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Carbon dioxide emissions 
through land use change, fire, 
and oxidative peat decomposition 
in Borneo
Tomohiro Shiraishi 1,2*, Ryuichi Hirata 1, Masato Hayashi 3 & Takashi Hirano 4

Borneo has accumulated an abundance of woody carbon in its forests and peat. However, agricultural 
land conversion accompanied by plantation development, dead wood burning, and peat drying from 
drainage are major challenges to climate change mitigation. This study aimed to develop a method of 
estimating carbon dioxide  (CO2) emissions from land use change, forest and peat fires, and oxidative 
peat decomposition, and  CO2 uptake from biomass growth across Borneo using remote sensing data 
from 2001 to 2016. Although  CO2 uptake by biomass growth in vast forests has shown a significant 
increasing trend, an annual net release of 461.10 ± 436.51 (average ± 1 standard deviation) Tg  CO2 
 year−1 was observed. The estimated emissions were predominantly characterized by land use changes 
from 2001 to 2003, with the highest emissions in 2001. Land use change was evaluated from annual 
land use maps with an accuracy of 92.0 ± 1.0% (average ± 1 standard deviation). Forest and peat fires 
contributed higher emissions in 2002, 2006, 2009, 2014, and 2015 compared to other years and were 
strongly correlated with the Southern Oscillation Indexes. These results suggest that more  CO2 may 
have been released into the atmosphere than previously thought.

Forests play a vital role in the global carbon cycle by absorbing atmospheric carbon dioxide  (CO2) and storing 
it as part of tree biomass. A total of 230 Mha of forest was lost through logging and land use change and 80 Mha 
of new forests were gained worldwide between 2000 and  20121. Global net deforestation rates have steadily 
decreased from 7.8 Mha  year−1 in 1990 − 2000, 5.2 Mha  year−1 in 2000 − 2010, and 4.7 Mha  year−1 in 2010 −  20202. 
Currently, a total global forest area of 4.06 billion hectares remains, accounting for 31% of the total land area. Of 
this, the total spatial area of intact natural forest is only 27%2. The average for terrestrial  CO2 sinks from 2010 
to 2021 was estimated at 3.2 Pg C  year−1, whereas land use changes, predominantly from deforestation, emitted 
1.3 Pg C  year−1 based on the Global Carbon Budget  20223. Total net greenhouse gas (GHG) emissions from 
agriculture, forestry, and other land use (AFOLU) sectors were 12.0 Pg  CO2  year−1  (CO2 equivalent) from 2007 
to  20164, accounting for 23% of total net anthropogenic emissions. Therefore, GHG emissions from AFOLU 
sectors have contributed substantially to the rise in atmospheric GHG concentrations.

The deforestation rate in Southeast Asia is high, especially in Indonesia, which saw the highest rate of for-
est loss from 2000 to  20121,5. Although forests covered 71% of the land area of Borneo in the 1980s, this ratio 
decreased to 54% in  20006 and decreased further by 14% (6.04 Mha) between 2000 and  20177. In contrast, the 
total plantation area, such as for oil palm and pulpwood, expanded by 170% (6.20 Mha) in 2000–20177. The 
main causes of deforestation in Borneo include the expansion of agricultural activity, conversion of forests to oil 
palm and pulpwood plantations, and  logging8,9. Agricultural development has played a key role in contributing 
to regional economic growth in many tropical countries because of the low costs of labour and  land10; however, 
this has also caused the extensive loss of natural habitats for native biodiversity, reduction in woody biomass, 
deterioration in water quality from drainage channels, increased GHG release from drying soil in peatlands, and 
financial losses and physical damage from the haze caused by biomass and peat  burning11.

A large proportion of carbon is stored as peat. In insular Southeast Asia, a considerable amount of incom-
pletely decomposed woody carbon has accumulated as peat under swamp forests over thousands of  years12. The 
carbon content of peat is estimated at approximately 68.5 Pg, corresponding to 77% of global tropical peat carbon 

OPEN

1Earth System Division, National Institute for Environmental Studies (NIES), Ibaraki 305-8506, Japan. 2School of 
Engineering, Nippon Bunri University, Oita 870-0397, Japan. 3Earth Observation Research Center, Japan Aerospace 
Exploration Agency (JAXA), Ibaraki 305-8505, Japan. 4Research Faculty of Agriculture, Hokkaido University, 
Hokkaido 060-8589, Japan. *email: shiraishith@nbu.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-40333-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13067  | https://doi.org/10.1038/s41598-023-40333-z

www.nature.com/scientificreports/

 pool12. Land use change has the potential to transform the carbon pool and emit substantial amounts of  CO2 into 
the  atmosphere12,13. Peatlands in Southeast Asia have emitted a vast amount of  CO2 through deforestation from 
land use  changes9,13,  drainage14,15, and  fires16,17 over the last four decades. Southeast Asia is also sensitive to El 
Niño  events18. In Borneo, the El Niño Southern Oscillation (ENSO) causes droughts by delaying the beginning 
of the rainy  season19–21, thereby increasing the risk of forest  fires21, accelerating oxidative peat decomposition, 
and, consequently, increasing  CO2  emissions22,23.

To assess the carbon balance of tropical ecosystems under human pressure, it is essential to quantify  CO2 
emissions through land use changes accompanied by deforestation and drainage, and forest and peat fires. 
However, the precise assessment of  CO2 emissions from peatland ecosystems remains difficult because of a lack 
of field  data24,25. Consequently, the Intergovernmental Panel on Climate Change (IPCC) has provided emission 
factors as a guideline for estimating GHG  emissions26. The IPCC emission factors were defined for each of the 
six types of land cover/use categories and nine climate zones, which were divided according to mean annual 
temperature and potential evapotranspiration. The emission factors have previously been used to estimate GHG 
emissions through land use changes or forest and peat  fires24,27. However, some emission factors do not reflect 
the actual field  conditions25,28–30. The integrated estimation of the carbon balance between  CO2 emissions from 
land use change, fires, and oxidative peat decomposition and  CO2 uptake by biomass growth is important for 
understanding carbon cycles in vulnerable tropical ecosystems. However, few studies have simultaneously evalu-
ated both the sources and sinks for  CO2 in  Borneo31,32. This study provides a new method for estimating net 
 CO2 emissions from AFOLU sectors for the whole of Borneo based on the IPCC guideline with scaling factors 
found in recent studies (e.g., Borchard et al.33 and Basuki et al.34 for biomass, Wooster et al.35 for fire emissions, 
and Krisnawati et al.30 for peat fire and decomposition emissions). We aimed to quantify all the sources of  CO2 
emissions associated with land use changes, forest and peat fires, and oxidative peat decomposition using satellite 
data. Accordingly, we (1) mapped annual land use and detected land use changes; (2) estimated  CO2 emissions 
through land use changes; (3) estimated  CO2 emissions from forest and peat fires; (4) estimated  CO2 emissions 
from oxidative peat decomposition; and (5) estimated  CO2 uptake by biomass growth. We created annual land 
use maps by composite processing to supplement areas of cloud cover, generated features for machine learning 
to fully utilize multi-band optical data, and processed the data to distinguish mature plantations from forests. We 
modified the method of  CO2 emission estimation from biomass burning from Shiraishi et al.36 by incorporating 
belowground biomass (BGB), woody debris, and leaf litter for combustion sources, and using various emission 
factors for Borneo.  CO2 emissions from peat fires, oxidative peat decomposition, and  CO2 uptake from biomass 
growth were calculated based on the IPCC guidelines with the latest field data from the literature. The results 
were compared to those of related studies to confirm the validity of our estimates.

Results
Land use classification. Annual land use maps from 2000 to 2016 were created using the random forest 
(RF) classifier. The classification accuracy by RF is shown in Fig. S1. The average accuracy of the land use classi-
fication was 85.2 ± 1.5% (± 1 standard deviation), and that for the forest/non-forest classification was 91.4 ± 1.1% 
(Fig. S1a). The area of no data caused by cloud cover or haze from 2000 to 2016 was 0.44 ± 0.37 Mha  year–1 
(mean ± 1 standard deviation) equivalent to 0.6% of the whole of Borneo. The accuracy of the land use classifica-
tion in 2016 was 82.0%, which is 2.6–7.0% lower than that in other years outside of the 1 standard deviation. 
However, the accuracy of the forest/non-forest classification was 90.5% in 2016, which is within 1 standard 
deviation. These results suggest that, although forest areas could be classified with more than 90% accuracy from 
2000 to 2016, misclassifications occurred in the non-forest categories. Regarding producer’s accuracy (Fig. S1b), 
which indicates the extent of correctly classified supervised data, the classification accuracy was 93.4 ± 0.7% for 
forest, 87.5 ± 0.8% for shrub/grassland, 80.2 ± 2.4% for urban, and 88.2 ± 1.6% for water. Meanwhile, the accu-
racy for plantation was relatively low at 21.1 ± 15.2%. However, the user’s accuracy, which indicates the extent 
of correctly classified data, for plantation was high at 95.7 ± 3.9% (Fig. S1c). These results indicate that areas 
estimated to be plantations were classified with high accuracy. However, many areas that supervised data showed 
as plantations were classified into different land use categories. User’s accuracy for shrub/grass was the lowest at 
78.0 ± 2.1% within the five categories. In 2000 − 2015, producer’s accuracy for plantations sharply decreased from 
58.4% to 6.5%. However, user’s accuracy for shrub/grass decreased from 81.6% to 75.7%, suggesting that many 
plantation areas were misclassified as shrub/grass. Large-scale deforestation occurred in Borneo between 2000 
and  20026. Our results suggested that plantation areas were relatively easily detected immediately after logging. 
However, vegetation growth makes it difficult to separate them from shrub/grassland or forest.

The accuracies of the land use maps, which were obtained by post-processing after classification (Fig. S2), 
are shown in Fig. 1. The averages of the overall accuracy improved to 92.0 ± 1.0% for the land use maps and 
94.5 ± 0.5% for the forest/non-forest maps (Fig. 1a). The averages for producer’s and user’s accuracy were 
93.4 ± 0.7% and 95.6 ± 0.5% for forests, 90.6 ± 1.0% and 88.3 ± 1.6% for shrub/grass, 89.5 ± 6.7% and 86.1 ± 2.6% 
for plantation, 91.4 ± 1.8 and 95.2 ± 1.6% for urban, and 95.4 ± 1.4% and 95.4 ± 1.1% for water, respectively. The 
classification accuracy improved in all categories, especially for plantations.

Land use change. The annual changes in the area of each land use category are shown in Fig. 2. The forest 
area in 2000 was 41.5 Mha, covering approximately 56% of Borneo. However, the area decreased to 37.7 Mha, 
equivalent to 51% of Borneo, in 2016 with a deforestation rate of 0.2 Mha  year−1 (0.6%  year−1). The deforestation 
area from 2000 to 2001 was 1.2 Mha, which was the largest reduction accounting for 30% of the observed defor-
estation area (3.8 Mha) over the assessment period. Accordingly, the area of the other four land use categories 
expanded by factors of 1.05 for shrub/grass, 2.74 for plantation, 1.15 for urban, and 1.14 for water from 2000 and 
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2016. The expansion of water areas was largely derived from the construction of the Bakun and Murum dams in 
the south-eastern part of Sarawak from 2011 to  201410.

CO2 emissions. The  CO2 emissions throughout Borneo from 2001 to 2016 are shown in Fig. 3a.  CO2 emis-
sions were highest in 2001 at 1.77 Pg  CO2  year−1, decreased continuously to 0.26 Pg  CO2  year−1 in 2005, increased 
in 2006, 2009, 2014, and 2015, and was estimated at 0.13 Pg  CO2  year−1 in 2016, which was the lowest emission 
rate during the assessment period. The emissions were strongly affected by land use change in 2001 (1.93 Pg  CO2 
 year−1), 2002 (1.08 Pg  CO2  year−1), 2003 (0.83 Pg  CO2  year−1), and 2004 (0.67 Pg  CO2  year−1), and the emissions 
were 0.54, 0.46, 0.32, 0.29, and 0.55 Pg  year−1 from forest and peat fires in 2002, 2006, 2009, 2014 and 2015, 
respectively. The average  CO2 emissions from oxidative peat decomposition from 2001 to 2016 were 0.19 ± 0.01 
Pg  CO2  year−1 with little interannual variation. The average  CO2 uptake was 0.64 ± 0.04 Pg  CO2  year−1. These 
results indicate that high  CO2 emissions were related to land use change in 2001 and 2002, and fires in 2002, 
2006, 2009, 2014, and 2015.  WWF6 reported a forest loss of 1.3 ×  106 ha  year−1 in Borneo from 2000 to 2002. 
We found that the forest area decreased by 1.15 ×  106 ha in 2001 and increased by 0.38 ×  106 ha in 2002. The 
years of high  CO2 emissions from fires (i.e. 2002, 2006, 2014, and 2015) corresponded with negative Southern 

Figure 1.  Accuracy of land use maps from 2000 to 2016: (a) Overall accuracies for land use and forest/non-
forest classification, (b) producer’s accuracy for land use classification, and (c) user’s accuracy for land use 
classification.

Figure 2.  Interannual variation in the area of each land use category from 2000 to 2016.
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Oscillation Index (SOI) values, and were thus affected by ENSO. Similar to the results of previous studies on 
large fire events and ENSO in Borneo (e.g., Wooster et al.21, Fanin and van der  Werf37), we observed a significant 
negative correlation (R =  − 0.69, p < 0.05) between fire emissions and mean monthly SOI (Fig. 3b). In contrast, 
 CO2 uptake through biomass growth across Borneo has shown a significant increasing trend at an annual rate 
of 1.69%  year−1.

The average and 1 standard deviation of total net  CO2 emissions in Borneo from 2001 to 2016 were 
461.10 ± 436.51 Tg  CO2  year−1 (Table 1). The interannual variations in  CO2 emissions and uptake in the eight 
regions are shown in Figure S3. Regarding the total emissions from 2001 to 2016, the  CO2 emissions exceeded its 
uptake in six regions excluding Brunei and North Kalimantan. More than half of the  CO2 emissions throughout 
Borneo were emitted from Sarawak (135.02 ± 99.01 Tg  CO2  year−1) and Central Kalimantan (132.50 ± 143.43 Tg 
 CO2  year−1), accounting for 29.3% and 28.7% of the total emissions for Borneo, respectively.  CO2 emissions from 
fires in Sarawak were relatively small and stable compared with those in other regions, whereas those from land 
use change were the highest at 211.83 ± 87.70 Tg  CO2  year−1. In Central Kalimantan, the  CO2 emissions from 
land use change were 119.48 ± 83.92 Tg  CO2  year−1, whereas those from forest and peat fires were the highest at 
104.68 ± 105.62 Tg  CO2  year−1, accounting for 48% of the total fire-related emissions in Borneo. Emissions from 
oxidative peat decomposition were the highest at 55.51 ± 1.76 Tg  CO2  year−1 in Central Kalimantan, accounting 
for 30% of the total Bornean emissions. This is because the area of peatland is the largest in this region (3.25 Mha) 
and peat swamp forests have been rapidly  degraded13. The average emissions from the two Malaysian provinces 
and the five Indonesian provinces in Borneo were 4.1% and 34.8% smaller, respectively, than the average  CO2 
emissions from fossil fuel, excluding land use change, for each country from 2001 to 2016 based on the Global 
Carbon Budget  20223. The net  CO2 emissions per area in peatlands were approximately 3 − 15 times higher than 
those of mineral soils in all regions (Table 1). These results indicate that forest (aboveground, belowground, 
debris, and litter) and peat fires in addition to oxidative peat decomposition played major roles in  CO2 emissions.

Discussion
Land use change. The average accuracies from 2000 to 2016 were 92.0 ± 1.0% for land use maps and 
94.5 ± 0.5% for forest/non-forest maps. The deforestation rate of 0.6%  year−1 from 2000 to 2016 was smaller than 
that in previous studies (Table S1) but comparable to that reported by Gaveau et al.10. The estimated forest areas 
were 1.0% smaller in 2000 and 1.7% larger in 2015 compared to those reported by Gaveau et al.10, who used 
manually created maps after automatic land use classification. According to the country reports from 2020 of 
the Global Forest Resources Assessments, domestic deforestation rates for Indonesia and Malaysia from 2000 to 
2016 were 0.31%  year−1  (FAO39) and 0.01%  year−1  (FAO40), respectively. Hansen et al.41 reported a deforestation 
rate of 0.60% throughout Indonesia from 2000 to 2005. Therefore, our estimated deforestation rates for Borneo 
correspond closely to previously reported results. However, the plantation areas in this study were 67.0% and 
69.5% smaller than those reported by Gaveau et al.10 in 2000 and 2015, respectively. The land use maps of Gaveau 
et al.10 included oil palm plantation areas that could not be identified as plantations by visual interpretation using 
Google Earth™. Gaveau et al.10 potentially considered forest areas before development and partially logged areas, 
such as grassland and bare land, as plantation areas, or we were unable to identify plantation areas immediately 
after planting due to the resolution of Google Earth™ data. The supervised data for forest and shrub/grassland in 
this study were frequently scattered in plantation areas in Gaveau et al.10. The accuracy of the forest/non-forest 

Figure 3.  Interannual variation in (a)  CO2 emission and uptake (Pg  CO2  year−1) and (b) burned area  (106 ha) in 
Borneo from 2001 to 2016. In (a), total net  CO2 emissions (ET) are in red,  CO2 emissions from land use change 
(ELUC) are in green,  CO2 emissions from forest and peat fires (EFire) are in blue,  CO2 emissions from oxidative 
peat decomposition (EPD) are in orange, and  CO2 uptake by biomass growth (Sink) is in light blue. ET was 
calculated by subtracting Sink from the sum of ELUC, EFire, and EPD. In (b), the Southern Oscillation Index (SOI)38 
is shown in red bars along with burned areas. The total burned area (BA: blue) and burned peatland area (BAP: 
green) were detected from the NCM fire map.
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maps of each study in Table S1 was over 90%. However, the deforestation rates were different. This may have been 
predominantly influenced by the training data for land use mapping and the validation data for evaluation. Fur-
ther collection of land cover/use information for supervised data is needed to improve the quality of the maps.

CO2 emissions from land use change. The  CO2 emissions from land use changes in forest areas were 
compared with data from the Indonesian National Carbon Accounting System  (INCAS24,32) (Table  S2). The 
average annual  CO2 emissions (Eavg) were greater than those in the INCAS in every region. The  CO2 emissions 
(Emin) in each region excluding North Kalimantan were greater than those in the INCAS. This finding suggests 
that the INCAS estimates were smaller than the minimum  CO2 emissions estimated in all candidate coefficients. 
Furthermore, the areas converted from forest to non-forest in this study were larger in all provinces than those 
in the INCAS (Fig. S4). The area of land use change was larger in this study than in the INCAS by factors of 1.2 
in North Kalimantan to 4.1 in South Kalimantan. However, the deforestation rate in this study was the lowest 
among the previous studies (Table S1). The deforestation area from 2000 to 2015 reported by Gaveau et al.10, 
which was the second lowest deforestation rate among the compared studies, was estimated at 4.7 ×  106 ha, which 
was 26.4% larger than that of this study. The INCAS reported that the total forest area increased by 9.7% from 
2001 to 2012 in five provinces of Indonesian  Borneo32. One explanation for the difference in  CO2 emissions from 
land use change between this study and the INCAS could be the difference in the estimation of the forest area.

Table 1.  Average and 1 standard deviation of annual  CO2 emission and uptake with the maximum (Max) and 
minimum (Min) amounts (Tg  CO2  year−1) for each region from 2001 to 2016. The total net  CO2 emissions 
(Total) were calculated by subtracting the  CO2 uptake from biomass growth (Sink) from the sum of the 
emissions through land use change (LUC), forest and peat fires (Fire), and oxidative peat decomposition 
(OPD). The total net  CO2 emissions per mineral soil and peatland area (Mg  CO2  year−1  ha−1) are shown for the 
total  CO2 emission/uptake. The values in parentheses represent net  CO2 uptake.

Region 
[Peat area/
Total area 
(Mha)]

Total LUC Fire OPD Sink

CO2 emissions

Max [Year] Mineral soil

CO2 emissions

Max [Year]

CO2 emissions

Max 
[Year] CO2 

emissions

Max 
[Year]

CO2 sink

Max [Year]

Min [Year] Peatland Min [Year] Min [Year] Min [Year] Min [Year]

Borneo
461.10 ± 436.51

1772.30 
[2001] 1.46 ± 2.96

695.10 ± 352.25

1932.74 
[2001]

216.88 ± 168.14

553.23 
[2015]

186.97 ± 7.94

202.35 
[2016]

(638.24 ± 44.51)

(696.31) 
[2016]

[9.78/73.71] 125.71 
[2010] 12.93 ± 5.69 444.46 

[2014]
39.35 
[2010]

174.56 
[2001]

(537.97) 
[2001]

Sabah
54.60 ± 72.19

284.99 
[2001] 2.98 ± 5.21

102.59 ± 63.57

313.92 
[2001]

6.08 ± 3.88

12.75 
[2002]

15.14 ± 0.37

15.69 
[2010]

(69.22 ± 9.37)

(80.20) 
[2014]

[0.68/7.40] (6.66) 
[2014] 10.27 ± 2.57 49.96 

[2010] 0.99 [2011] 14.3 [2002] (49.07) 
[2001]

Sarawak
135.02 ± 99.01

433.08 
[2001] 4.29 ± 4.28

211.83 ± 87.70

481.86 
[2001]

18.69 ± 7.87

39.22 
[2009]

24.66 ± 2.87

27.89 
[2016]

(120.16 ± 14.46)

(142.56) 
[2015]

[1.23/12.38] (1.79) 
[2015] 15.42 ± 3.62 100.02 

[2015] 6.71 [2003] 19.17 
[2001]

(92.97) 
[2001]

Brunei
(1.25 ± 2.29)

5.93 [2001] (1.26 ± 1.89)
2.87 ± 1.98

9.31 [2001]
0.22 ± 0.14

0.51 [2003]
0.89 ± 0.03

0.92 [2011]
(5.24 ± 0.38)

(5.83) 
[2015]

[0.08/0.58] (3.45) 
[2016] (0.14 ± 2.69) 1.19 [2016] 0.01 [2006] 0.83 [2001] (4.62) 

[2001]

North Kali-
mantan

(13.20 ± 20.9)

61.26 
[2001] (1.51 ± 1.45)

33.80 ± 20.37

106.89 
[2001]

2.42 ± 1.69
5.58 [2004]

10.34 ± 0.45

11.16 
[2016]

(59.76 ± 0.86)

(60.98) 
[2015]

[0.62/7.01] (30.54) 
[2006] 4.70 ± 3.04 18.73 

[2006] 0.47 [2011] 9.72 [2002] (57.25) 
[2001]

East Kalim-
antan

43.85 ± 50.68

197.92 
[2001] 0.81 ± 1.98

99.54 ± 38.98

236.85 
[2001]

20.36 ± 18.42

75.83 
[2015]

24.14 ± 0.26

24.72 
[2015]

(100.18 ± 8.49)

(111.63) 
[2016]

[1.08/12.57] (1.48) 
[2005] 10.89 ± 4.34 63.51 

[2005] 2.98 [2008] 23.79 
[2005]

(81.89) 
[2001]

West Kalim-
antan

67.90 ± 68.94

271.26 
[2001] 0.72 ± 2.38

99.79 ± 58.54

301.95 
[2001]

40.68 ±  29.48

91.79 
[2006]

36.71 ± 2.87

41.87 
[2016]

(109.28 ± 5.29)

(115.94) 
[2015]

[2.12/14.67] 1.60 [2007] 10.92 ± 4.86 64.05 
[2006] 4.47 [2010] 33.31 

[2001]
(97.65) 
[2001]

Central 
Kalimantan

132.50 ± 143.43

432.39 
[2001] 0.99 ± 3.58

119.48 ± 83.92

417.53 
[2001]

104.68 ± 105.62

330.43 
[2002]

55.51 ± 1.76

60.69 
[2016]

(147.17 ± 8.19)

(157.38) 
[2013]

[3.25/15.36] (14.93) 
[2008] 14.96 ± 11.55 63.26 

[2014] 0.79 [2010] 53.33 
[2002]

(130.29) 
[2001]

South Kali-
mantan

41.69 ± 32.81

113.49 
[2002] 1.89 ± 3.66

25.21 ± 18.99

70.57 
[2002]

24.13 ± 18.6

66.74 
[2015]

19.58 ± 0.15

19.78 
[2015]

(27.24 ± 2.36)

(30.89) 
[2016]

[0.72/3.75] 0.52 [2016] 19.65 ± 9.26 9.59 [2008] 0.47 [2010] 19.12 
[2001]

(23.26) 
[2002]
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CO2 emissions from forest and peat fires. The  CO2 emissions from fires in this study were compared 
with the Global Fire Emissions Database Version 4.1 with small fires (GFED4.1s42) (Table S3). The average annual 
 CO2 emissions (Eavg) in Borneo from 2001 to 2016 were 217.27 ± 166.85 Tg  CO2  year−1 in this study, which was 
18.4% larger than those in the GFED4.1 s. The  CO2 emissions (Eavg) in each region excluding South Kalimantan 
were larger than those in the GFED4.1 s. Although the  CO2 emissions (Emin) in three regions (Sabah, Sarawak, 
and North Kalimantan), were relatively low compared with those in the other regions, they were larger than 
those in the GFED4.1 s. GFED4.1 s emissions in the other six regions including the whole of Borneo were within 
the Emax and Emin range. Fire-related  CO2 emissions in Borneo in our previous  study36, which used similar 
methods to this study with only aboveground biomass (AGB) for burned biomass, were 182.16 ± 140.69 Tg  CO2 
 year−1.  CO2 emissions estimated by adding BGB, WDL, and peat fires were 16.2% greater than those reported by 
Shiraishi et al.36, thus differing greatly from the emission data in the GFED4.1 s. Carbon monoxide (CO) is often 
used to assess fire emissions because its lifespan in the atmosphere is weeks to  months43,44. Saito et al.44 evaluated 
the atmospheric CO concentrations obtained by simulating atmospheric CO variability using an atmospheric 
tracer transport model and fire CO emissions from GFED4.1 s in comparison with satellite observation data 
from the Measurements of Pollution in the Troposphere (MOPITT). Consequently, the GFED4.1 s emissions 
were 17 − 31% lower than those of the satellite data. Notably,  CO2 emissions, which were estimated using the 
same method, could also be approximately 30% lower. Wooster et al.35 reported  CO2 emissions of 692 ± 213 Tg 
released from large fires in Indonesian Borneo during September to October 2015, predominantly due to drying 
caused by an El Niño event. These emissions were higher than the estimated 530.73 Tg  CO2  year−1 for 2015 in 
this study. Wooster et al.35 applied the scaling parameters obtained based on the 2015 El Niño event, which may 
have contributed to the difference in our estimates. Although MOD14A1 for fire distribution and frequency 
provides daily fire areas from 2001, the fire detection rate was 82%45. Smaller areas of fire can be overlooked, 
especially in areas of frequent cloud cover, such as Southeast Asia.

CO2 emissions from peat fire were compared with data from the INCAS (Table S4). The total annual  CO2 
emissions (Eavg) in this study for Indonesian Borneo from 2001 to 2012 were 124.37 ± 104.73 Tg  CO2  year−1, 
approximately three times larger than those in the INCAS, which was 33.67 ± 31.07 Tg  CO2  year−1. The  CO2 
emissions (Eavg) were greater than those in the INCAS in all regions (by factors of 3.1 for Central Kaliman-
tan to 40.5 for North Kalimantan). The  CO2 emissions (Emin) in every region were greater than those in the 
INCAS. The peat area, which is the basis for evaluation, differed between this study and the INCAS (Table S5). 
The total peat area in this  study46 was approximately 11 times larger than that for the INCAS. One reason for 
the difference in fire emissions could be related to differences in fire frequency and input parameters. Peat fire 
emissions are generally higher for the first fire than the second fire in the same area because of a decrease in the 
burn  depth25. Although we calculated the number of fires since 2001, the INCAS considers fires that occurred 
prior to 2001. In the INCAS estimates, the peat area for the first fire was 12 ha, while the peat area for the second 
fire was 45 301 ha in Central Kalimantan. Therefore, the emissions in this study were calculated from a greater 
burned depth than those by the INCAS. Differences in peat area have also contributed to differences in emission 
estimates. The peat distribution map of Gumbricht et al.46 potentially included rice paddies and other fields in 
the peat areas, which were estimated to be approximately three times larger than those of Page et al.12 and 41.6% 
larger than that estimated by Anda et al.47. Therefore, compared to the INCAS, more fires may have been assessed 
as peat fires in estimating emissions from peat fires. The peat area also had a significant impact on the estimation 
of  CO2 emissions from oxidative peat decomposition. Using accurate peat distribution maps and determining 
input parameters that account for fire intensity is important to improve the accuracy of  CO2 emission estimation.

CO2 emissions from oxidative peat decomposition. The  CO2 emissions from oxidative peat decom-
position were compared with those in the INCAS (Table S6). The total annual  CO2 emissions (Eavg) in Indone-
sian Borneo from 2001 to 2012 were 143.87 ± 2.82 Tg  CO2  year−1, 31.4% larger than those in the INCAS. Eavgs 
were 0.4% larger for Central Kalimantan and 4.4% smaller for West Kalimantan than those in the INCAS. Eavgs 
in North Kalimantan, East Kalimantan, and South Kalimantan were 2.7 to 19.3 times higher than those in the 
INCAS, and each value in the INCAS was lower than the Emins in the three regions.

The emission factors also affect the difference in estimated  CO2 emissions between this study and the INCAS. 
We used emission factors based on the IPCC guidelines, whereas the INCAS uses different emission factors 
depending on whether drainage occurred within the last five years or  more48. Based on this limitation, future 
studies could benefit from determining the drainage area distribution and timing of drainage, and evaluating 
temporal changes in emission factors.

CO2 sink. The  CO2 sink for forest areas was compared with data from the INCAS (Table S7). The total annual 
 CO2 sink (Eavg) in Indonesian Borneo from 2001 to 2012 was 283.13 ± 18.42 Tg  CO2  year−1, over 100 times 
larger than that in the INCAS, which was 2.68 ± 1.18 Tg  CO2  year−1. The  CO2 sinks in the forest, shrub/grass, and 
plantation land use categories were 419.06 ± 35.10, 202.73 ± 9.13, and 17.61 ± 3.42 Tg  CO2  year−1, respectively, 
suggesting that biomass growth in the vast forests of Borneo contributed to  CO2 uptake. The  CO2 sinks (Emin) 
in every region were greater than those in the INCAS. Furthermore, the  CO2 sink throughout Indonesian Bor-
neo was 438.60 ± 23.04 Tg  CO2  year−1, which is 1.5 times larger than the uptake from forest areas. The main 
reason for the difference in estimates is biomass growth. Although we determined biomass growth for each land 
use category based on the latest studies, the INCAS assumes no net growth in primary forests, that is, growth is 
equivalent to turnover and  decomposition24, which may underestimate  CO2 sink effects. The vast area of intact 
forest in Borneo is considered to be an important carbon sink. For example, Pan et al.49 estimated an average 
carbon storage rate of 0.90 Mg C  ha−1  year−1 in tropical intact forests in Asia, and the  IPCC26 estimated an aver-
age carbon storage rate of 3.4 t dry matter  ha−1  year−1 in tropical rainforests over 20 years in Asia. The  CO2 sink 
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throughout Malaysian Borneo in 2014 was estimated at 213.25 Tg  CO2  year−1, which is equivalent to 80% of the 
estimate for the whole of Malaysia (267.17 Tg  CO2  year−1)50. The forest areas of Malaysian Borneo were 1.5 times 
larger than those of Peninsular  Malaysia50, and the  CO2 sink from non-forest areas (shrub/grass and plantation) 
across Malaysian Borneo accounted for 34% of the  CO2 sink from forests in the region. Along with vast forest 
areas, regrowth from deforested and disturbed areas and growth of young plants through plantation manage-
ment are considered to have contributed to the expanding  CO2 sink.

Directions for further research. The supervised data for land use classification and scaling factors for 
emission estimation considerably affected the accuracy of our results. The forest area in this study effectively 
captured the characteristics of the supervised data, with a classification accuracy of over 94%, consistent with the 
results of Gaveau et al.10. However, the plantation area needs further evaluation. Future studies should further 
evaluate features that contribute to the classification accuracy of plantations, such as oil palm and pulpwood, and 
collect information on plantation areas that are difficult to evaluate visual interpretation of Google Earth™ maps 
alone. Although the method for estimating  CO2 emissions in this study made extensive use of scaling factors 
based on values from the literature and IPCC guidelines, further investigations are needed. BGB, woody debris, 
and leaf litter were calculated using conversion factors from AGB. However, if AGB decreases due to deforesta-
tion, woody debris and leaf litter would  increase51. Biomass growth was determined in each land use category, 
but is expected to vary by site, tree species, and fire prevalence. Although we determined biomass growth from 
values in the literature for several sites of Borneo, the values do not cover all of these conditions. More accurate 
and frequent biomass estimation is needed (e.g., Hayashi et al.52). Although scaling factors of BE and EF were 
commonly used for AGB, BGB, and WDL to estimate the biomass burning emissions, the values may differ in 
the burned part. For example, the BE of AGB and WDL is expected to be greater than that of BGB. Accordingly, 
it could be useful to develop a fire detection algorithm incorporating MODIS, which comprises long-term daily 
observations, and newer satellite data (e.g. Roy et al.53) to improve the fire detection rate. Furthermore, fire emis-
sions vary with fire intensity. Determining the scaling factors for these environments and conditions and incor-
porating them into the model are important considerations for future work. The integrated use of various types 
of datasets, such as Global Ecosystem Dynamics Investigation (GEDI) data, which provides the canopy height 
and vertical structure of forests, P-band SAR data, which is planned to be launched in 2024 by the European 
Space Agency, quality improvement of supervised data and field observation data, and continuous development 
of estimation models are essential for improving estimation accuracy.

Conclusions
In Southeast Asia including Borneo, land use changes, particularly the conversion of peat swamp forests to 
plantations, may have an important impact on climate change. This study presents a method for estimating 
 CO2 emissions from land use changes, fires, and oxidative peat decomposition in Borneo from 2001 to 2016 
and compared and evaluated the estimated results with those in previous studies. The model was developed 
with  CO2 uptake from biomass growth and  CO2 emission estimation in non-forested areas, which had not been 
evaluated in previous studies. The  CO2 sink from biomass growth increased significantly in all regions includ-
ing the whole of Borneo. However, the net  CO2 balance showed that emissions exceeded uptake. Furthermore, 
the estimated  CO2 emissions from land use change, fires, and oxidative peat decomposition tended to be larger 
than those in previous studies. These results suggest that higher levels of  CO2 have been emitted than previously 
estimated. Our method for estimating  CO2 emissions can contribute to the establishment and improvement of 
forest management systems for countries aiming to expand their forest areas and enhance forest management.

Satellite remote sensing is an important tool for estimating GHG budgets in a rapidly fluctuating environ-
ment of tropical rainforests, where regular field measurements are difficult. However, there is room for research 
to improve estimation accuracy. Flux data obtained from field surveys in a variety of environments, supervised 
data for land use classification in which discrepancies were with previous studies, and improvements in peat 
distribution maps and burned area detection over time are essential for progress in this field. Furthermore, the 
application of new satellite observation datasets and existing resources to generate biomass maps as a basis for 
 CO2 uptake and emission is an important future task.

Materials and methods
Study area. Borneo is the third largest island (74.3 Mha) worldwide and is shared by Indonesia, Malaysia, 
and Brunei Darussalam (Fig. 4). The island is located between 8°N and 5°S across the equator and between 108°E 
and 120°E in a tropical rainforest climate (according to the Köppen climate classification). In this region, the wet 
northeast monsoon prevails from November to March or April, while the prevailing wind changes to the dry 
southwest monsoon in May–June and September–October9. The ENSO causes delayed onset of the rainy season, 
reduced precipitation, and prolonged dryness in the  region19–21. Although Borneo has the largest forest area in 
Southeast Asia and is rich in biodiversity, it is also a major hotspot for deforestation, which has predominantly 
been driven by fires and land conversion into  plantations54. There are 9.8 Mha of peatlands, accounting for 33% 
of those in Southeast  Asia46. By 2010, 13% of peatlands had already been converted into industrial plantations, 
such as for oil palm and  pulpwood55. Inland forests with abundant biomass and peat swamp forests with high 
levels of peat carbon have become the main sources of  CO2 emissions from land use change through agricultural 
 development10, burning of wood  materials21, and drying peat from  drainage22,23.

Data. Remote sensing data. The National Aeronautics and Space Administration (NASA) Moderate Reso-
lution Imaging Spectroradiometer (MODIS) MCD43A4 Version 6 product was used to create annual land use 
maps from 2000 to 2016. MCD43A4 has seven-band datasets based on the Nadir Bidirectional Reflectance 
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Distribution Function (BRDF) Adjusted Reflectance (NBAR) with a spatial resolution of 4.18 ×  10−3 degrees 
(approximately 463 m) and daily observation frequency. MCD43A4 also has data quality information for all the 
grids in each band.

Annual maps of land use, fire, and AGB and a peat distribution map were used to estimate  CO2 emissions 
from forest and peat fires for 2001 to 2016. Land use maps were created from MCD43A4. Fire maps were created 
using the MODIS Thermal Anomalies and Fire (MOD14A1) Version 6 product to estimate the annually burned 
areas and number of fires. MOD14A1 is a global fire dataset with a 1-km spatial resolution and daily observation 
 frequency56,57. Each fire pixel is assigned as having low (0–30%), nominal (30–80%), or high (80–100%) confi-
dence  levels58. Two types of fire maps were created using nominal confidence maps, that is, NCM with nominal 
and high confidence levels, 30% to 100% reliability, and low confidence maps (LCM) with low, nominal, and 
high confidence levels of 0% to 100% reliability. We counted the daily number of fire pixels on the fire maps for 
each year. An ongoing fire located in the same grid position was considered to be a single  fire36,59.

For the AGB maps, GEOCARBON and Globbiomass were used. GEOCARBON is a global AGB map with 
a 1-km spatial resolution for  201060. Globbiomass is also a global AGB map with a 25-m spatial resolution for 
 200061. The two AGB products were updated annually by calculating the biomass change from land use changes, 
fires, and biomass growth. The peat distribution map Tropical and Subtropical Wetlands Distribution version 
 246 was used to estimate the emissions from 2001 to 2016 from peat fires and oxidative peat decomposition.

Supervised data for land use classification. Supervised data (training and validation data) from 2000 and 2016 
were created by visual interpretation using Google Earth™ for land use classification (Figure S5). The supervised 

Figure 4.  Map of Borneo. The eight regions assessed were Sabah and Sarawak in Malaysia; Brunei Darussalam; 
and Northern Kalimantan, East Kalimantan, West Kalimantan, Central Kalimantan, and South Kalimantan in 
Indonesia. The area of peat is shown in red (Gumbricht et al.46). Maps were created with ArcMap version 10.5 
(https:// www. arcgis. com/).

https://www.arcgis.com/
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data included point data for the five land use categories, namely forest, shrub/grass, plantation, urban, and water. 
The supervised datasets included 6668, 6669, and 5839 datapoints in 2000, 2016, and each year from 2001 to 
2015, respectively (Table S8). Supervised data were created in the same position (grid) on the map in 2000 and 
2016. Assuming that land use did not change if the land use categories at the same position were unchanged in 
2000 and 2016, grid data with the same land use categories in the two years were only used for the land use clas-
sification from 2001 to 2015. Grid data with different categories between 2000 and 2016 were used to create the 
land use maps for 2000 and 2016, respectively.

Land use classification and land use change detection. Features for machine learning. The follow-
ing 228 features were used as input data for machine learning:

1. Seven band reflectance values of MCD43A4, that is, band1 through band7.
2. 13 indices calculated from the seven bands of MCD43A4 (Table S9).
3. Time series data: Time series values obtained from the daily MCD43A4 data over a 1-year period (Table S10). 

Eight types of time series data were calculated for each of the seven bands.

For each of the 76 features (i.e. 7 bands + 13 indices + 8 time series data × 7 bands), the average and 1 standard 
deviation in a 9 × 9 window were calculated to obtain the surrounding information for the target grid.

Calculation of land use change areas. Land use change areas for each land use category were calculated from the 
annual land use maps from 2000 to 2016 created using the RF classifier (Fig. S2). RF is one of the most accurate 
classifiers for land use classification (e.g., Shiraishi et al.62).

Daily MCD43A4 data were composited to create an annual dataset, based on the latest land cover informa-
tion for each year (December 31 observation). Data for low-quality grids (affected by cloud and haze effects) 
were replaced with the latest data without quality problems for the year. However, if high-quality data were not 
available for the year, these grids were excluded from the classification process. After the classification process, 
the land use category for empty grids was determined based on the surrounding grids.

The land use classification was performed 5 times separately for each grid using the RF approach with super-
vised data divided into five equal-sized groups. The final category was then determined based on the most 
frequent category in the five-fold classification. If the frequency was the same, the more frequent land use 
category in the supervised data was selected. Once a grid had been classified as a plantation, the grid did not 
change thereafter into any other category. Given that it is almost impossible for urban and water regions to be 
converted into forest in one year, the classification results were changed to shrub/grass instead of forests. Land 
use change areas were calculated for each land use category comparing two consecutive land use maps per year.

Estimation of  CO2 emissions. The methodology for  CO2 emission estimation from land use change, for-
est and peat fires, and oxidative peat decomposition is shown in Fig. S6. The AGB map products GEOCARBON 
and Globbiomass were created based on observations for 2000 and 2010, respectively. For this study, AGB in 
2000 was used to estimate annual  CO2 emissions from 2001 to 2016. Therefore, the AGB map from 2000 for 
Globbiomass was created by subtracting the amount of AGB growth from 2000 to 2010 from Globbiomass 2010. 
The AGB growth for the 10 years was estimated using the annual AGB growth (Table S11) under the assumption 
that the error of the AGB maps was smaller than the AGB growth over 10 years. The AGB maps were updated 
annually because of the annual increase in growth and decrease in land use change and fires. We used two fire 
maps (NCM and LCM) and two AGB maps (GEOCARBON and Globbiomass). Since biomass burning causes 
a decrease in AGB, fire maps of two types with different burning distributions were generated for the different 
AGB maps with different distributions. Therefore, four different estimates of  CO2 emissions were obtained for 
the two fire and two AGB maps and the final emissions were averaged.

The total net  CO2 emissions (ET: g  CO2  year−1) were calculated by subtracting  CO2 uptake (Sink: g  CO2  year−1) 
by biomass growth from the sum of emissions from land use change (ELUC: g  CO2  year−1), biomass burning (EBB: g 
 CO2  year−1), peat burning (EPB: g  CO2  year−1), and oxidative peat decomposition (EPD: g  CO2  year−1), as in Eq. (1).

where p is the grid position for the calculation target.

Annual AGB growth (t dry matter  ha−1  year−1) and AGB change associated with land use change are defined 
in Table S12. BGB (t dry matter  ha−1) and the sum of woody debris and leaf litter (WDL: t dry matter  ha−1) were 
calculated from AGB using conversion factors (%) (Table S13). The first term of the right side in Eq. (2) refers 
to the carbon loss from AGB by land use change. Emissions from the carbon loss were calculated by multiplying 
the difference in AGB (DAGB: t dry matter  ha−1) before (AGBpre) and after land use change (AGBcur), as in Eq. (3), 
using the biomass carbon content for living trees (CCL: %). The second term refers to carbon loss from BGB, 
calculated as the product of DAGB, conversion factors (RBGB: %) (Table S13), and CCL. The third term refers to 
carbon loss from WDL, calculated as the product of DAGB, conversion factors (RWDL: %) (Table S13), and carbon 

(1)ET(p) = ELUC(p) + EBB(p) + EPB(p) + E
PD(p)

− Sink(p),

(2)ELUC(p) = CA(p)

(

DAGB(p) · CCL + DAGB(p) · RBGB · CCL + DAGB(p) · RWDL · CCD

)

CCtoCO2,

(3)DAGB(p) = AGBpre(p) − AGBcur(p).
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content of dead wood (CCD: %). CCL and CCD were set at 45.60%28 and 47.16%29, respectively. Finally, ELUC was 
calculated by multiplying the land use change area (CA: ha) with the sum of the first to third terms and a conver-
sion factor from carbon to  CO2 (CCtoCO2: 44/12).

EBB was calculated by multiplying the burned area (BA:  m2) with the total biomass density (BD: kg  m−2), burn-
ing efficiency (BE), and an emission factor (EF: g  CO2  kg−1) (Eq. (4)). However, this equation does not consider 
multiple fires that occurred in one year. Therefore, we evaluated the total AGB density (BDAGB) considering 
multiple fires over a year using Eq. (5) to determine the BDAGB in Eq. (4)36.

where I is the number of fire occurrences in the target year, and c represents the land use category in the fire area. 
The first term of the right side in Eq. (4) refers to  CO2 emissions from AGB burning, which was calculated by 
multiplying BDAGB with BE and EF. BE and EF were defined for each land use category (Table S14). The second 
and third terms represent  CO2 emissions from BGB and WDL burning, respectively. Finally, EBB was calculated 
by multiplying BA with the sum of the first to third terms.

EPB was calculated by multiplying BA with burned peat depth (BurnD: m), decreasing rate (DR: 0 to 1) of 
BurnD, peat bulk density (BulkD: g  m−3), BE, and EF (Eq. (6)).

BurnD was determined for the first fire (Table S15). However, BurnD decreases with repeated  fires25. There-
fore, DR was determined as the ratio of the burned  depths25 (Table S16). BulkD was determined for each land 
use category (Table S17).

EPD was calculated by multiplying the peatland area (PA: ha) with EF (Table S18) defined for each land use 
category based on annual land use maps and the peat map (Eq. (7)).

CO2 emissions depend greatly on the drainage of peat. Three non-forest categories (shrub/grass, plantation, 
and urban) and forests that changed to non-forest at least once on peat areas from 2000 to 2016 were regarded 
as drained peat areas.

CO2 uptake by biomass growth (Sink) was calculated by multiplying the biomass growth in each land use 
category (Table S11) with its area.

Evaluation. Five-fold cross validation was applied to evaluate the overall, user’s, and producer’s accura-
cies of the RF-based land use classification, including the five categories forest, shrub/grass, plantation, urban, 
and water, and forest/non-forest classification, including the four categories shrub/grass, plantation, urban, and 
water. Plantation areas were carried over and changes in the classified categories from forests to grass/shrub 
areas were conducted in post-processing after classification (Fig. S2). Therefore, apart from the classification 
accuracy, the final land use maps were compared to the supervised data to determine their accuracy.

INCAS provides the annual GHG emissions of forest and peat areas in Indonesia from 2001 to  201232. The 
Full Carbon Accounting  Model63 has been used to estimate GHG emissions. Although the scaling factors for 
estimating GHG emissions were based on the IPCC  guidelines26,64,65, some were collected from various agen-
cies in Indonesia. The forests have been broadly divided into dry forests and wetland forests, which are further 
divided into primary and secondary forests. Meanwhile, non-forest areas were not separated into agricultural 
lands or urban areas. Biomass growth was not considered, and all the deforested areas were assumed to be con-
verted into agricultural land. The  CO2 emissions data from our study were compared with those for INCAS to 
crosscheck the five provinces in Indonesian Borneo.  CO2 emissions from forest and peat fires over Borneo were 
compared to GFED4.1s42.

We used various field data from previous studies to determine the scaling factors. To evaluate the uncertainty 
resulting from input parameters and the difference in estimated  CO2 emissions between our results and those 
from previous studies, three types of  CO2 emissions were calculated, namely (1)  CO2 emissions (Eavg) estimated 
using the input parameters explained above, and (2) Emax and (3) Emin estimated using the maximum and 
minimum values, respectively, of each candidate input parameter.

Data availability
The datasets used and analysed in the current study are available from the corresponding author on reasonable 
request.
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