
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13377  | https://doi.org/10.1038/s41598-023-40317-z

www.nature.com/scientificreports

Intelligent diagnostic model 
for malaria parasite detection 
and classification using imperative 
inception‑based capsule neural 
networks
Golla Madhu 1, Ali Wagdy Mohamed 2,3, Sandeep Kautish 4, Mohd Asif Shah 5,6,7* & 
Irfan Ali 8

Malaria is an acute fever sickness caused by the Plasmodium parasite and spread by infected 
Anopheles female mosquitoes. It causes catastrophic illness if left untreated for an extended period, 
and delaying exact treatment might result in the development of further complications. The most 
prevalent method now available for detecting malaria is the microscope. Under a microscope, 
blood smears are typically examined for malaria diagnosis. Despite its advantages, this method 
is time‑consuming, subjective, and requires highly skilled personnel. Therefore, an automated 
malaria diagnosis system is imperative for ensuring accurate and efficient treatment. This research 
develops an innovative approach utilizing an urgent, inception‑based capsule network to distinguish 
parasitized and uninfected cells from microscopic images. This diagnostic model incorporates neural 
networks based on Inception and Imperative Capsule networks. The inception block extracts rich 
characteristics from images of malaria cells using a pre‑trained model, such as Inception V3, which 
facilitates efficient representation learning. Subsequently, the dynamic imperative capsule neural 
network detects malaria parasites in microscopic images by classifying them into parasitized and 
healthy cells, enabling the detection of malaria parasites. The experiment results demonstrate a 
significant improvement in malaria parasite recognition. Compared to traditional manual microscopy, 
the proposed system is more accurate and faster. Finally, this study demonstrates the need to provide 
robust and efficient diagnostic solutions by leveraging state‑of‑the‑art technologies to combat 
malaria.

Malaria is a life-threatening disease that involves the Plasmodium parasite, which poses a high death rate. It 
is transmitted to humans by biting an infected female mosquito with the parasite. Malaria is predominantly a 
tropical disease since mosquitoes thrive in tropical areas, and it is both preventable and treated. According to 
the latest Global Malaria Report, there are projected to be around 241 million malaria cases and 627 thousand 
fatalities worldwide by  20221. Moreover, research by the World Health Organization (WHO) suggests that con-
cerns related to COVID-19 could triple the number of malaria  cases2,3. In response to this global epidemic, the 
WHO has enacted policies to prevent, treat, eradicate, and monitor  malaria4. Malaria, a preventable disease, 
can be controlled and prevented if adequate processes and protocols are used, including early diagnosis of the 
malarial  parasite4. Several laboratory techniques, including polymerase chain reaction (PCR), microscopy, and 
rapid diagnostic test (RDT) are commonly used for investigating malaria using thick or thin blood  smears5–8. 
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However, conventional methods tend to rely heavily on manually examining blood smears under a microscope. 
These methods are time-consuming, subjective, and require highly trained personnel. Additionally, the reli-
ance on clinical experts raises concerns about the consistency and accuracy of the diagnosis. To address these 
deficiencies, computer-aided diagnostic (CAD) methods for malaria evaluation are being developed to reduce 
mortality  rate9. Therefore, automated and accurate diagnostic systems are needed to improve malaria detection. 
Artificial intelligence has gained more and more attention in the scientific community. It has contributed to 
improving detection through various diagnostic processes. Most medical imaging analyses now incorporate 
CAD procedures that leverage deep learning techniques for effective model learning.

However, despite advancements, malaria remains endemic in some areas where the disease is common. Early 
screening plays a crucial role in detecting malaria and saving lives. Consequently, this motivates us to create faster 
and more accurate malaria diagnosis procedures. Recently, deep learning architectures have received much atten-
tion in terms of research and are the most important method to detect disease automatically and more accurately. 
These generic deep networks have played a vital role in image classification, detection, and  recognition10,11. In a 
similar vein, data-driven deep learning (DL) algorithms have surpassed manually constructed feature extraction 
 techniques12. A convolutional neural network (CNN) is a type of deep learning model that employs different 
mechanisms, such as local receptive fields, shared weights, and clustering layers, to leverage information. Its 
purpose is not limited to extracting features but also extends to generating predictive targets and furnishing 
actionable predictive models that can effectively aid  physicians10,13. Deep neural networks have shown outstand-
ing performance in computer vision tasks in recent years. This is done using methods like the ResNet-32 network 
model to identify ductal  carcinomas14 precisely. Despite their effectiveness, CNN suffers from limitations in the 
modeling of spatial relationships and the lack of an internal representation of the geometrical restrictions on the 
image data. When these flaws are applied to microscopic cell images, the diagnostic model may be misclassified. 
The need for a more precise and efficient model arises to improve the performance of detecting and classifying 
malaria parasites. These challenges have prompted us to develop a rapid and more accurate diagnosis procedure 
for malaria. The specific hypotheses tested in this study include:

Hypothesis 1 Using the inception neural network will enable the extraction of rich and discriminative features 
from microscopic images of malaria cells, improving parasite detection and classification accuracy.

Hypothesis 2 The incorporation of the imperative capsule neural network will enhance the modeling of spatial 
relationships within the images, allowing for a more precise classification of malaria parasites.

By testing these hypotheses, the study aims to demonstrate the superiority of the proposed approach over 
traditional manual microscopy and other existing methods for malaria diagnosis.

This paper is organized as follows: The relevant research is presented in Section “Related works”, and the pro-
posed inception-based imperative capsule neural network is discussed in Section “Materials and methods”. Part 
“Experimental results” summarizes and describes the outcomes of this network. Part “Conclusions” concludes 
with the article’s conclusions and suggested recommendations for further study.

Related works
Several researchers have demonstrated promising results in medical applications by using data-driven machine 
learning (ML) and deep learning (DL) models. This study examines contemporary deep-learning applications 
that elicit key decision-making factors in the diagnosis process. Liang et al.15 presented a 16-layer CNN to classify 
the parasitized and uninfected cells in thin blood smears. Features are extracted using a pre-trained  AlexNet16, 
and a support vector machine (SVM) is trained on these features, and the model has an average accuracy of 
97.37%. However, the transfer learning method achieves only 91.99% accuracy. Bibin et al.17 proposed and 
tested a six-layer deep belief network to detect malaria parasites in cell images. Based on their findings, the 
study achieved 96.4% classification accuracy on a custom dataset using training or test randomization. Dong 
et al.18 presented SVM and CNN-based approaches for classifying malaria parasites from cell images. This study 
attained an accuracy of more than 95% using pre-trained deep learning models such as those used in  LeNet19, 
 AlexNet16, and  GoogLeNet20. Rajaraman et al.21 proposed a deep-learning model for malaria parasite detection 
and classification. The method visualizes the activation maps of each layer and understands the probabilities 
of the different layers to understand the modeling process. As a result, it obtains an accuracy of 98.61%. Mahdi 
Postchi et al.22 surveyed the latest advancements in image analysis and machine-learning techniques for diag-
nosing malaria through microscopy. Although many machine learning models using traditional features have 
been developed for image classification and decision-making, these models may lack generalization ability. 
Sivaramakrishnan et al.23 suggested a customized CNN model and evaluated the effectiveness of pre-trained 
and deep-learning CNN models as feature extractors for microscopic images to differentiate between healthy 
and parasitic blood cells. The model uses surface features to achieve more outstanding results than deep features 
and applies a level-set-based algorithm to detect and segment red blood cells. This model achieved 98.6% (cell-
level) accuracy. Yang et al.24 presented a fivefold cross-validation for two-step CNN models. In the first step, the 
model uses an intensity-based iterative Global Mini-mum Screening method to recognize parasites, and then a 
CNN uses a custom CNN to classify the presence of parasites. The success rate of this method is 93.46%. Vijay-
alakshmi et al.25 presented a transfer learning method with a classification accuracy of 93.13% to discriminate 
between illustrations of malaria-diseased cells and healthy using the VGG16 model and a support vector machine. 
Madhu et al.26 proposed an improved dynamic routing process to classify malaria-infected cells from healthy 
cells using a fully trained capsule network, and the model achieved an accuracy of 98.82%. Loddo et al.27 used 
the DenseNet-201 neural network to categorize Plasmodium falciparum life stages into four groups and used 
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two different datasets to assess the robustness of the model. The binary classification accuracy rate was 97.68%, 
and the multi-classification accuracy rate was 99.40%. Meng et al.28 proposed a neighborhood correlation graph 
convolutional network to identify multistage malaria parasites. The model has excellent recognition ability for 
multistage malaria parasites, outperforming the comparison method by at least 8.67%. Madhu et al.29 proposed 
an automated diagnostic model based on deep Siamese capsule arrays for uniquely detecting and classifying 
malaria parasites. When simplified on the largest test sample (test = 40%), the model achieved an accuracy of 
96.61% and 98%, respectively. Ha et al.30 presented a semi-supervised graph learning framework to solve the 
problem of identifying apicomplexan parasites. Hybrid graph learning is also used in this approach to explore 
the relationships between different parasites with and without labels.

In malaria, the Plasmodium parasite causes an acute fever that is carried by female Anopheles mosquitoes. 
It produces life-threatening sickness if left untreated for a long time, and delaying exact treatment might lead to 
the development of additional comorbidities. A microscope is currently the most prevalent method for detect-
ing malaria. Consequently, an automated approach to diagnosing malaria is required. This study proposes the 
development of an urgent, inception-based capsule network for classifying parasitized and uninfected cells from 
micrographs. These diagnostic models contain neural networks based on the Inception and Imperative Capsule 
architectures. Using a trained model, such as Inception V3, the first block collects rich characteristics from 
images of malaria cells. In the second block, a dynamic imperative capsule neural network classifies malaria cells 
into infected and uninfected red blood cells. The experiment’s findings indicate a considerable improvement in 
recognizing malaria parasites, which contributes to better illness diagnosis and prevention.

By observing the existing challenges, this study aims to develop an automatic diagnostic prototype for clas-
sifying malaria parasites from microscopic cell images using the Inception neural network with the Imperative 
Capsule neural network. The preliminary results of this study are presented as follows:

• To develop an innovative approach employing an urgent, inception-based capsule network to recognize 
parasitized and uninfected cells from microscopic images.

• The Inception block extracts rich features from malaria cell images using a pre-trained model, such as Incep-
tion V3, which facilitates efficient representation learning to recognize the parasites.

• The dynamic imperative capsule neural network is utilized to classify microscopic images into parasitized 
and healthy cells, enabling the detection of malaria parasites.

• To compute routing by agreement among low-level and higher-level capsules that can be used to predict 
malaria cells and classify them into parasitized and uninfected cells using L2-Norm.

• This study underscores the importance of leveraging state-of-the-art technologies to combat malaria by 
providing a robust and efficient diagnostic solution.

Materials and methods
Dataset collection. Images of thin blood smears containing two distinct strains of malaria—one infected 
and the other not—were used in the study. These samples were gathered from patients and healthy controls who 
had Plasmodium falciparum infections, and they were stored at the National Institutes of Health (NIH) reposi-
tory, which is open to the public for  study23. The collection includes 13,779 images of parasites and 13,779 images 
of uninfected cells, totaling 27,558 images of labeled and segmented cells from thin Giemsa-stained blood smear 
slides. Figure 1 offers some parasitic and uninfected cell images to visualize their physical traits.

k‑fold cross‑validation (CV) test. The dataset contains 27,558 blood cell images with malaria-positive 
and negative samples, which were evaluated in our study for data sample training and testing, and used k-folds 
(k = 10, 20, 30, 40, 50) Cross-validation to evaluate the proposed model. As shown in Table 1, the dataset is split 
into training and testing subsets.

Inception neural network and the imperative capsule neural network. Geoffrey Hinton et al.31 
motivated this research by addressing the limitations of traditional CNNs by proposing inception-based capsule 
neural networks, which require small data but have higher computational complexity.

This research develops an inception-based imperative capsule neural network for malaria detection, and its 
basic architecture is shown in Fig. 2, which is similar to the architecture advocated for image classification prob-
lems by Sabour et al.31. According to Fig. 2, input is first routed through fully connected inception blocks, which 
receive the parasitized and uninfected portions of the cell images as input and extract features on the parasitized 
and uninfected portions of the cell images. The inception block’s output is used as the primary capsule layer’s 
input. The primary and higher capsule layers utilize an imperative routing mechanism to learn the captured 
features by discerning the spatial orientation of the parasites on the extracted features. After multiple iterations, 
the resulting output is a feature vector with a length equivalent to the probability of the interval [0, 1], which 
preserves the object’s pose information, minimizing the information loss caused by the feature vector extraction. 
This feature vector is then used to classify a test sample as infected or healthy cells, aiding in its classification.

Inception neural network block. In 2015, Google introduced a module for  GoogleNet32, also known as 
Inception V3, a convolutional neural network that helps us with image analysis and object detection.

Convolutional layers are frequently employed in convolutional neural networks (CNNs) to extract informa-
tion from images of malaria blood cells. The CNN’s initialization block, which is made up of parallel convolu-
tional layers with filters and kernels of various sizes, extracts feature from various scales to obtain multi-view 
information on parasites and healthy cells. The structure of the inception block, which is used to extract char-
acteristics at various scales, is shown in Fig. 3. To extract features at various sizes, this block has four parallel 
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convolutional layers with various kernels (1 × 1, 3 × 3, and 3 × 3). A max-pooling layer with a kernel size of 2 × 2, a 
convolution layer with a kernel size of 1 × 1, and a batch normalizing layer make up the final parallel convolutional 
layer. Each parallel layer’s computational cost and channel count can be decreased by using a 1 × 1 convolutional 
layer, and the model’s computational cost can be decreased by employing a 3 × 3 max-pooling layer. The output 
feature maps of each of the four simultaneous convolutional layers are combined after computation to produce 
new feature maps that are used as the input for the capsule network.

Capsule networks block. To classify the items in the MNIST dataset, Sabour et al.31 presented a capsule 
network (CapsNet). It uses a neural network to produce an output vector that includes both a scalar and a vec-
tor encoding the features of the objects in the image. In our experiment, these capsule networks are trained by 
carefully adjusting the number of rounds in the dynamic routing algorithm. Using Parametric ReLU (PReLU), 
it is possible to investigate the behavior of nonlinear activations during dynamic  routing33. The presence of fea-
tures in the form of vectors containing low-level entity instantiation parameters is estimated using the principal 
capsule layer. CapsNet transforms the scalar output using feature detectors in this layer, then passes the vector 
output of the capsules to the following layer using a modified routing  method31. Because parameter tuning is 
critical for better network learning and faster convergence, proper initialization is used to start the routing pro-
cedure with kernel initializer before the primary capsule layer; the dynamic routing algorithm is activated with 
Glorot-normalization34. Each capsule, i  has an activity vector ui ∈ R in the layer of l, which captures information 
about the features extracted from an entity (i.e., blood cell image). The output of the activity vector ui of the i th 
level capsule is fed as data into the next level layer, i.e., l + 1 layer. The jth layer capsules of layer l + 1 will get data 
from ui and compute the product weight matrix WT

ij  . The results are stored in the form of û(j|i). This vector is the 
layer of capsules i at level l  layer, which is the transformation of the entity represented by capsule j at the level of 
l + 1 . Then apply the transformation matrix WT

ij  to capsule output ui of the previous layer, as shown in Eq. (1).

Figure 1.  Illustration of sample malaria cell images: (a) Infected images; (b) Uninfected images (without 
parasites).

Table 1.  The dataset distribution in training and testing with different splits.

Dataset splits

Training dataset Testing dataset

Split ratio (%) No. of images Split (%) No. of images

1 90 24,802 10 2756

2 80 22,046 20 5512

3 70 19,290 30 8268

4 60 16,534 40 11,024

5 50 13,779 50 13,779
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In Eq. (1), capsule i is the primary capsule layer, j is the higher-level capsule layer, and ui is the output of the 
capsule network of the upper layer and WT

ij  is the learnable weighted matrix between the ith capsule to jth cap-
sule. Which is multiplied by each output vector and the coupling coefficient Cij is added to the linear sum stage. 
Then the capsules are in the higher level, which is filled with the sum of the output vector in the lower-level layer, 
and we add it with a coupling coefficient Cij which is computed during the routing method shown in Eq. (2).

(1)û(j|i) = WT
ij ∗ ui

Figure 2.  The proposed architecture of Inception-based capsule neural network.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13377  | https://doi.org/10.1038/s41598-023-40317-z

www.nature.com/scientificreports/

In dynamic routing, the coupling coefficient is determined by Eq. (2). In the process of calculating Sj in 
forward propagation,  WT

ij  is set to a random value, aij is initialized to zero, ui is the output of the previous layer, 
and then compute a weighted sum Sj with weights Cij (the sum of these coefficients is equal to one) and it is 
denoted as follows:

The squashing function map of Sj yields the output vector vj , which is obtained is defined as follows:

The squashing function, defined by Eq. (4), ensures that short vectors are reduced to fewer dimensions near 
zero while long vectors are scaled to unit length, thus introducing nonlinearity to the capsule network. The total 
input Sj processed by the jth dimensional capsule array contributes to the coupling coefficient Cij. An activation 
function PReLU is applied to update the coupling coefficients, instead of the squashing function, by operating 
on Sj. During the iterative learning phase, these coupling coefficients are updated using Eq. (5), which proceeds 
as follows:

In Eq. (5), aij is a parameter used as a weighted proxy, which means that it gives higher weights to appropriate 
predictions, and it starts at zero and is modified as the training progress.

However, it is initialized with the current input weights to improve the learning method by reducing the 
computational cost and improving the predictive ability. The number of routing iterations (n = 3) is used as a 
hyperparameter allowing one to choose a specific number of iterations during the training (here, epochs = 100) 
period, and the details of this network parameters are shown in Table 2. The learning period is evaluated by 
evaluating the convergence, and our model is repeated for only three iterations. Figure 4 depicts the compre-
hensive learning curves for iterations over 100 epochs.

PReLU activations are utilized during the routing by agreement process to improve the understanding of 
feature invariance in the captured images of malaria cells. In a conventional capsule network, the squash activa-
tion function is typically used as a non-linearity. However, using PReLU as a non-linearity is believed to lead to 
better generalization and convergence over time. The last layer of the network comprises two capsules (parasitized 
and uninfected cells) reflecting the probability of the interval [0, 1] and the position information of the object, 
preserving the pose information to reduce information loss caused by the extracted feature vector. This enables 
the classification of test samples into either parasitized or uninfected cells, thus aiding in cell feeding.

Loss function. Our current loss  function31 also includes the mean squared error rate (MSE) alongside the 
marginal loss. Change the settings for faster convergence and add proper model regularization and noise addi-
tion when training the classification model with a value set to 0.45.

(2)Cij =
exp(aij)∑
k exp(aik)

(3)Sj =
∑

û(j|i) ∗ Cij

(4)vj =
1

�sj�
(
1+ �sj�

−2
)

(5)aij ← aij + û(j|i)vj

(6)Lossx = Tx ∗ PReLU(m+ − �vx�
2 + σ ∗ (1− Tx) ∗ PReLU

(
�vx� −m−

)2
+

∑
�Tx − vx�

2

Figure 3.  Illustration of the inception block.
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In Eq. (6), m+ and m− are the category prediction values, σ is the balance coefficient, Tx is the label of category, 
and classification probability vector ‖vx‖ is the size. For this study, the default values are set as 
m+ = 0.85&m− = 0.15 , σ = 0.45 . The total loss function, in this case, refers to the loss of capsules represent-
ing both malaria-parasitized and uninfected classes.

Experimental results
This section describes the proposed model’s implementation in-depth and thoroughly analyses how well it per-
forms under various restrictions. The proposed network was evaluated against front-line classification models 
created by several authors, which were pre-trained using NIH malaria  datasets23 and other private datasets to 
assess whether red blood cells are parasitized or not. According to Table 3, the proposed model for malaria 
parasite identification and classification performed well on the NIH malaria dataset, along with the comparison 
findings. It is important to note that most models typically exhibit low performance on this dataset. Although 
their weights can handle common classification datasets, they frequently fall short because of ineffective feature 
extraction brought on by too much depth. Instead, the Inception-based capsule network model classifies para-
sitized and uninfected cells accurately during the diagnostic process by utilizing external knowledge to produce 
rich characteristics. On international benchmarks, the suggested model performs noticeably better.

As stated in the Table 4, our model is assessed for layer-wise testing cell images, varying from training to 
80% and testing to 20%.

In this analysis, experiments are conducted on various distributions, and the suggested network’s implemen-
tation, as shown in Table 4, achieves an accuracy of 99.35% and an AUC score of at least 99.73% at a test ratio 
of 20%. Table 4 shows the models’ overall generality as measured by various standard classification metrics, 
including accuracy score, AUC–ROC, sensitivity, and specificity. Limiting diagnostic power does not assess 
the likelihood that a certain patient will acquire a disease, but it does affect diagnostic accuracy, even though 
they choose sensitivity and specificity. Table 5 displays the effectiveness of the suggested capsule array at vari-
ous nonlinearity levels. Compared to the performance of cutting-edge pre-trained models, the generalization 
distribution for the training and test samples is 80% to 20%.

Table 2.  Parameters of the models used in the evaluation. Adam Adaptive momentum estimation, MSE mean 
squared error.

Parameters

Networks

Inception-v3 Capsule network

Depth 48 8

Input size 128 × 128 128 × 128

Optimizer RMSProb Adam

Loss function Cross-entropy MSE

Batch size 64 20

Learning rate 0.0001 0.007

Momentum 0.9 0.8

Gradient L2 norm L2 norm

Figure 4.  An inception-based capsule network with a router in 3 iterations, depicted as (a) accuracy curves and 
(b) loss decay curves.
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The performance metrics for every deep learning architecture are compiled in Table 5. The proposed malaria 
detection algorithm outperforms the compared deep learning models in terms of performance. The results 
showed an accuracy of more than 99.35%, an AUC score of 99.73%, and an F1 score of 99.36%. The accuracy 
score is a well-known metric with a domain that is invariant to general utility; hence it is imperative to note. 
As a result, the effectiveness of the suggested model is assessed using various measuring techniques. The model 
was created to be assessed by segregating partition samples that vary from 10 to 50%, ensuring that the model 
is adequately generalized. Figure 5 displays the predicted results of the suggested model on images of malarial 
cells. The true value is shown on the x-axis, and the model forecast is shown on the y-axis.

Time complexity analysis. According to our study, the learning model was trained for 100 epochs to 
assess the time complexity of the model. The results show that our model takes around 33.8667 min for training 
and 3 s for complete testing, which is less than all the compared models. This study addresses the urgent need 
for automated malaria detection and classification. It proposes a novel approach based on integrating inception 
and imperative capsule neural networks. This research has the potential to significantly improve malaria diag-
nosis, contributing to more effective disease management and prevention. Additionally, the study contributes to 
the growing field of deep learning in medical image analysis. It showcases the applicability of advanced neural 
network architectures to address critical healthcare challenges.

Table 3.  The performance of the proposed method is compared to that of other methods.

Authors Dataset Accuracy Sensitivity Specificity

Das et al.35 Private 0.9320 0.9410 0.8790

Dong et al.17 Private 0.9812 0.9732 0.9870

Diaz et al.36 Private 0.8500 0.9400 0.9870

Gopakumar et al.37 Private 0.9770 0.9810 0.9720

G.Madhu et al.26 NIH 0.9882 0.9836 0.9930

Liang et al.15 NIH 0.9730 0.9690 0.9780

Rajaraman et al.23 NIH 0.9860 0.9810 0.9920

Rahman et al.38 NIH 0.9770 0.9740 0.9790

Proposed method NIH 0.9935 0.9957 0.9912

Table 4.  The performance of an inception-based capsule neural network on variant generalization tests ranges 
from 10 to 50%.

Split ratio Accuracy Sensitivity Specificity AUC-ROC

90% vs 10% 0.9928 0.9898 0.9899 0.9943

80% vs 20% 0.9935 0.9957 0.9912 0.9973

70% vs 30% 0.9894 0.9847 0.9890 0.9894

60% vs 40% 0.9849 0.9837 0.9912 0.9950

50% vs 50% 0.9810 0.9805 0.9858 0.9709

Table 5.  Illustrates the performance of the proposed model compared to existing pre-trained state-of-the-art 
architectures.

Models Accuracy Sensitivity Specificity AUC-ROC F1-score

VGG16 0.9603 0.9567 0.9640 0.9920 0.9560

VGG19 0.9597 0.9560 0.9632 0.9910 0.9550

Inception V3 0.9280 0.9250 0.9302 0.9760 0.9251

ResNet50 V2 0.9390 0.9356 0.9408 0.9410 0.9820

Xception 0.9470 0.9420 0.9480 0.9792 0.9439

DenseNet121 0.9562 0.9482 0.9650 0.9901 0.9480

MobileNetV2 0.9483 0.9420 0.9552 0.9880 0.9478

Capsule net 0.9518 0.9500 0.9514 0.9900 0.9498

Proposed 0.9935 0.9957 0.9912 0.9973 0.9936
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Conclusions
This research develops a deep-learning approach by combining the imperative capsule neural network with 
the inception neural network to distinguish between malaria-parasitized and uninfected cells. This enhances 
the classification accuracy of identifying malaria parasites from photographs of blood cells. With well-chosen 
parameters, the capsule model can efficiently finish the procedure for classifying uninfected cells or parasites 
into different categories. Models with different loss parameters are compared to the proposed model, and the 
results show that the model’s performance can be increased by adjusting the loss parameters. The proposed 
network achieves higher classification accuracy while analyzing blood cell images for malaria than competing 
deep learning methods. Under the worst-case scenario (50/50 split), the model obtains an accuracy of 98.10% 
on the test, while on the 20% split, it achieves an accuracy of 99.355%. These experimental results are helpful 
since the developed model is robust and flexible and has outperformed competing models. In the work’s future 
scope, the model may be utilized to recognize parasite species and stages in thin blood smears. This research 
opens opportunities for future advancements in malaria diagnosis and surveillance, including using mobile and 
portable imaging devices for point-of-care testing.

Data availability
The data that support the findings of this study are openly available in the National Library of Medicine (NLM)—
Malaria Data: https:// lhncbc. nlm. nih. gov/ LHC- resea rch/ LHC- proje cts/ image- proce ssing/ malar ia- datas heet. 
html and reference number Ref.23.
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