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The Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6) forecasts a 
sea level rise (SLR) of up to 2 m by 2100, which poses significant risks to regional geomorphology. 
As a country with a rapidly developing economy and substantial population, Bangladesh confronts 
unique challenges due to its extensive floodplains and 720 km-long Bay of Bengal coastline. This study 
uses nighttime light data to investigate the demographic repercussions and potential disruptions 
to economic clusters arising from land inundation attributable to SLR in the Bay of Bengal. By using 
geographical information system (GIS)-based bathtub modeling, this research scrutinizes potential 
risk zones under three selected shared socioeconomic pathway (SSP) scenarios. The analysis 
anticipates that between 0.8 and 2.8 thousand km2 of land may be inundated according to the present 
elevation profile, affecting 0.5–2.8 million people in Bangladesh by 2150. Moreover, artificial neural 
network (ANN)-based cellular automata modeling is used to determine economic clusters at risk from 
SLR impacts. These findings emphasize the urgency for land planners to incorporate modeling and 
sea inundation projections to tackle the inherent uncertainty in SLR estimations and devise effective 
coastal flooding mitigation strategies. This study provides valuable insights for policy development 
and long-term planning in coastal regions, especially for areas with a limited availability of relevant 
data.

Sea level rise (SLR) is the change in the height of the ocean surface in response to climatic changes. Principally, 
the mean sea level rises by two mechanisms: first, melting ice sheets and glaciers, which create runoff that enters 
the ocean. Second, because warm water takes up more space than cold water, the volume of water in the ocean 
increases1,2. The IPCC has outlined a variety of natural and anthropogenic perspectives to describe the trends in 
global mean sea level (GMSL). In 2021, the IPCC published its 6th assessment report (AR6), which presented 
an estimation and likely fluctuations of mean sea level at local and global magnitudes. The IPCC approximates 
the GMSL rise and its impact by using semiempirical predictions based on a few scenarios highlighted in their 
IPCC assessment reports2–5. In AR6, the IPCC mentions 5 SSPs (shared socioeconomic pathways) by evaluating 
how demographic changes, economic growth, and technological advancement may affect greenhouse gas emis-
sions and climate change in various socioeconomic situations. For instance, SSP1–1.9 is viewed as the lowest 
emissions scenario in which the global mean temperature is limited to 1–1.8 °C by 2100 with net zero carbon 
emissions, rigorous climatic policy, and sustainable development. In contrast, SSP5–8.5 is considered the high 
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emission scenario, with weaker climatic regulations and a predicted mean temperature rise of 3.3–5.7 °C by 2100 
compared to preindustrial levels5–7.

SLR has now emerged as a significant cause for concern, as the mean sea level continues to rise. The IPCC 
predicted that the GMSL would rise to 0.52–0.98 m in the 5th Assessment Report3; however, this prediction has 
been increased to 2 m by 2100, as published in AR62,5. Furthermore, Wang et al.8 measured the GMSL rise via 
satellite instruments (e.g., 0.053 ± 0.026 mm year−2 from the Goddard Space Flight Center, National Aeronautics 
and Space Administration (NASA)); the results correspond to the SSP2–4.5 and SSP5–8.5 projections. Moreover, 
on the regional scale, Wang et al.8 measured several tide-gauge records, and their weighted-average statistics 
(0.063 ± 0.120 mm year−2) also validate the SSP2–4.5 and SSP5–8.5 projections. By analyzing future SLR in the 
China Sea, Qu et al.9 projected that the SLR would be 48–61 cm under SSP2–4.5 and 84–99 cm under the high-
end SSP5–8.5 scenario.

The Bay of Bengal (BOB), the northwestern arm of the Indian Ocean, is a partially enclosed basin that receives 
significant monsoon winds and frequent reversing circulation. It has a complex tropical coastal ecosystem, 
extensive river deposition in the bay’s northern part, and copious wetlands, marshes, and mangroves associated 
with its land areas10–12. The bay incorporates the world’s largest mangrove forest (Sundarbans) and constitutes 
one of the most significant blue economic zones for its inhabitants. However, the enormous rivers of the Indian 
subcontinent contribute significantly to the bay’s water properties and stratification by releasing vast volumes 
of fresh water in the northern portion13. Therefore, at higher altitudes, the BOB exhibits greater sea level varia-
tion, whereas the mid altitude of the BOB and the northern Arabian Sea demonstrate relatively low sea surface 
height variability10,14.

Sea level changes are also influenced by the current decline in glaciers and shifts in land water storage, 
together with variations in the gravitational pull of the Earth and lateral land movement. For instance, recent 
studies have demonstrated the effect of excessive groundwater dependencies leading to the threat of subsidence 
in low-lying deltaic plains15,16. In Bangladesh, subsidence can be divided into two significant causalities17. One is 
associated with active tectonic forces and sediment loads due to Himalayan upwelling, and the other is attributed 
to the dryness and flattening of the Proto-Bengal Fan shale and mud18. Furthermore, the rate of sedimentation 
in Ganges–Brahmaputra–Meghna has significantly decreased by 10 MT/year, further enhancing the potential 
subsidence of the corresponding riverbanks. Consequently, a 0.6–5.5 mm/year subsidence has been observed in 
the Surma River, while a 1–2 mm/year subsidence has been estimated in the Ganges deltaic at Calcutta, Khulna, 
and the Sundarbans17.

The prediction of coastal mean sea level and extreme sea levels informs coastal impact and hazard identifica-
tion, synchronization initiatives, and protracted decision-making. It also illustrates how SLR will affect people’s 
adaptability and the origins and hotspots of potential migration. However, in comparison to in situ observations, 
recent developments in satellite altimetry enable very accurate estimates of sea surface height with excellent 
spatial and temporal precision. Surface circulation and mesoscale phenomena such as fronts, eddies, and vertical 
motions have been created using satellite altimetry-derived sea surface height data. Moreover, to project SLR on a 
local or regional scale, the IPCC introduced inundation scenarios to identify significant changes correlating with 
coastal elevations. However, several methodologies have also been established to assess future projections. In the 
mid-1980s, to detect climate change near the coast of the US, “The Sea Level Affecting Marshes Model” (SLAMM) 
was developed19. Then, in the 1990s, Costanza et al.20 demonstrated the “Ecological Landscape Spatial Simulation 
Model” to predict climatic changes by observing environmental variables20,21. A few software-based models, e.g., 
the Dynamic Interactive Vulnerability Assessment (DIVA) and SimCLIM, have also been developed to predict 
SLR at the local and regional levels22,23. At present, numerous researchers utilize geographic information systems 
(GIS) and geospatial modeling tools to examine the impacts of SLR on coastal ecosystems24–26. GIS and geospatial 
research methods are significant for determining the influence of SLR at various spatial and temporal scales.

Our research aims to address a significant gap in the literature regarding the effects of SLR in low-eleva-
tion nations by using global threshold data and models to evaluate migration scenarios influenced by climatic 
changes. A GIS technique-based bathtub model that considers three SLR scenarios is used to demonstrate the 
possible coastal inundation due to SLR in the BOB. To project the prospective SLR, the IPCC’s SLR data for the 
SSP1–1.9, SSP2–4.5, and SSP5–8.5 scenarios until 2150 were combined. Hence, our findings are significantly 
reliant on future extreme climate consequences. The bathtub approach indicates all the inundated areas below 
a user-specified elevation, identical to that of a water container or single-value water surface27. This model is 
simple to implement and able to evaluate the potential global coastal flood risk28,29. The method, however, occa-
sionally fails to estimate the magnitude of flooding since it does not account for sea level amplification based 
on estuarine morphology30. In contrast, our study encompasses the entirety of Bangladesh as a research area to 
quantify the projected inundation resulting from SLR pertaining to GMSL rise. However, it is also paramount 
to predict the possible threat to anthropogenic infrastructures due to SLR. Therefore, day/night band (DNB) 
composite nighttime light data extracted from the Visible Infrared Imaging Radiometer Suite (VIIRS) are used 
to evaluate economically significant clusters in Bangladesh. The use of nighttime light data as a substitution for 
economic activity is widely accepted in remote sensing and other specializations31,32. Furthermore, the Modules 
for Land-Use Change Simulation (MOLUSCE) simulation tool was used to model the future economic clusters 
for 2050, 2100, and 2150 using the DNB composite raster of Bangladesh33,34. Based on the multilayer percep-
tron artificial neural network (MP-ANN) technique, the MOLUSCE plugin uses cellular automata statistics to 
simulate potential land-use decisions based on preceding consequences. Here, artificial neural network (ANN) 
algorithms were used to train the DNB composite raster from 2014 to 2022 to simulate the transitional prospects 
of economic clusters. The prospective inundated area was then characterized in the simulated models in relation 
to space and time utilizing ArcMap 10.8.

This study presents a novel approach to assessing demographic and economic vulnerabilities arising from SLR 
in Bangladesh, a country challenged by data scarcity. By integrating nighttime light data as a proxy for population 
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and economic activities with GIS-based bathtub modeling and ANN-based MOLUSCE modeling, this research 
investigates potential risk zones under various SSP scenarios. The methodology offers a detailed evaluation of 
future demographic impacts and disruptions to economic clusters, thus providing valuable guidance for effective 
policy-making and long-term coastal planning in Bangladesh and demonstrating the potential of nighttime light 
data in addressing data scarcity issues in similar regions.

Result analysis
Sea level projection under different scenarios.  From the IPCC’s AR6, two medium-confidence SSP 
scenarios (SSP1–1.9 and SSP2–4.5) and one low-confidence SSP scenario (SSP5–8.5) are selected for this study. 
The projected SLR trend was investigated based on the mean and several quantiles (5%, 17%, 50%, 83%, and 
95%7) with an interval of 10 years between 2020 and 2150 (Fig. 1). Here, each quantile represents the percentage 
likelihood of the worst possible scenario and an SLR projection based on the respective scenario in comparison 
to average emissions from 1995 to 2014.

The mean sea level drops periodically in SSP1–1.9 and SSP2–4.5 (from 2020 to 2040), with a 5% quan-
tile showing a positive impact on the earth (Fig. 1). Other quantiles for different SSPs show substantial sea 

Figure 1.   Potential SLR under selected SSP scenarios5,35 as per SSP1–1.9, SSP2–4.5, and SSP5–8.5. Each 
quantile shows the probability of the worst-case scenario and an SLR forecast based on emissions from 1995 to 
2014.
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level increases with temporal variation. The mean SLR according to SSP1–1.9 shows a yearly increase rate of 
− 0.84 mm/year to 8.38 mm/year from the 5 to 95% quantiles; slight increases from 1.4 to 12.516 mm/year 
occur under SSP2–4.5. The likelihood of such an SLR at this rate is comparatively high, as they present medium 
confidence levels. The mean SLR in SSP1–1.9 is projected to be 0.48 m by 2150. However, SSP5–8.5 shows a SLR 
of 3.78–42.507 mm/year according to the quantile variation, which is much higher than either of the previous 
two scenarios. Moreover, this scenario shows that the projected mean SLR can be 1.89 (0.72–4.81) m by 2150, 
compared to only 0.78 (0.39–1.27) m for SSP2–4.5. Overall, SSP5–8.5 shows a very high magnitude of SLR rela-
tive to other scenarios for the representative point.

Spatiotemporal pattern of flood inundation in the region.  Bangladesh is one of the largest coastal 
floodplains worldwide; consequently, low-lying parts of the country are more likely to be affected by a very small 
rise in sea level. Therefore, to demonstrate the possibilities of inundation, a GIS-based bathtub model was used 
based on the selected SSP scenarios. From the simulation, the projected inundated land area by 2150 can be 
observed (Fig. 3); the spatial distribution of this potential sea inundation is depicted separately (Fig. 2). Based 
on present global socioeconomic trends, the SSP1–1.9 scenario was considered the highest-possibility scenario, 
and the SSP5–8.5 scenario was considered the lowest-possibility scenario in this SLR projection. Figure 2 also 
represents the significant transportation routes throughout the country, which indicate higher population con-
centrations in urban locations.

Figure 2 shows that a greater portion of the coastal area of the BOB and adjacent plains of the Meghna delta 
fan is marked as being at a very high risk of sea inundation because its elevation is less than 0.45 ± 0.49 m. This 
includes the greater Khulna, Bagerhat, Satkhira, Jessore, and Narail from the southwestern region; Borguna, 
Potuakhali, and Bhola from the southernmost region; and Cox’s Bazar and part of Chittagong from the south-
eastern coast of the BOB. A few fragmented clusters of Lakshmipur, Noakhali, and Sharitpur are also estimated 
to be affected by sea inundation by 2150 under this projection. Even though the northern part of Bangladesh 
comprises higher elevations, a cluster of flooded zones may be observed across the lower elevated floodplains 
near the Surma–Kushiyara–Meghna River system.

The capital city, Dhaka, is projected to be at a partly high and mostly moderate risk of flooding from SLR. 
This is because Dhaka is next to the Buriganga River, which stages the early stage of Meghna Delta. Faridpur 
and Rajbari districts are moderate, but the northern parts of Shariatpur, Madaripur, and the southern part of 
Munshiganj are expected to be flooded by 2150, with a lower level of confidence. Port-city Chittagong, Sitakund, 
and Sandwip also have moderate-to-low risk factors with an elevation of lower 1.89 ± 0.49 m (Fig. 1). In contrast, 
Kutubdia, Matarbari, and St. Martin islands are projected to be high-risk areas for sea inundation.

Projected inundation and its impact on the population.  As discussed in the previous section, the 
spatial projections of mean sea inundation under various SSP scenarios are presented (Fig. 3). The potential 
inundated area was calculated using the number of pixels in the DEM that had lower elevation values than the 
projected SLR for each SSP scenario. These estimations were further related to the UN’s population density 
projection for Bangladesh.

According to the SSP1–1.9 scenario, sea inundation will range to 567.0963 km2, affecting approximately 
0.83 million people by 2050. This inundation is projected to expand further by 705.4767 km2 in the 2100s 
and 835.3926 km2 by 2150, affecting approximately 0.8–0.85 million Bangladeshi inhabitants. Comparatively, a 
slightly higher inundated area is featured for SSP2–4.5, which indicates a transition of inundation from 567.16 
to 1156.7 km2 within the study period. The expected affected population due to such inundation ranges between 
0.8 and 1.05 million for the following years. However, for both scenarios, a decline in the affected population 
can be observed, as SSP1–1.9 and SSP2–4.5 estimate a significant decline in population and anthropogenic 
emissions after 2080–2100.

In contrast, SSP5–8.5 illustrates a very high magnitude of sea inundation, as this scenario models a future 
with a very high population density and a high frequency of energy consumption and emissions. The scenario 
depicts that the inundated area will extend approximately 611.32 km2, affecting approximately 0.9 million people 
in the 2050s, which is roughly equal to the other two SSP scenarios. In the 2100s, the inundated area will increase 
to 1183.2 km2, affecting almost 1.2 million habitats, and is projected to extend to 2967.5 km2 by 2150, affecting 
more than 2.7 million habitats in Bangladesh due to an expected mean SLR of approximately 1.89 m.

Economic activity simulation under different scenarios.  The MOLUSCE simulation plugin is used 
to determine the potential economic centers at risk due to sea inundation, as presented (Fig. 4). The method is 
assessed using selected SSP scenarios at 50-year intervals to emphasize the impact of potential sea inundation 
on Bangladesh’s economic centers and urban settlements. The base years of 2014–2022 are chosen for economic 
and urban population concentration simulation, and an increase in variable clusters with temporal variation 
throughout all the districts of Bangladesh is evident. Major cities, such as Dhaka, Tongi, Gazipur, Rajshahi, 
Comilla, Chittagong, Sylhet, Pabna, Bogura, and Rangpur, have the highest potential for growth since they are 
important economic centers. Moreover, transition zones such as the Dhaka-Chittagong, Dhaka-Khulna, and 
Dhaka-Sylhet roads feature a significant increase in nighttime light radiance since they may function as rural‒
urban fringe borders. A relatively high magnitude of nighttime light radiance may also be seen along the routes 
of Bogra-Rangpur, Bogra-Rajshahi, and Tangail-Rajshahi since the northern quarter of Bangladesh is expected 
to be significantly industrialized by 2030. Moreover, coastal cities such as Chittagong, Cox’s Bazar, Khulna, and 
Mongla are anticipated to see growing demographic densities and commercial interest.

However, the potential economic and urban concentration zones have a high risk of sea inundation in differ-
ent SSP scenarios. The sea inundation is heading from the southwestern coast to the southern coast, alongside 
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the delta plains of the Meghna–Surma–Kushiyara River (Fig. 4). Significant sea inundation can also be observed 
along the floodplain of the Meghna–Padma stream in the western region and the Sangu–Matamuhuri–Karna-
phuli river in the east for SSP5–8.5 starting in 2100. SSP1–1.9, although featuring a very low level of inundation, 
impacts several districts from the southern coast of Bangladesh. By 2150, rivers such as the Balaswar, Payra, 
Tetulia, and Arpangasia may become gateways for potential sea inundation and land loss in their adjacent major 
economic centers.

While SSP2–4.5 shows a frequent similar inundation pattern, with time, SLR may potentially move toward 
the districts of Khulna, Satkhira, Bhola, and Barisal, where economic concentration is expected to increase by 
2100. Moreover, in this scenario, a few clusters in Chittagong and Cox’s Bazar, as well as a significant percentage 
of Dhaka Division, are predicted to be vulnerable to sea inundation. Although the SSP5–8.5 scenario is expected 

Figure 2.   An inundation simulation to project the potential vulnerability of growing economic clusters 
in Bangladesh by 2150. A geographic information system (GIS) software package, ArcMap (Version 10.8, 
downloaded from https://​bit.​ly/​45Vbr​PH), was used to generate the figure.

https://bit.ly/45VbrPH
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to have lower confidence, major land areas where economic concentrations are much higher are projected to 
be inundated. This projection covers a large portion of the Padma-Meghna confluence and significant scattered 
clusters in the southern and southernmost parts of Bangladesh. The prediction places vast economic and urban 
centers, such as Chittagong, Khulna, Barisal, Mongla, and potentially sections of Dhaka and Sylhet, at risk. 
Remarkably, large plain areas adjacent to the Brahmaputra-Jamuna stream have a lower elevation profile (8 m), 
which may be critical to the inhabitants of Bangladesh’s northern regions, such as Pabna, Kushtia, Rajbari, and 

Figure 3.   Potential inundation and affected population on temporal variation based on SSP scenarios. The 
calculation of the potential inundated area was based on the pixel count of the digital elevation model (DEM) 
with elevation values lower than the anticipated rise in sea level for each shared socioeconomic pathway (SSP) 
scenario.
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Sirajganj. The key floodplains of Brahmanbaria, Kishoreganj, Habiganj, Netrokona, and Sunambaria could be 
inundated by the sea by 2150, according to the IPCC’s worst-case scenario. This presents a concerning issue since 

Figure 4.   Spatiotemporal variation in sea inundation and its threat to potential economic clusters. The figure 
depicts the results obtained from the MOLUSCE simulation. The approach is evaluated through the utilization 
of specific SSP scenarios at 50-year intervals, with the aim of highlighting the potential consequences of sea 
inundation on Bangladesh’s economic centers and urban settlements.
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the predicted visualization in Fig. 4 comprises 12.48% of the total land bodies, while SSP2–4.5 impacts 3.82% of 
the total land bodies in Bangladesh (Fig. 3).

Discussion
Bangladesh is one of the fastest economically growing countries with a vast population. Therefore, changes in 
economic clusters are obvious36,37. Factors such as rural‒urban migration, rapid industrialization and urbani-
zation, and geo-economic opportunity often cause changes in the economic orientations of the country38,39. As 
per our simulation (Fig. 4), a significant change in economic concentrations throughout the country, therefore, 
is evident. However, in the near future, the people of Bangladesh may need to move their settlements and eco-
nomic centers due to climatic consequences such as SLR. From the above analysis, it is apparent that a significant 
portion of land area with socioeconomic prospects is at risk for sea inundation. Appropriate planning of the 
redistribution of the economic infrastructure may also be needed, as potential SLR may inundate and prevent 
prospectus zones from becoming inhabited. Considering the mean SLR, our study reveals that more than 0.5–2% 
of inhabited land may be submerged based on the present elevation profile, thus possibly evicting more than 2.8 
million people by 215038,40.

As per the IPCC’s SSP1–1.9 and SSP2–4.5 scenarios, the population density may be facing a degrading trend 
after 2080 along with a significant decline in GHG emissions. This may have a positive impact, lowering the ice 
sheet melting rate or seawater expansion (Fig. 2). However, the results from the worse-case scenarios (consider-
ing the 17 to 95% quantile) may cause up to 42.507 mm/year of SLR2,4,35. Moreover, contemporary subsidence 
in Dhaka and Khulna significantly reduces the elevation of land areas under the SLR threshold. A subsidence 
of 2.08 mm/year in Central Dhaka17 and 2.83 mm/year in Sundarbans41, Khulna, was measured. Furthermore, 
Rahman et al.42 reported a potential 170 km2 area loss in the Sundarbans between 1973 and 2010 due to subsid-
ence, which is extremely concerning for the coastal belt ecosystem in Bangladesh.

The SLR in the BOB may also have a significant effect on the hydrology and morphological characteristics 
of the Meghna River, as the BOB receives a large amount of discharge from it. As the sea level rises, the rivers 
mentioned in preceding sections may need a wider catchment during the rainy season for additional discharges 
to prevent tremendous flooding and long-term rainwater logging. Higher chances of flooding the tributaries and 
distributaries are also expected and may cause significant inundation to nearby plains, as SSP5–8.5 denotes that 
the Padma River and upper Meghna River would have higher water levels. CEGIS, Dhaka, previously identified 
40 new char areas (acquired lands) totaling approximately 1643 km2 in the Meghna estuary alone that have been 
developed during the previous 15 years43. Based on our study, these areas can be considered the most vulner-
able areas even in the IPCC medium confidence scenarios. Our predictions also indicate that certain clusters 
of the districts of Kushtia, Meherpur, Pabna, Faridpur, Chandpur, Munshiganj, Narayanganj, Brahmanbaria, 
and Kishoreganj would face severe floods in their respective economic regions as a result of SLR. These districts 
comprise the crop hubs of Bangladesh.

The area in southern Bangladesh will be most affected by SLR in 2150, according to SSP5–8.5. By 2150, a 
significant part of Bangladesh’s southern area is expected to be submerged under seawater. As a result, Bangla-
desh will lose several important economic areas, including Jessore, Faridpur, Madaripur, Chuadanga, Jhenai-
dah, Bagerhat, Gopalganj, Narail, Barishal, Chittagong City, and Cox’s Bazar. The world’s largest mangrove, the 
Sundarbans, may also face a massive catastrophe since a significant number of land bodies are expected to be 
submerged under seawater while their adjacent distributaries rise. The inundation of Chittagong City would 
have a substantial adverse impact on Bangladesh’s economy. The Port of Chittagong is used to convey more 
than 92% of imported and exported cargo. This is why the Port of Chittagong is referred to as the "Gateway of 
Bangladesh." The existence of this port has led the City of Chittagong to become one of several significant com-
mercial centers in Bangladesh.

Conclusion
This work demonstrates the use of an integrated application of sea inundation projections by utilizing hydro-
dynamic bathtub modeling and spatiotemporal analysis to evaluate the potential for various SLR scenarios 
in the BOB. The bathtub model was developed in response to the lack of readily available, user-friendly tools 
for modeling transitory coastal flooding44–46. Elevation data retrieved from Google Earth and the IPCC’s AR6 
offer an additional advantage by enabling the evaluation of numerous SLR scenarios35. Furthermore, our study 
utilizes an ANN-based population proxy nighttime simulation to include the trends underlying climate change 
scenarios, making it easier to identify future susceptible locations33. The findings of this paper indicate that con-
siderable coastal (Khulna, Chittagong, and Cox’s Bazar) and low-lying floodplain (parts of Dhaka and Sylhet) 
areas are particularly vulnerable to potential SLR. These cities may be forced to endure significant financial and 
demographic consequences if severe SLR scenarios occur simultaneously. According to our projections, up to 
2% of habitable land might be submerged, resulting in the relocation of approximately 2.8 million individuals 
by 2150. This submerged land includes the potential economic clusters of Bangladesh. Furthermore, possible 
changes in salt intrusion, habitat destruction, and ecological imbalance in the world’s largest mangrove2,4,35 can 
be identified from our spatiotemporal analysis.

However, we are aware that the extent of future climatic consequences is still uncertain in terms of future 
humanitarian responses. Administrations at all levels must incorporate the implications of climate change in their 
planning. The decision-support frameworks that rely on this research can be utilized in Bangladesh’s coastal zone 
and lower-elevation floodplain planning. However, our study lacks the potential for practical planning to eradi-
cate the consequences of SLR. Therefore, we recommend that future researchers focus on planning preventive 
mechanism to mitigate SLR consequences with a concentration on economic clusters. More precise topographic 
data, such as higher-resolution DEM data and valid statistics regarding mean subsidence in the region, should 
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also be utilized in future studies to create more credible conclusions. Furthermore, any land-use changes should 
be accounted for based on local extreme weather occurrences.

Materials and methods
Study area.  Bangladesh has a diversified landscape with a population of approximately 169 million people 
dispersed throughout 148,460  km2. The climate is a tropical monsoonal one, with hot, humid summers and 
moderate winters. The economy depends primarily on agriculture, including significant crops such as rice, jute, 
tea, and textiles. Its geomorphology is formed by the country’s dynamic river systems, coastal activities, and 
tectonic activity. Hills and mountains are concentrated in the northern and eastern regions, while the Gangetic-
Brahmaputra floodplain, one of the world’s largest river deltas, dominates the central area. A low-lying deltaic 
plain caused by the confluence of multiple rivers forms the coastal area47. The Ganges–Brahmaputra Delta spans 
the western sector of the Bay of Bengal, formed by the sedimentation of the Ganges, Brahmaputra, and Meghna 
rivers (Fig. 5). Furthermore, in addition to the ongoing erosion and shifting caused by the dynamic interplay 
of river, tidal, and wave processes, the bay receives a large amount of deposition from Bangladeshi rivers. The 
bay is influenced by monsoonal rainfall, with significant rainfall during the southwest monsoon from June to 
September and the northeast monsoon from November to February47.

Data.  The NASA “Sea Level Projection Tool” data from the IPCC AR6 were used to evaluate the future SLR 
projection in the BOB, considering Cox’s Bazar point as the base7. This tool enables users to assess sea level pro-
jection statistics corresponding to the IPCC AR648 and improves access and visualization of the report’s consen-
sus projections. It shows both regional and global sea level projections from 2020 to 2150 relative to a 1995–2014 
baseline and how they differ considerably by scenario5,35,49. Sea level estimation utilizes uncertainty in emissions 
model temperature shifts as well as unpredictability in temperature-driver interactions, such as temperature 
expansion, ocean movement, and glacier and ice sheet melting. Here, the average rates of cumulative sea-level 
change are represented in mm year−1. IPCC scenarios are statistical techniques used to examine the parameter 
space of low- and high-emissions50. There is also information about how different physical processes will con-
tribute to future SLR, which suggests which processes will be major contributors. In the dataset, quantiles span-
ning from the 17th to the 83rd are often interpreted as likely intervals, with "probable" meaning a likelihood of 
at least 66%. Thus, in this study, mean SLR data were used to project inundation in potential economic clusters 
by using SSP1–1.9 as a low emission scenario with a higher likelihood of uncertainty, SSP2–4.5 as a medium 
emission scenario with a moderate likelihood of uncertainty, and SSP5–8.5 as a high emission scenario with 
a low likelihood of uncertainty. Moreover, SLR under different quantiles was also analyzed to understand the 
magnitude of area loss based on the selected SSP scenarios.

The UN’s population projection data from IPCC AR6 were used to assess the affected population due to sea 
inundation48,51. The UN analyzes assessments of all countries’ populations by age and gender once every 2 years 
in a report called World Population Prospects (WPP)51–53. The UN projections are developed based on multiple 
factors, e.g., future fertility, mortality, and global migration rates. Thus, the UN generates the "medium" predic-
tion, as it is a single value for each prospective population53. Furthermore, the UN’s population projections use 
the conventional cohort-component approach54,55.

Digital elevation models (DEMs) are often used in water resource studies to associate drainage attributes 
such as ridges, basin bottoms, channel networks, and surface hydrology with sub-floodplain channel size, length, 
and slope56–60. At present, multiple remotely sensed DEM datasets are available, e.g., NASA Shuttle Radar Topo-
graphic Mission (STRM), Thermal Emission and Reflection Radiometer (ASTER), Global Digital Elevation 
Model (GDEM), and European Space Agency (ESA) DEM over resolutions ranging from 30 to 900 m. However, 
this dataset may not be ideal for float-scale computations for precise hydrological research. Therefore, a 5 m 
resolution DEM of Bangladesh was generated for this study by assessing the elevation values in Google Earth 
Pro. Google Earth Pro is an enhanced version of Google Earth that enables the simultaneous representation 
of several locations as well as access to the elevation profile. Although Google Earth elevation data use SRTM 
as its elevation base data, several studies have confirmed its higher accuracy of elevation profiles compared to 
other available DEM datasets61–63. Moreover, the accuracy of a DEM improves with the level of denseness and 
unpredictability of the dots. In this study, the elevation data from Google Earth were extracted using Keyhole 
Markup Language (KML), with a total of 2.5 million elevation points covering the study region. The assessed 
point was further used to create a high-resolution (5 m DEM) raster dataset via inverse distance weighted 
(IDW) interpolation in ArcMap 10.8. Esri’s ArcMap software is a complete platform for producing, collecting, 
analyzing, and demonstrating geographical data, making it popular among GIS professionals and scholars. In 
this study, ArcMap version 10.8 (downloaded from https://​bit.​ly/​45Vbr​PH) was used. IDW specifically assumes 
that near objects are more similar than remote objects. IDW utilizes metrics around the prediction region to 
forecast any unrecorded value. Afterward, the modeled elevation profile was projected using the UTM WGS84 
grid coordinate system in ArcMap. The resulting elevation map was then visualized in Fig. 5 via QGIS 2.18 to 
portray the spatial location of Bangladesh and the BOB. Quantum Geographic Information System, or QGIS, is 
popular open-source software that lets users produce, analyze, and display geographical data. The model used 
in this study is QGIS 2.18 (downloaded from https://​bit.​ly/​3qCUv​0g), which was selected in accordance with 
the study’s computability.

NPP-VIIRS data were derived as a proxy for determining economic clusters. Numerous researchers employ 
it to estimate its economic effects on regional and national scales64–66. The Earth Observations Group (EOG) at 
the National Centers for Environmental Information (NCEI) produces monthly mean NPP-VIIRS images. This 
instrument has a resolution of 15 arc seconds. The VIIRS sensor aboard the Suomi National Polar-Orbiting Part-
nership (NPP) satellite analyzes data in 22 distinct wavelength bands, one of which is the DNB (Day/Night Band). 

https://bit.ly/45VbrPH
https://bit.ly/3qCUv0g
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VIIRS DNB statistics have been used to evaluate the population, assess working conditions in remote moderniza-
tion, monitor natural hazards and disharmony, and comprehend light pollution’s biological impacts32,64,66. Mean 
radiance composite images are made with data from the VIIRS Day/Night Band based on nighttime brightness.

Simulation models
Change analysis using a cellular automata model.  Satellite-based nighttime light images have been 
broadly used by economists as a substitution to determine economic interaction in poor countries. Cities and 
towns with strong social and cultural infrastructures show greater population dynamics64–66. Furthermore, it 
is pertinent to forecast the potential consequences of SLR in these economic areas. Therefore, to evaluate spa-
tiotemporal changes and predict the future economic changes between the study years, the MOLUSCE plugin 

Figure 5.   Elevation profile of Bangladesh, assessed with the SRTM digital elevation model. The GIS software 
packages ArcMap (Version 10.8, downloaded from https://​bit.​ly/​45Vbr​PH) and QGIS (Version 2.18, 
downloaded from https://​bit.​ly/​3qCUv​0g) were used to generate the figure.

https://bit.ly/45VbrPH
https://bit.ly/3qCUv0g
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on QGIS was used. The MOLUSCE plugin makes use of cellular automata data to simulate hypothetical out-
comes based on past ones67. It evaluates altering analysis and transformation prospects via four methods: logistic 
regression, weights of evidence, multicriteria evaluation, and artificial neural network (multilayer perceptron). 
Such approaches construct a parameter that forms the foundation for the prediction model34,68. In this study, 
several nighttime DNB clusters from 2014 and 2020 were applied with the QGIS MOLUSCE tool to generate a 
transition matrix. The MP-ANN approach in QGIS 2.18 software is used to train a model of preceding nighttime 
light transitions69,70. The plugin was used to forecast the scenarios for 2050, 2100, and 2150, utilizing nighttime 
light visuals as a spatial parameter.

The abovementioned Eq. (1) demonstrates the logistic regression that is used to detect the potential changes 
in the training raster dataset. Here, LUt+1 = land-use class at time t + 1, argmaxj = class that maximizes the product 
of transition likelihood and current land-use pattern, P (LUt+1 = j | LUt = i) = transition probability from land-use 
class i to j at time t + 1, and LUPt(i,j) = current land-use pattern value for the transition from land-use class i to j 
at time t.

Furthermore, the MP-ANN model was validated by contrasting the simulated and estimated values for 2018, 
2021, and 2022 DNB composites using MOLUSCE QGIS validation. It is a nonlinear statistical analysis approach 
that prepares urban development drivers and accounts for intricate underlying characteristics during modeling71. 
The statistical alterations of an ANN have generally weighted sums of materials, activation coefficients, and bias 
variables, and their formulae are dependent on the design of the neural network (e.g., feedforward, recurrent, 
convolutional) as well as the modeler’s stimulation functions and other factors. MOLUSCE’s ANN is coupled 
with the cellular-automata (CA) simulation approach. CA employs the Monte Carlo algorithm technique, which 
is thought to be compatible with predicting land-use change72.

In Eq. (2), the Monte Carlo simulation creates independent samples from probabilistic distributions that 
represent the system’s unanticipated variables or characteristics. Here, Y = estimated outcome, N = number of 
samples, f(xi) = value of the function at the ith random sample, xi.

Furthermore, to eliminate dataset inconsistencies, a raster calculator was used to scale all the raster images 
between 1 and 5 with similar intervals before running the model. The neural network learning curve with a 
maximum iteration of 2000 is presented in Fig. 6.

Figure 6 displays the network’s efficacy on the training and test datasets as an accumulation of training epochs 
from the training data periodically. The red line in this learning curve represents the training set performance, 
whereas the green line represents the validation set performance. Furthermore, the result of the training dataset 
will demonstrate the kappa validation value in Table 1. The overall kappa (ki) (Eq. 3) and % of correctness (C) 
(Eq. 4) were determined as follows:

(1)LUt+1 = argmaxj
{

P
(

LUt+1 = j | LUt = i
)

∗ LUPt(i,j)
}

(2)Y =
1

N

(

∑

f (xi)
)

(3)ki =
P0 − Pe

1− Pe

(4)C =

∑k
i=1 nij

n

Figure 6.   Neural network learning curve of the DNB composite images of the potential nighttime light clusters 
to project future economic clusters (the red line represents the training set performance, whereas the green line 
represents the validation set performance).
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Here, P0 = observed proportion of agreement, Pe = proportion expected by chance, nij = diagonal elements in 
the error matrix, k = total number of classes, and n = total number of samples in the error matrix.

However, the DNB composite simulation accuracy was evaluated using a percent correctness value that 
exceeded > 85% (Table 1).

Bathtub approach.  The bathtub model, or bathtub approach, is a frequently used framework for assessing 
flooding worldwide60. It is a geospatial technique that simulates coastal surface runoff via digital elevation mod-
els and is dependent on the accuracy of the geomorphologic input data73. A bathtub model considers potentially 
vulnerable regions that might be below the inundation level and hydrologically associated with the source of 
flooding (e.g., the ocean or river). Therefore, several researchers have implemented this approach to monitor the 
flooding prospects of coastal areas or, in conjunction with socioeconomic and infrastructure data, to assess the 
flood inundation risk74,75. The bathtub methodology can be performed in GIS software, which allows for easy 
incorporation with other geodatabases or even in matrix computational development tools73.

However, for the current study in which certain SSP scenarios and years were chosen, the bathtub approach 
was applied to evaluate areas adjacent to the BOB that could potentially be inundated due to SLR. The predicted 
submerged land bodies of Bangladesh due to sea inundation (Figs. 2 and 4) in IPCC AR635 were analyzed using 
ArcMap 10.8. The spatial distribution of potential sea inundation is visualized in Fig. 2 by using the same ArcMap 
version to highlight the potential hazard of substantial manmade buildups in Bangladesh. The publicly-available 
shapefiles of rail and road networks were collected from https://​geoda​sh.​gov.​bd/. The elevation profile of distinct 
IPCC-proposed hazard scenarios was used to develop nine raster files for the evolution of SLR scenarios in Fig. 4. 
For further analysis, reclassified rasters were transformed into polygons.

Data availability
The data that support the findings of this study are available from the corresponding author, Muhammad Muhitur 
Rahman (mrahman@kfu.edu.sa), or the first author, Bijoy Mitra (bijoymitra11@gmail.com), upon reasonable 
request.

Received: 27 April 2023; Accepted: 8 August 2023

References
	 1.	 Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming 

of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts 
to Eradicate Poverty. https://​doi.​org/​10.​1017/​97810​09157​940 (Cambridge University Press, 2022).

	 2.	 Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021 – The Physical Science Basis: Working Group I Contri-
bution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://​doi.​org/​10.​1017/​97810​09157​896 
(Cambridge University Press, 2023).

	 3.	 IPCC, I. Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the 
intergovernmental panel on climate change (2014).

	 4.	 Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report 
of the Intergovernmental Panel on Climate Change (2014).

	 5.	 IPCC. Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report 
of the Intergovernmental Panel on Climate Change. https://​doi.​org/​10.​1017/​97810​09325​844 (Cambridge University Press, 2023).

	 6.	 Hausfather, Z. & Peters, G. P. Emissions—The ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).
	 7.	 NASA. Sea Level Projection Tool. NASA Sea Level Change Portal. https://​seale​vel.​nasa.​gov/​ipcc-​ar6-​sea-​level-​proje​ction-​tool?​

psmsl_​id=​1476&​info=​true (2021).
	 8.	 Wang, J., Church, J. A., Zhang, X. & Chen, X. Reconciling global mean and regional sea level change in projections and observa-

tions. Nat. Commun. 12, 1–12 (2021).
	 9.	 Qu, Y., Jevrejeva, S., Jackson, L. P. & Moore, J. C. Coastal Sea level rise around the China Seas. Glob. Planet. Change 172, 454–463 

(2019).
	10.	 Aparna, S. G., McCreary, J. P., Shankar, D. & Vinayachandran, P. N. Signatures of Indian Ocean Dipole and El Niño-Southern 

Oscillation events in sea level variations in the Bay of Bengal. J. Geophys. Res. Ocean. 117, 10012 (2012).
	11.	 Loucks, C., Barber-Meyer, S., Hossain, A. A., Barlow, A. & Chowdhury, R. M. Sea level rise and tigers: Predicted impacts to Bang-

ladesh’s Sundarbans mangroves. Clim. Change 98, 291–298 (2009).
	12.	 Murty, P. L. N. et al. Numerical study of coastal hydrodynamics using a coupled model for Hudhud cyclone in the Bay of Bengal. 

Estuar. Coast. Shelf Sci. 183, 13–27 (2016).
	13.	 Neetu, S. et al. Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal. J. Geophys. 

Res. Ocean. 117, 12020 (2012).
	14.	 Rao, R. R. et al. Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal 

Bay of Bengal and the southeastern Arabian Sea during 1993–2006. Deep Sea Res. Part I Oceanogr. Res. Pap. 57, 1–13 (2010).

Table 1.   Validation parameters (K parameters) and % correctness of the CA-ANN model in QGIS software.

Simulated year 2018 2021 2022

% Correctness 89.622 97.399 89.803

K histogram 0.713 0.920 0.729

K location 0.806 0.839 0.913

Overall kappa 0.695 0.772 0.798

https://geodash.gov.bd/
https://doi.org/10.1017/9781009157940
https://doi.org/10.1017/9781009157896
https://doi.org/10.1017/9781009325844
https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool?psmsl_id=1476&info=true
https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool?psmsl_id=1476&info=true


13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13351  | https://doi.org/10.1038/s41598-023-40329-9

www.nature.com/scientificreports/

	15.	 Minderhoud, P. S. J., Hlavacova, I., Kolomaznik, J. & Neussner, O. Towards unraveling total subsidence of a mega-delta-the potential 
of new PS InSAR data for the Mekong delta. Proc. Int. Assoc. Hydrol. Sci. 382, 327–332 (2020).

	16.	 Erban, L. E., Gorelick, S. M. & Zebker, H. A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, 
Vietnam. Environ. Res. Lett. 9, 084010 (2014).

	17.	 Alam, M. Subsidence of the Ganges—Brahmaputra Delta of Bangladesh and Associated Drainage, Sedimentation and Salinity Problems 
169–192 (Springer, 1996). https://​doi.​org/​10.​1007/​978-​94-​015-​8719-8_9.

	18.	 Alam, M. Geology and depositional history of Cenozoic sediments of the Bengal Basin of Bangladesh. Palaeogeogr. Palaeoclimatol. 
Palaeoecol. 69, 125–139 (1989).

	19.	 Park, R., Armentano, T. & Cloonan, C. Effects of Changes in Stratospheric Ozone and Global Climate (Environmental Protection 
Agency, 1986).

	20.	 Costanza, R., Sklar, F. H. & White, M. L. Modeling coastal landscape dynamics. Bioscience 40, 91–107 (1990).
	21.	 Costanza, R. & Ruth, M. Using dynamic modeling to scope environmental problems and build consensus. Environ. Manag. 22, 

183–195 (1998).
	22.	 Hinkel, J. DIVA: An iterative method for building modular integrated models. Adv. Geosci. 4, 45–50 (2005).
	23.	 Warrick, R. A. Using SimCLIM for Modelling the Impacts of Climate Extremes in a Changing Climate: A Preliminary Case Study 

of Household Water Harvesting in Southeast Queensland. In 18 th World IMACS / MODSIM Congress 13–17 (2009).
	24.	 Gravelle, G. & Mimura, N. Vulnerability assessment of sea-level rise in Viti Levu, Fiji Islands. Sustain. Sci. 3, 171–180 (2008).
	25.	 Malik, A. & Abdalla, R. Geospatial modeling of the impact of sea level rise on coastal communities: Application of Richmond, 

British Columbia, Canada. Model. Earth Syst. Environ. 2, 1–17 (2016).
	26.	 Natesan, U. & Parthasarathy, A. The potential impacts of sea level rise along the coastal zone of Kanyakumari District in Tamilnadu, 

India. J. Coast. Conserv. 14, 207–214 (2010).
	27.	 NOAA. Mapping Coastal Inundation Primer. https://​coast.​noaa.​gov/​data/​digit​alcoa​st/​pdf/​coast​al-​inund​ation-​guide​book.​pdf (2012).
	28.	 Kirezci, E. et al. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st century. Sci. 

Rep. 10, 1–12 (2020).
	29.	 Seenath, A., Wilson, M. & Miller, K. Hydrodynamic versus GIS modelling for coastal flood vulnerability assessment: Which is 

better for guiding coastal management?. Ocean Coast. Manag. 120, 99–109 (2016).
	30.	 Hanslow, D. J., Morris, B. D., Foulsham, E. & Kinsela, M. A. A regional scale approach to assessing current and potential future 

exposure to tidal inundation in different types of estuaries. Sci. Rep. 8, 1–13 (2018).
	31.	 Chen, X. & Nordhaus, W. D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. U.S.A. 108, 8589–8594 

(2011).
	32.	 Zhang, X. & Gibson, J. Using multi-source nighttime lights data to proxy for county-level economic activity in China from 2012 

to 2019. Remote Sens. 14, 1282 (2022).
	33.	 Muhammad, R., Zhang, W., Abbas, Z., Guo, F. & Gwiazdzinski, L. Spatiotemporal change analysis and prediction of future land 

use and land cover changes using QGIS MOLUSCE plugin and remote sensing big data: A case study of Linyi, China. Land 11, 
419 (2022).

	34.	 Mukherjee, T., Sharma, L. K., Saha, G. K., Thakur, M. & Chandra, K. Past, present and future: Combining habitat suitability and 
future landcover simulation for long-term conservation management of Indian rhino. Sci. Rep. 10, 1–12 (2020).

	35.	 IPCC. The Ocean and Cryosphere in a Changing Climate. https://​doi.​org/​10.​1017/​97810​09157​964 (Cambridge University Press, 
2022).

	36.	 Martin, M. et al. Climate-influenced migration in Bangladesh: The need for a policy realignment. Dev. Policy Rev. 35, O357–O379 
(2017).

	37.	 Rana, M. M. P. & Ilina, I. N. Climate change and migration impacts on cities: Lessons from Bangladesh. Environ. Challenges 5, 
100242 (2021).

	38.	 Hauer, M. E. et al. Sea-level rise and human migration. Nat. Rev. Earth Environ. 1, 28–39 (2020).
	39.	 Davis, K. F., Bhattachan, A., D’Odorico, P. & Suweis, S. A universal model for predicting human migration under climate change: 

Examining future sea level rise in Bangladesh. Environ. Res. Lett. 13, 064030 (2018).
	40.	 Siegert, M., Alley, R. B., Rignot, E., Englander, J. & Corell, R. Twenty-first century sea-level rise could exceed IPCC projections 

for strong-warming futures. One Earth 3, 691–703 (2020).
	41.	 Becker, M., Karpytchev, M. & Papa, F. Hotspots of relative sea level rise in the tropics. In Tropical Extremes: Natural Variability 

and Trends 203–262 (Elsevier, 2018). https://​doi.​org/​10.​1016/​B978-0-​12-​809248-​4.​00007-8.
	42.	 Rahman, A. F., Dragoni, D. & El-Masri, B. Response of the Sundarbans coastline to sea level rise and decreased sediment flow: A 

remote sensing assessment. Remote Sens. Environ. 115, 3121–3128 (2011).
	43.	 Huque, I., Sarker, M. H. & Oberhagemann, K. Application of Remote Sensing to Study the Behavior and Dynamics of Riverine and 

Coastal Chars. In Springer Geography 89–120. https://​doi.​org/​10.​1007/​978-3-​030-​73592-0 (Springer Science and Business Media 
Deutschland GmbH, 2021).

	44.	 Poulter, B. & Halpin, P. N. Raster modelling of coastal flooding from sea-level rise. Int. J. Geogr. Inf. Sci. 22, 167–182 (2008).
	45.	 Hansen, H. S. Modelling the future coastal zone urban development as implied by the IPCC SRES and assessing the impact from 

sea level rise. Landsc. Urban Plan. 98, 141–149 (2010).
	46.	 Cai, R. et al. Adaptive response of Dongzhaigang mangrove in China to future sea level rise. Sci. Rep. 12, 1–12 (2022).
	47.	 Akhter, S. et al. Seasonal and long-term sea-level variations and their forcing factors in the northern Bay of Bengal: A statistical 

analysis of temperature, salinity, wind stress curl, and regional climate index data. Dyn. Atmos. Ocean. 95, 101239 (2021).
	48.	 Garner, G. et al. IPCC AR6 WGI Sea Level Projections. https://​doi.​org/​10.​26050/​WDCC/​AR6.​IPCC-​DDC_​AR6_​Sup_​SLPr (2022).
	49.	 Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013 – The Physical Science Basis: Working Group I Con-

tribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://​doi.​org/​10.​1017/​CBO97​81107​
415324(Cambridge University Press, 2014).

	50.	 van Vuuren, D. P. et al. The representative concentration pathways: An overview. Clim. Change 109, 5–31 (2011).
	51.	 UN DESA (United Nations Department for Economic and Social Affairs). World population prospects 2022: Summary of results. 

http://​bitly.​ws/​RK7N (2023).
	52.	 UN DESA. The United Nations on world population in 2300. Population and Development Review. 30. http://​bitly.​ws/​RK84(2004).
	53.	 UN. World Population Prospects 2022: Methodology of the United Nations population estimates and projections. World Population 

Prospects/UN DESA/POP/2022/TR/NO. 4 Department of Economic and Social Affairs Population Division (2022).
	54.	 Whelpton, P. K. An empirical method of calculating future population. J. Am. Stat. Assoc. 31, 457–473 (1936).
	55.	 Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945).
	56.	 Schwarz, C., van Rees, F., Xie, D., Kleinhans, M. G. & van Maanen, B. Salt marshes create more extensive channel networks than 

mangroves. Nat. Commun. 13, 1–9 (2022).
	57.	 Rentschler, J., Salhab, M. & Jafino, B. A. Flood exposure and poverty in 188 countries. Nat. Commun. 13, 1–11 (2022).
	58.	 Braddock, S. et al. Relative sea-level data preclude major late Holocene ice-mass change in Pine Island Bay. Nat. Geosci. 15, 568–572 

(2022).
	59.	 Li, X. et al. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Change https://​doi.​org/​10.​1038/​

s41558-​022-​01443-0 (2022).

https://doi.org/10.1007/978-94-015-8719-8_9
https://coast.noaa.gov/data/digitalcoast/pdf/coastal-inundation-guidebook.pdf
https://doi.org/10.1017/9781009157964
https://doi.org/10.1016/B978-0-12-809248-4.00007-8
https://doi.org/10.1007/978-3-030-73592-0
https://doi.org/10.26050/WDCC/AR6.IPCC-DDC_AR6_Sup_SLPr
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1017/CBO9781107415324
http://bitly.ws/RK7N
http://bitly.ws/RK84
https://doi.org/10.1038/s41558-022-01443-0
https://doi.org/10.1038/s41558-022-01443-0


14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13351  | https://doi.org/10.1038/s41598-023-40329-9

www.nature.com/scientificreports/

	60.	 Williams, L. L. & Lück-Vogel, M. Comparative assessment of the GIS based bathtub model and an enhanced bathtub model for 
coastal inundation. J. Coast. Conserv. 24, 23 (2020).

	61.	 Hoffmann, E. & Winde, F. Generating high-resolution digital elevation models for wetland research using Google Earth™ imagery: 
An example from South Africa. Water SA 36, 53–68 (2010).

	62.	 Sharma, A. & Gupta, D. Derivation of topographic map from elevation data available in google earth. Civ. Eng. Urban Plan. 1, 
14–21 (2014).

	63.	 Richard, J. U. & Ogba, C. Analysis of accuracy of Differential Global Positioning System (DGPS) and Google Earth Digital Terrain 
Model (DTM) data using geographic information system techniques. J. Geod. Geomat. Eng. 2, 52–61 (2016).

	64.	 Bharti, N. & Tatem, A. J. Fluctuations in anthropogenic nighttime lights from satellite imagery for five cities in Niger and Nigeria. 
Sci. Data 5, 1–9 (2018).

	65.	 Molla, A., Di, L., Guo, L., Zhang, C. & Chen, F. Spatio-temporal responses of precipitation to urbanization with Google Earth 
engine: A case study for Lagos, Nigeria. Urban Sci. 6, 40 (2022).

	66.	 Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992–2018. Sci. Data 7, 168 (2020).
	67.	 Gismondi, M., Kamusoko, C., Furuya, T., Tomimura, S. & Maya, M. MOLUSCE—an open source land use change analyst. FOSS4G 

Nottingham. https://​2013.​foss4g.​org/​conf/​progr​amme/​prese​ntati​ons/​107/ (2013).
	68.	 Liu, Y., He, Q., Tan, R., Liu, Y. & Yin, C. Modeling different urban growth patterns based on the evolution of urban form: A case 

study from Huangpi, Central China. Appl. Geogr. 66, 109–118 (2016).
	69.	 Tayyebi, A., Perry, P. C. & Tayyebi, A. H. Predicting the expansion of an urban boundary using spatial logistic regression and 

hybrid raster–vector routines with remote sensing and GIS. Int. J. Geogr. Inf. Sci. 28, 639–659 (2014).
	70.	 El-Tantawi, A. M., Bao, A., Chang, C. & Liu, Y. Monitoring and predicting land use/cover changes in the Aksu-Tarim River Basin, 

Xinjiang-China (1990–2030). Environ. Monit. Assess. 191, 1–18 (2019).
	71.	 Maithani, S. A neural network based urban growth model of an Indian city. J. Indian Soc. Remote Sens. 37, 363–376 (2009).
	72.	 Lin, Y. P., Chu, H. J., Wu, C. F. & Verburg, P. H. Predictive ability of logistic regression, auto-logistic regression and neural network 

models in empirical land-use change modeling—A case study. Int. J. Geogr. Inf. Sci. 25, 65–87 (2010).
	73.	 National Oceanic and Atmospheric Administration (NOAA). Detailed Method for Mapping Sea Level Rise Inundation. https://​

coast.​noaa.​gov/​data/​digit​alcoa​st/​pdf/​slr-​inund​ation-​metho​ds.​pdf (2017).
	74.	 Ghosh, M. K., Kumar, L. & Kibet Langat, P. Geospatial modelling of the inundation levels in the Sundarbans mangrove forests due 

to the impact of sea level rise and identification of affected species and regions. Geomat. Nat. Hazards Risk 10, 1028–1046 (2019).
	75.	 Yunus, A. P. et al. Uncertainties in tidally adjusted estimates of sea level rise flooding (bathtub model) for the Greater London. 

Remote Sens. 8, 366 (2016).

Acknowledgements
This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Sci-
entific Research, King Faisal University, Saudi Arabia [Grant No. 3568]. The authors are thankful to King Fahd 
University of Petroleum & Minerals, Saudi Arabia, and University of Chittagong, Bangladesh.

Author contributions
B.M.: Conceptualization, Writing—Original draft preparation, Visualization; S.M.R.: Conceptualization, Writ-
ing—Original draft preparation, reviewing, editing, visualization; M.S.U.: Supervision, writing original draft; 
K.M.: Conceptualization, reviewing; M.K.I.: reviewing and editing; M.A.: reviewing and editing; M.M.H.R.: 
reviewing and editing; M.M.R.: Project administration, funding acquisition, reviewing and editing. All authors 
reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.M.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://2013.foss4g.org/conf/programme/presentations/107/
https://coast.noaa.gov/data/digitalcoast/pdf/slr-inundation-methods.pdf
https://coast.noaa.gov/data/digitalcoast/pdf/slr-inundation-methods.pdf
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Assessing demographic and economic vulnerabilities to sea level rise in Bangladesh via a nighttime light-based cellular automata model
	Result analysis
	Sea level projection under different scenarios. 
	Spatiotemporal pattern of flood inundation in the region. 
	Projected inundation and its impact on the population. 
	Economic activity simulation under different scenarios. 

	Discussion
	Conclusion
	Materials and methods
	Study area. 
	Data. 

	Simulation models
	Change analysis using a cellular automata model. 
	Bathtub approach. 

	References
	Acknowledgements


