Table 2).

As we expected, the specified time-lag between hazards influences the resulting multi-hazard events. Both in 
the frequency of different hazard pairs as well as the number of multi-hazard pairs/groups. This time-lag, while 
only hypothetical, is crucial to identify consecutive hazard events where there were potential interrelated impacts, 
such as the four hurricanes that hit Florida in 2004. In our study, the same time-lag was used for all hazards 
of all intensities, however, the method can also be adjusted to have varying time-lags for different hazards and 
intensities. For example, an earthquake with MMI 10 may need a longer time-lag compared to an earthquake of 
MMI 5, as it likely caused more damage and can influence the impact of a secondary hazard.

Finally, while the results presented in this paper provide an insight in potential multi-hazard events on a 
global scale, these findings are limited by the data coverage. The lack of country-level data creates an inability 
to capture small events, such as flash floods that are generally not included in the global flood database, or 
landslides that were not fatal but did cause damage. Likewise, the global gridded data used in this study, such as 
the ERA5 reanalysis data, do not provide a sufficient resolution to capture small events in comparison to local 
data. Additionally, the assumptions used to define the hazard events from reanalysis data may lead to an over or 
underestimation of the number of events, as there is no guarantee that these were hazardous. Furthermore, the 
representation for volcanic eruptions is based on the potential area of impact due to pyroclastic and lava flows. 
Therefore, the negative impacts of ash and gasses, which operate on a larger spatial scale, are ignored. Hence, 
fewer multi-hazard events including volcanic eruptions are identified compared to reality. However, the events 
in MYRIAD-HES can serve as a guide to identify events that had severe consequences, which is a key first step 
in understanding the complex multi-hazard interactions that drive impacts. Additionally, MYRIAD-HESA can 
further overcome data limitation by allowing the user to incorporate their own higher resolution data for an 
area of interest, and the results can easily be altered if data quality improves with future innovations (see code 
availability). However, it should be noted that in order to incorporate new data, the data needs to be formatted 
as polygons, such as those represented in Fig. 3.

Conclusions and applications
With the use of historic global hazard data, this study provides a primary multi-hazard event set, MYRIAD-
HES, that has been created with a new method, MYRIAD-HESA. We show that single hazard data from varying 
sources can be formatted and combined into a multi-hazard dataset, even if the hazards occur on varying time, 
space, and intensity scales.

MYRIAD-HES is presented to identify global hotspots of hazard pairs, which hazard pair occurs most fre-
quently in different regions, and unique multi-hazard groups with and without time-lag. The most frequent 
hazard pair globally is the combination between heatwaves and droughts. However, most of the global hotspots, 
such as Madagascar, Florida, North Australia, Bangladesh, Japan and the Philippines, are largely dominated by 
tropical cyclone activity and resulting secondary hazards, such as floods and landslides. The hazard groups result-
ing from the hazard pairs can be very complex, as large numbers of variations are possible. The grouped events 
can consist of many different hazards, making it more difficult to analyse compared to hazard pairs. However, it 
is evident in the multi-hazard groups that the larger groups often include a cascade of many landslides. Finally, 
a time-lag has been introduced to observe hazards that occur at the same spatial locations with a set amount of 
time in between. Here, North America served as a case study to show how varying time-lags from 0 to 360 days 
bring to light varying multi-hazard interactions. This is of importance to highlight scenarios where two impact-
ful events hit in close succession, such as the hurricanes that hit Florida in 2004, and the tropical cyclone that 
followed the earthquake in Haiti 2021.

MYRIAD-HESA may be of interest to a variety of practitioners. This method allows governments to plan for 
specific multi-hazard events and provide insights into the number of overlapping events they need to account 
for. NGOs can consider the information on locations of global hotspots that are susceptible to multi-hazards to 
prioritise the allocation of (future) resources. (Re-)insurers could benefit from using this multi-hazard approach 
by recognizing their assets may be at risk of multiple hazards at the same time, hence making more informed 
decisions. Finally, this method is open-source and can therefore be used in further research to advance under-
standing of multi-hazard events by incorporating improved hazard data, hazard relationship insights, and damage 
information. For example, the multi-hazard footprints could be linked to disaster databases, such EM-DAT59, to 
compliment the impact data with additional hazard information as well as to identify which other hazards have 
hit the sites in close succession. This information will enable the user to evaluate what impact additional hazards 
may have had on the magnitude of the damages.

Data availability
MYRIAD-HES, the dataset compiled during the is study, is openly available on  Zenodo63.

Code availability
The MYRIAD-HESA code has been publicly released on  GitHub32.
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