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Image denoising in acoustic 
microscopy using block‑matching 
and 4D filter
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Scanning acoustic microscopy (SAM) is a label‑free imaging technique used in biomedical imaging, 
non‑destructive testing, and material research to visualize surface and sub‑surface structures. In 
ultrasonic imaging, noises in images can reduce contrast, edge and texture details, and resolution, 
negatively impacting post‑processing algorithms. To reduce the noises in the scanned image, we 
have employed a 4D block‑matching (BM4D) filter that can be used to denoise acoustic volumetric 
signals. BM4D filter utilizes the transform domain filtering technique with hard thresholding and 
Wiener filtering stages. The proposed algorithm produces the most suitable denoised output 
compared to other conventional filtering methods (Gaussian filter, median filter, and Wiener filter) 
when applied to noisy images. The output from the BM4D‑filtered images was compared to the noise 
level with different conventional filters. Filtered images were qualitatively analyzed using metrics 
such as structural similarity index matrix (SSIM) and peak signal‑to‑noise ratio (PSNR). The combined 
qualitative and quantitative analysis demonstrates that the BM4D technique is the most suitable 
method for denoising acoustic imaging from the SAM. The proposed block matching filter opens a new 
avenue in the field of acoustic or photoacoustic image denoising, particularly in scenarios with poor 
signal‑to‑noise ratios.

In materials science to biology, scanning acoustic microscopes (SAM) have been successfully used to image the 
surface and interior structures and conduct nondestructive evaluations without causing damage to the material 
being  studied1. In addition to its ability to inspect objects, the SAM is also capable of providing ample and precise 
quantitative information about the inspected items. SAM has a range of capabilities, including the non-invasive 
micro-structural characterization of materials, the characterization of the mechanical properties of piezoelectric 
materials on their surfaces and subsurface, structural health monitoring (SHM) of the composite structures, 
detecting surface defects on polymer circuits, and examining the propagation of anisotropic  phonons2–7. The 
technology of SAM holds significant importance in the fiercely competitive and demanding markets of micro-
electronics and semiconductor industries. It plays a vital role in enhancing mold designs for flip-chip packages 
and is capable of managing the intricacies involved in miniaturized assemblies, such as chip-scale packages and 
3D IC stacks, making it a significant tool in the  industry8, 9.

The resolution of images generated by SAM at a specific frequency relies on the pixel size or scanning steps in 
both x and y directions, along with the acoustic beam’s spot size. In ultrasonic imaging, images are generated by 
collecting signals, and the quality of the resulting images can be greatly affected by the presence of noise. Images 
with noise can cause decreased contrast, loss of edge and texture details, and reduced resolution, which can 
negatively affect post-processing algorithm performance. Therefore, noise is a critical factor that can contribute 
to the decline of signal quality in acoustic imaging. Accurate parameter determination from acquired images is 
reliant on effective image denoising.

The most prevalent and unresolved challenge in ultrasound imaging is the presence of noise from multiple 
sources, which often leads to significant degradation of image quality. Consequently, the presence of noise 
becomes highly limiting in sensitive applications where acoustic contrast plays a crucial role. Due to various 
factors such as the environment, electronic noise, transmission cable, and others, images are inevitably subject to 
noise during acquisition, compression, and transmission, resulting in distortion and loss of image information. 
These factors make images vulnerable to the manifestation of random noise during data acquisition. Denoising 
techniques can be classified into two main categories: spatial domain methods and transform domain methods. 
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Spatial filters can be further divided into linear and non-linear filters, and they use low-pass filtering on the 
pixel values of an image since noise tends to occupy higher regions in the frequency  spectrum10. Spatial filters 
tend to reduce noise to a certain extent, but they often lead to blurring of the image. In contrast, the transform 
domain provides various signal processing techniques, such as wavelet decomposition and empirical mode 
decomposition (EMD), to tackle this  problem11. Additionally, methods like principal component analysis (PCA) 
and singular value decomposition (SVD) can be used for signal reconstruction and  restoration12, 13. Wang et al. 
utilized a hybrid method that combined wave packet decomposition and EMD to denoise signals and subse-
quently classified various engine faults using Support Vector Machine (SVM)14. In a separate study, Fan et al. 
presented a denoising algorithm based on principal component analysis (PCA) that was demonstrated using 
simulated data with varying levels of  noise15. Huan et al. introduced a method called C-PCASVD, which com-
bines principal component analysis (PCA) and singular value decomposition (SVD) to identify the singular 
values of  interference16. This technique enables an optimal balance between the denoised free induction decay 
(FID) and the efficiency of noise reduction.

In recent times, artificial intelligence (AI) techniques, and more specifically deep learning (DL) approaches, 
have demonstrated state-of-the-art performance for many denoising  algorithms17–21. Zhang et al. introduced 
DnCNN, a popular deep convolutional neural network (CNN) for image  denoising22. Other significant contribu-
tions in denoising include deep belief networks (DBN)23, stacked auto-encoders (SAE)24,  CNN25, and non-local 
neural  networks26. CNN-based architectures often excel in handling additive white Gaussian noise (AWGN) 
but may struggle with other types of noise. Additionally, deep learning models for ultrasound image denoising 
often require large training datasets, but denoising autoencoders with convolutional layers have shown promising 
results even with smaller sample  sets24. Another approach to de-speckling ultrasound images is using  PCANet27, 
which has been adapted to include the classical concept of non-local means (NLM)28. The Variational Denoising 
Network (VDN) is a Bayesian-based denoising model that integrates noise estimation with image  denoising29, 30. 
However, deep learning-based image denoising faces a significant challenge of requiring a large amount of data, 
which can be difficult to obtain in acoustic imaging except for medical sonography. Moreover, the training and 
validation process typically involves specific images, making it a sample-specific, computationally expensive, 
and time-consuming approach.

Transform domain filtering methods can be categorized into data-adaptive transform, non-data-adaptive 
transform, block-matching and 3D/4D filtering (BM3D and BM4D)  filters29–31. Transform domain filtering 
methods optimize denoising by first transforming the noisy image into a different domain. This approach lever-
ages specific characteristics and noise properties of the transformed image for effective denoising. In the case 
of the BM4D filter, it performs nonlocal similarity characterizing on a set of consecutive images by utilizing a 
technique called grouping and collaborative filtering. In the grouping stage, groups are formed as 3-D arrays of 
mutually similar blocks extracted from the set of consecutive image frames. Several blocks from the same image 
may be included in a group, naturally taking advantage of the nonlocal similarity. Nonetheless, the majority of 
blocks that are mutually related may often be identified along the temporal dimension. Then collaborative filter-
ing generates unique estimates for each group by compressing the transform domain of the individual group. 
When the prevalence of comparable groups next to one another and the high local correlation of the image 
data are confirmed, each individual group shows correlation in measurements across all dimensions. Applying 
a decorrelating transformation to the grouped data will result in a sparse representation of the true signal. In 
contrast to BM3D filtering, which can introduce artifacts and show limited effectiveness in denoising specific 
image regions, BM4D groups spatiotemporal volumes based on their similarities. In BM4D, the groups are 4D 
stacks of 3D volumes, and collaborative filtering is performed using a separable 4D spatiotemporal transform. 
Due to the extreme sparsity of the 4D group spectrum, the noise reduction achieved in BM4D is more successful 
compared to BM3D. This makes BM4D particularly effective in reducing noise in regions where visual attention 
is mainly focused. This paper introduces a novel image-denoising method named BM4D, which utilizes block 
matching and four-dimensional filtering in the three-dimensional transform domain. The 3D transform offers 
superior mathematical properties compared to commonly used wavelet or contourlet transforms, effectively 
capturing anisotropic image properties at various scales and directions. By extending BM3D into four 4D spaces, 
the method significantly enhances edge and texture details in the images. We applied the 4D block matching 
filter to low-amplitude signal scans with low signal-to-noise ratio and compared its performance with other 
denoising filters (Gaussian, median, and Wiener filters) using peak signal-to-noise ratio (PSNR) and structural 
similarity index measure (SSIM) evaluation.

Theory
BM4D. In the BM4D algorithm, noisy volumetric data is considered as observation z : X → R of the form

Here, in this equation, y is the original, unknown, and volumetric signal, x is a 3-D coordinate belonging to 
the signal domain X ⊂ Z

3, and η(·) ∼ N(0, σ 2) is independent and identically distributed (i.i.d.) Gaussian noise 
with zero means and known standard deviation σ.

BM4D works in two cascading stages, which are a hard-thresholding and a Wiener-filtering stage.

Hard‑thresholding stage. At the Hard-Thresholding Stage, the four-dimensional groups are created by stack-
ing up noisy, three-dimensional cubes identical to Cz

xR
 along a fourth additional dimension. Here, Cz

xR
 denotes a 

cube of L3 where L ∈ N , extracted from noisy observation z at the 3D coordinate xR ∈ X . More specifically, the 
photometric distance is used to calculate how similar two cubes are, which is defined by,

(1)z(x) = y(x)+ η(x), x ∈ X
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where || · ||22 denotes the sum of squared differences between corresponding intensities of the two input cubes, 
and the denominator L3 serves as a normalization factor. No prefiltering is performed before cube matching, so 
the similarity of noise observations can be directly tested. In the grouping step, cubes similar to each other are 
extracted from z and combined to form a group for each cube Cz

xR
 . If the distance between two cubes was not 

larger than the predefined threshold τ htmatch , the two cubes are considered to be similar. Similarly, to Cz
xR , we here 

firstly define a set that contains the indexes for the cubes as follows,

Then, a four-dimensional group is built by the above formula (being 
∐

 the disjoint union operation):

where the reference cube (represented by R) matches a set of similar cubes located in the 3D data. Particularly, 
the coordinates xR and xi correspond to the tail and head of the arrow connecting the cubes in formula (4), 
respectively.

In the collaborative filtering step, a joint four-dimensional transformation Tht
4D was applied to each dimen-

sion of Eq. (5), respectively. Then, by a hard threshold operator γ ht with the threshold σ�4D , the obtained four-
dimensional group spectrum is

Note that since the distance from any cube to itself is always 0, according to the definition of formula (4), 
each formula (5) must contain at least its reference cube. Representing the filter group, it is transformed into 
the following form:

For each unknown volume data y, the estimated Ĉy
xi of the original Cy

xi was extracted separately. Formula (6) 
was an overcomplete representation of the denoising data because cubes in different groups, as well as cubes 
within the same group, are likely to overlap; thus, within the overlapping regions, different cubes provide multi-
ple, and in general different, estimates for the same voxel. In the aggregation step, such redundancy is exploited 
through an adaptive convex combination to produce the basic volumetric estimate

where ωht
xR are group-dependent weights, χxi : X → {0, 1} is the characteristic (indicator) function of the domain 

of Ĉy
xi (i.e., χxi = 1 over the coordinates of the voxels of Ĉy

xi and χxi = 0 elsewhere), and every Ĉy
xi is assumed to be 

zero-padded outside its domain. Note that, whereas in BM3D, a 2-D Kaiser window of the same size as the blocks 
is used to alleviate blocking artefacts in the aggregated estimate, in the proposed BM4D, we do not perform such 
windowing because of the small size of the cubes. The weights in Eq. (7) are defined as

where σ is the standard deviation of the noise in z and Nht
xR

 denotes the number of non-zero coefficients in Eq. 
(5). Since the DC (discrete cosine) coefficient is always retained after thresholding, i.e., Nht

xR
 ≥ 1, the denomina-

tor of Eq. (8) is never zero. The number Nht
xR

 has a double interpretation: on one hand, it measures the sparsity 
of the thresholded spectrum (Eq. 5), and on the other, it approximates the total residual noise variance of the 
group estimate (Eq. 6). As a result, groups with higher correlation levels are rewarded with bigger weights, whilst 
groups with higher residual noise levels are penalized with smaller weights.

Wiener‑filtering stage. Following the preceding step, the BM4D algorithm employs Wiener filtering, which 
is a well-established and widely used adaptive filter in signal  processing32–35. The Wiener filter is known for its 
simplicity, stability, and speed, and has been demonstrated to be an optimal filter in various signal-processing 
applications. Specifically, in BM4D, the Wiener filter is utilized to remove noise from each 3D block of wavelet 
coefficients, allowing the algorithm to estimate the original, clean signal from the noisy input.

where Praw represents the raw data in the detector domain. Denoting µm and σ 2
m  as local mean and local vari-

ance of Praw respectively, v2 as the mean of local variance σ 2
m .  Pwiener is the denoising result after wiener filtering.

(2)d
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)
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Following the above steps, the BM4D filtering process is performed on noisy 3D domain data, and the final 
result is obtained after the Wiener filtering stage.

Flowchart of the algorithm. In this paper, the BM4D algorithm is used to denoise the acquired images 
through the experimental setup of SAM technique. The applied algorithm is further divided into two steps. In 
the first step, the noisy 3D domain data is first grouped by block matching algorithm and step 1 filtered output 
is obtained by hard threshold filtering followed by estimation and aggregation. After that, in the 2nd step, we 
applied the wiener filtering on the output of step 1. The final denoised output image is then collected at the end 
of step 2 after aggregating the filtered blocks in the 4D domain. A flowchart of the working process of the applied 
BM4D algorithm is shown in Fig. 1.

Experimental setup
Figure 2 shows a labelled image of SAM, which is used to acquire images of the sample. SAM uses reflection and 
transmission modes to create images that reveal different features of the sample. An image (Fig. 2) of SAM has 
been annotated and is used for image acquisition. Further details regarding the working principles of these modes 
can be found elsewhere. In this article, we have focused on using the reflection mode to scan the  samples36. A con-
cave spherical sapphire lens rod is frequently used to focus acoustic energy through a coupling medium (in this 
case, water), and ultrasonic signals are generated from a signal generator and sent to the sample. After the waves 
bounce back the signals from the sample, they are detected and converted into a digital signal, which is called 
an A-scan or amplitude scan. To create a C-scan image of the sample, this procedure is performed at different 
locations in the XY plane. Another way to visualize a C-scan is as the combination of A-scans in two dimensions.

A LabView program controlled a custom-built SAM, as depicted in Fig. 2, which incorporated a Standa high-
precision scanning stage (8MTF-200-Motorized XY Microscope Stage) for data collected during the experiment. 
In a previous study by the same group, a comparable experimental arrangement was used to account for inclined 
 samples37. The acoustic imaging capabilities were enabled using National Instruments’ PXIe FPGA modules 
and FlexRIO hardware, which were housed in a PXIe chassis (PXIe-1082) containing an arbitrary waveform 
generator (AT-1212). The transducer was excited using Mexican hat signals and boosted using an RF amplifier 
(AMP018032-T) to amplify the ultrasonic signals. The acoustical reflections produced by the sample surface 
were amplified using a custom-designed amplifier, and then, they were further amplified with a custom-designed 
pre-amplifier and digitized using a 12-bit high-speed (1.6 GS/s) digitizer (NI-5772). For ground truth, a 50 MHz 
focused transducer produced by Olympus was utilized, which had a 6.35 mm aperture and a 12 mm focal length.

For this paper, a series of experimental tests were conducted using a custom desised SAM in conjunction 
with a scanning stage. This stage was utilized to create a custom-designed ultrasonic scanning platform that 
could be controlled using LabVIEW software, as described in detail in  reference38. To implement the ultrasonic 
functionality of the microscope, we. During the experiments, the microscope was focused on a point that was 
approximately in the middle of the sample. To minimize scanning time and turbulence caused by quick trans-
ducer motions, a serpentine mode was employed for stage scanning. The entire experimental setup is illustrated 
in Fig. 2. In the beginning on the experiment a ground truth or reference scan was performed with 0.65  Vpp ( 
maximum 1  Vpp) from the signal generator. Later on, 2 other experiments were performed with 0.24 and 0.25 
 Vpp, respectively. These 2 exepriments were considered as nosiy scanned data.

Figure 1.  This figure illustrates the steps involved in the 4D block matching filter that is performed over noisy 
data, here low amplitude signal 0.24 V signal has been taken as input data and the right-hand side output 
represents the BM4D filtered result.
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Analysis of the output from SAM. For this experiment, a standard Euro 1-cent coin was scanned as a ref-
erence sample at various amplitudes. The scans obtained from the experiment under general conditions contain 
noises which are introduced due to several reasons like environmental parameters, instrument and measure-
ment error and other reasons. Later we tried to remove noises from these scans using the proposed algorithm. 
The ground truth or almost noise-free scan is also obtained from the experiment where all the reading and scan 
parameters are taken in almost ideal conditions to reduce noise parameters. Figure 3 shows the ground truth 
or the reference image which is finally used to compare with the results obtained via various denoising filters.

Qualitative analysis of denoised images. In this paper, we explored different denoising filters to 
enhance the accuracy and obtain noise-free results for the time domain signals. Among the filters tested were 
the Gaussian filter, median filter, Wiener filter, and 4D block matching (BM4D) filter. Notably, the BM4D filter 

XY manual stage 

controller

Ultrasound transducer Digitizer

XY scanning stage

Signal generator

CPU

RF amplifier (Tx)

Z-axis motor controller

Sample container

Z-axis linear motor Amplifier (Rx)

XY stage controller

Trigger optimizer

Vibration absorber

Figure 2.  This figure displays a labelled image of the SAM used for image acquisition, showcasing all the 
essential components that make up a SAM in the experimental setup.

Figure 3.  The figure presented in this context displays two visual representations of the ground truth data 
associated with the Euro 1-cent coin. Left imgae represents an amplitude image and right image representing a 
time domain mesh plot, which presents a three-dimensional visualization of the ground truth data.
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demonstrated promising outcomes, prompting us to further improve the approach by applying the 3D block 
matching filter to the denoised signal.

To evaluate the filters’ effectiveness in handling low-amplitude data, we used two sets of data with amplitudes 
of 0.24Vpp and 0.25Vpp, respectively. Through thorough analysis and comparison, we determined that the BM4D 
filter, along with the supplementary 3D block matching filter, provided the most favorable denoising results, 
making it an excellent choice for enhancing the quality of low-amplitude data in our study.

In Fig. 4, we have presented the results of applying several denoising filters to low-amplitude signal data with 
an amplitude of 0.24Vpp, in order to assess their effectiveness in improving the quality of the output. Specifically, 
we have included an amplitude image and the corresponding line profile at the Y = 201 (shown by the yellow 
line) of the corresponding images, for each of the following denoising filters: (a) the original noisy data, (b) the 
amplitude image after applying a Gaussian filter to the time domain signals of the noisy data, (c) the amplitude 
image after applying a median filter to the time domain signals of the noisy data, (d) the amplitude image after 
applying a Wiener filter to the time domain signals of the noisy data, and (e) the amplitude image after applying 
a 4D block matching filter to the time domain signals of the noisy data.

Figure 4 provides clear evidence that the BM4D filter outperforms other filters in denoising the original noisy 
image. The image quality significantly improves with the BM4D filter, surpassing the results obtained by other 
filters. The line profile analysis further confirms that the BM4D filter effectively reduces total noise in the image. 
Moreover, the BM4D filter manages to retain the image structure while effectively removing most of the noise, 
demonstrating its superior denoising capabilities. This makes the BM4D filter a preferred choice for achieving 
high-quality denoising results in our study.

In Fig. 5, we have provided an assessment of the effectiveness of 4D and 3D block-matching filters in improv-
ing the quality of the output obtained from processing low-amplitude signal data with an amplitude of 0.24Vpp. 
Specifically, the figure includes (a) the original noisy data, (b) the amplitude image after applying a 4D block-
matching (BM4D) filter to the time domain signals of the noisy data, and (c) the amplitude image after applying 
a 3D block-matching (BM3D) filter to the image obtained from filtering the 4D block matching filtered data. 
Additionally, the corresponding line profile at the Y = 201 (shown by the yellow line) of the images is included 
in the figure. After assessing the images in Fig. 5 qualitatively, we can observe that the BM4D filter does remove 
the noises from the original image effectively. But applying the BM3D filter on the denoise image acquired from 
the BM4D algorithm substantially reduces the noises while also retaining image structure and overall quality. 
This assessment can also be verified from the line profile which gives us a general idea of the overall performance 
of the combined BM4D and BM3D filter.

Similarly in Fig. 6, we have presented the results of applying several denoising filters to low amplitude signal 
data with an amplitude of 0.25Vpp, in order to assess their effectiveness in improving the quality of the output. 
Specifically, we have included an amplitude image and the corresponding line profile at the Y = 201 (shown by 
the yellow line) of the corresponding images, for each of the following denoising filters: (a) the original noisy 
data, (b) the amplitude image after applying a Gaussian filter to the time domain signals of the noisy data, (c) the 
amplitude image after applying a median filter to the time domain signals of the noisy data, (d) the amplitude 
image after applying a Wiener filter to the time domain signals of the noisy data, and (e) the amplitude image 
after applying a 4D block matching filter to the time domain signals of the noisy data. Furthermore, Fig. 7f–j 
includes the corresponding line profiles at Y = 201, indicated by the yellow line, for the images.

Figure 4.  The figure illustrates the utilization of multiple denoising filters, including Gaussian, Median, Wiener 
filters, and BM4D on low-amplitude signal data with an amplitude of 0.24Vpp. Each filter’s denoised outputs are 
presented, facilitating a comparison of their noise reduction capabilities and signal clarity enhancement. This 
analysis enables the evaluation of how effectively these filters handle denoising for signals with low amplitudes.
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In Fig. 7, we have provided an assessment of the effectiveness of 4D and 3D block-matching filters in improv-
ing the quality of the output obtained from processing low amplitude signal data with an amplitude of 0.25Vpp. 
Specifically, the figure includes (a) the original noisy data, (b) the amplitude image after applying a 3D block-
matching filter to the time domain signals of the noisy data, (c) the amplitude image is obtained by applying 
a 4D block-matching filter to the time domain signals of the noisy data, and (d) the amplitude image after 
applying a 3D block-matching filter to the image obtained from filtering the 4D block matching filtered data. 

Figure 5.  The figure illustrates the application of three denoising filters, namely BM3D, BM4D, and a combined 
approach of BM4D and BM3D, to low-amplitude signal data with an amplitude of 0.24Vpp. The denoised outputs 
obtained from each filter are displayed to represent their performance in reducing noise and enhancing the 
clarity of the signal. This analysis allows for a comprehensive comparison of the effectiveness of these filters in 
handling low-amplitude signal denoising.

Figure 6.  The figure demonstrates the application of various denoising filters to low-amplitude signal data 
with an amplitude of 0.25Vpp. The denoised outputs obtained from each filter (Gaussian, Median, Weiner filter, 
BM4D) are displayed, enabling a comparison of their performance in reducing noise and enhancing the clarity 
of the signal. This analysis allows us to evaluate the effectiveness of the different filters in handling denoising for 
signals with low amplitudes.
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Additionally, the corresponding line profiles at the Y = 201 (shown by the yellow line) of the images are included 
in the Fig. 7e–h.

The denoising results clearly demonstrate that the BM4D filter is highly effective in reducing noise and 
enhancing the quality of low-amplitude signal data with an amplitude of 0.25Vpp. Compared to other conven-
tional filters like Gaussian, median, and Wiener filters, the BM4D filter shows the best performance in terms of 
noise reduction and preserving image structures. Moreover, the combination of BM4D and BM3D filters yields 
even better results, further enhancing the clarity of the denoised output.

The line profiles of each denoised image also verify the superiority of the BM4D filter in reducing noise. The 
proposed denoising algorithm consistently outperforms other conventional filters, resulting in the most accurate 
and noise-free images. Figures 8 and 9 display the final denoised output of the BM4D filter, presenting denoised 
amplitude and time domain signal plots for both 0.24 Vpp and 0.25 Vpp low amplitude signals. These figures 

Figure 7.  In the presented figure, the denoising process is illustrated for low-amplitude signal data with an 
amplitude of 0.25Vpp. Three different denoising filters, namely BM3D, BM4D, and a combined BM4D and 
BM3D filter, are applied to the input signal.

Figure 8.  The figure illustrates the results of applying the BM4D filter to low-amplitude signals with an 
amplitude of 0.24Vpp. It presents both the amplitude image (left) and the corresponding time domain image 
(right) obtained after the denoising process using the BM4D filter.
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reinforce the effectiveness and robustness of the proposed denoising algorithm in handling low-amplitude data 
and improving the overall image quality.

Quantitative analysis of denoised images. During the evaluation of the filtered output, we encoun-
tered an issue where the noisy data and the ground truth data had slight translation and rotation deviations. 
This misalignment affected the accuracy of peak-signal-to-noise ratio (PSNR) and structural similarity index 
measure (SSIM) evaluations, making it challenging to obtain reliable results.

To overcome this challenge, we utilized an image registration technique implemented through MATLAB. This 
technique allowed us to align the noisy data with the ground truth data accurately, correcting for any translation 
and rotation deviations. As a result, we obtained more precise measurements of PSNR and SSIM, providing a 
more reliable assessment of the denoising performance achieved by the various filters. With the corrected evalu-
ations, we were able to confirm that the BM4D filter yielded the best denoising results, significantly reducing 
noise while preserving the image’s structural details. The line profile analysis further supported the effective-
ness of the BM4D filter in reducing total noise in the image. Overall, the application of the image registration 
technique provided a more comprehensive and accurate evaluation of the denoising algorithms’ performance.

Determining the similarity between the ground truth (reference image) and filtered images is an essen-
tial component for calculating the peak signal-to-noise ratio (PSNR) and structural similarity index measure 
(SSIM)39. A SAM image with appropriate amplitude is chosen as the reference image, while a low amplitude SAM 
image is used as the sensed image. Once these images have been registered, they are compared based on their 
content. After processing the low-amplitude data using various denoising filters, it was necessary to evaluate the 
quality of the output obtained. In this regard, two commonly used measures, namely peak signal-to-noise ratio 
(PSNR) and structural similarity index measure (SSIM), were employed to quantitatively assess the performance 
of the denoising filters.

The PSNR is a commonly used metric to evaluate the quality of a denoised signal by computing the ratio of the 
peak signal power to the mean squared error (MSE) between the original and the denoised signal. Higher PSNR 
values indicate better performance of the denoising filter in preserving the signal quality. Similarly, the SSIM 
measures the structural similarity between the original and the denoised signal by comparing their luminance, 
contrast, and structural information. SSIM values range from 0 to 1, where a value of 1 indicates a perfect match 
between the original and denoised signals. The resulting PSNR and SSIM values obtained from the denoised 
signals of low amplitude data (0.24Vpp and 0.25Vpp) were tabulated in Tables 1 and 2 to facilitate a direct compari-
son of the performance of each denoising filter. This evaluation process ensures the effectiveness of the proposed 
method for improving the quality of noisy signals.

The quantitative analysis based on the PSNR and SSIM values shows that the combined BM4D and BM3D 
filter shows the best result which has the highest PSNR and SSIM values followed by the BM4D filter (Tables 1 
and 2). Other applied conventional filter has lower performance compared to the proposed algorithm. We con-
ducted a comprehensive analysis on the images, varying the amplitude (0.24 V and 0.25 V) of the input signal. 
This approach was adopted to showcase the robustness and effectiveness of the proposed denoising method. The 
results of this analysis are clearly presented in the tables (Tables 1 and 2), providing valuable insights into the 
performance of our method under different signal amplitudes. This in-depth analysis proves that our proposed 
algorithm is best suited to denoise the noisy data acquired from the SAM technique.

Figure 9.  The figure displays the BM4D-filtered data for low-amplitude signals with an amplitude of 0.25Vpp. 
It represents both the amplitude image (left) and the corresponding time domain image (right) obtained after 
applying the BM4D filter.
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Conclusion
In this paper, we have demonstrated a 4D block-matching filter can be used to denoise the scanning acoustic 
microscopic volumetric signals. Here we demonestrated restoring the noisy data obtained at the low-amplitude 
signal scans or noisy images with a low signal-to-noise ratio. The low amplitude signal data scanned are 0.25Vpp 
and 0.24Vpp. We have compared it with various conventional denoising filters such as the Gaussian filter, Median 
filter and Wiener filter and compared the image with our proposed 4D & 3D block matching filter. From the visual 
inspection of the image and pondering over the peak signal-to-noise ratio (PSNR) and structural similarity index 
measure (SSIM) values obtained, it is evident that the proposed block match filter performed better than the 
compared conventional denoising filters when applied over time domain signals. The proposed block matching 
filter would be a good option in image denoising where the signal-to-noise ratio is poor, like in photoacoustic 
imaging (Supplementary Information).

Data availability
The authors declare the availability of the data and codes used in the research to obtain the results reported in 
the manuscript upon reasonable request from the corresponding author.
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