
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14021  | https://doi.org/10.1038/s41598-023-40282-7

www.nature.com/scientificreports

Towards hippocampal navigation 
for brain–computer interfaces
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Automatic wheelchairs directly controlled by brain activity could provide autonomy to severely 
paralyzed individuals. Current approaches mostly rely on non-invasive measures of brain activity and 
translate individual commands into wheelchair movements. For example, an imagined movement of 
the right hand would steer the wheelchair to the right. No research has investigated decoding higher-
order cognitive processes to accomplish wheelchair control. We envision an invasive neural prosthetic 
that could provide input for wheelchair control by decoding navigational intent from hippocampal 
signals. Navigation has been extensively investigated in hippocampal recordings, but not for the 
development of neural prostheses. Here we show that it is possible to train a decoder to classify 
virtual-movement speeds from hippocampal signals recorded during a virtual-navigation task. These 
results represent the first step toward exploring the feasibility of an invasive hippocampal BCI for 
wheelchair control.

Millions of people suffer from paralysis: The inability to move some part of their  body1. In the most severe forms 
of paralysis, e.g. quadriplegia, individuals experience loss of control of their arms, legs, and torso. Paralysis can 
result from several diseases such as spinal cord injuries, transverse myelitis, multiple sclerosis, polio, and amyo-
trophic lateral sclerosis (ALS). These patients require assistance from family members and healthcare profession-
als. As the ability to independently interact with the environment is positively associated with life  satisfaction2, 
it is imperative to develop solutions to provide independence to those with severe paralysis.

Brain–computer Interfaces (BCIs) allow communication between humans and computers without the need 
for muscle movement by decoding neural  signals3. In recent years, researchers have demonstrated the potential 
of BCI to help several patient  groups4. A study surveyed individuals with ALS and found that robotic arm and 
wheelchair control was of the highest priority when it comes to BCI  development5. There has been great progress 
toward the development of robotic arm  prostheses6. Wheelchair control, on the other hand, has received less 
attention from researchers, especially using invasive measures of brain activity.

Non-invasive BCI approaches such as those using electroencephalography (EEG), benefit from being low-risk 
as they record brain activity from outside of the scalp. However, in doing so, these approaches greatly compro-
mise signal quality, spatial resolution, and/or temporal  resolution7. Due to these limitations, EEG-based BCI for 
wheelchair control has not made major progress in recent years.

Many approaches using EEG directly or indirectly depend on eye movement and  blinking8–10, translating 
them into simple directional commands. Eye movement and blinking are not feasible for many ALS  patients4. 
Further, limiting eye movement during navigation would be inconvenient and hinder social interactions. Other 
methods rely on decoding mental tasks or imagery to indicate the intended  movement11–14. For example, imag-
ining mental rotation or left-hand movement to turn left. While using this method can provide high accuracy, 
the rate at which they transfer information is too slow for safe wheelchair use. An invasive BCI leveraging goal-
oriented navigational intent may provide the input necessary for precise, safe, and intuitive wheelchair control. 
Brain–computer interfaces that decode higher-order cognitive processes may provide people with paralysis with 
an intuitive input for controlling external devices, thus promoting independence.

The higher signal-to-noise ratio, temporal resolution, and spatial accuracy of invasively recorded signals may 
allow for the development of improved wheelchair control. So far, all such research we are aware of has been 
conducted with non-human primates. Some studies have used joystick-based BCI paradigms for wheelchair 
 control15,16. Hand movements were decoded from primary motor cortex neurons while the monkey used a 
joystick to control a wheelchair. Rajangam et al.17, on the other hand, showed the capability of rhesus monkeys 
to control a wheelchair based on invasive neural signals without using a joystick paradigm. This is an important 
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step as many paralyzed individuals won’t be able to use a joystick to train the BCI classifiers. Using ensemble 
recordings in premotor and sensorimotor areas, the monkeys were able to control the rotational and translational 
movement of a wheelchair to reach their goal. This approach is promising as it was based on populations of 
neurons that were tuned for whole-body displacement. However, this approach decoded individual movement 
commands issued continuously, instead of decoding high-level planned trajectories.

BCIs based on the decoding of higher-level cognitive processes may provide intuitive and flexible BCI 
control by not requiring continuous input of movement commands. Decoding cognitive processes face many 
challenges, but researchers have had success in decoding decision-related processes  (see18). Further, Mussalam 
et al.19 decoded higher-level goal representations from regions associated with reaching using electrode arrays. 
Of particular relevance, researchers have had great success in decoding navigation-related processes from the 
rodent hippocampus. Brown et al. used neural population activity to decode an accurate prediction of a rodent’s 
two-dimensional position within its  environment20. Agarwal et al.21 extended this finding by showing that self-
location can be decoded using both spiking and LFP activity. Further, researchers have had success decoding 
planned  trajectories22.

While there is a wealth of research demonstrating the decoding of positional and navigational informa-
tion from the hippocampus in rodents, few studies have explored what can be decoded from the human hip-
pocampus. It has been shown that low-frequency oscillations power increases with movement speed in a virtual 
 environment23. Vass et al.24 reported successful decoding of teleportation distance during a virtual-navigation 
task. Another study used microelectrode recordings to decode navigational goal information from spike phases 
from medial-temporal lobe structures, including the  hippocampus25. Another study used a neural network to 
decode real-world movement speed from the hippocampus. Using a rare patient group with wireless intracortical 
electrodes implanted in the hippocampus, Aghajan et al. were able to record real-world ambulatory movement 
whilst recording neural  activity26. They tracked participants’ speed as they were instructed to either walk at a 
slow or fast rate. They used a neural network to predict the top and slowest 30% of movement speeds based on 
spectral data.

Further research is needed to determine which navigational features can be decoded from human hippocam-
pal activity. In the present study, we assess the extent to which virtual-movement speed can be decoded from 
invasively recorded hippocampal activity. Hippocampal activity was recorded during a keyboard-controlled 
virtual-navigation task in three patients. In the main portion of this task, participants navigated a car to three 
different locations (beach, forest, city) to drop off a package, which they had to retrieve again in the following 
trial (Fig. 1). Decoders were then trained to classify virtual speed from the theta and gamma activity. We show 
that, for all three patients, a classifier can discriminate between slow and fast virtual-movement speeds. Further, 
we show a classifier can discriminate between finer-grained speed levels.

In addition to our focus on decoding hippocampal activity for potential applications in wheelchair control for 
paralyzed individuals, we acknowledge the importance of exploring other methods for asynchronous, real-time 
control of virtual game objects, robotic arms, and other assistive devices. There are several invasive and non-
invasive studies that have demonstrated the feasibility of such control  (see4). Our study aims to contribute to this 
growing body of literature by examining the potential of hippocampal activity for BCI control in a virtual naviga-
tion context, laying the groundwork for future research in developing more intuitive and effective BCI solutions.

Results
Decoding slow vs. fast virtual-movement speed. Theta and gamma power from hippocampal con-
tacts were utilized as features in all decoding methods. Using a linear discriminant analysis (LDA), we were able 
to classify the fastest and slowest 10% of speeds above chance level for all participants (Fig. 2). For all patients, 
an equal number of high-speed and low-speed samples were used in classification. For P01, there were 164 

Figure 1.  Virtual Navigation Task. (a) Participant’s view while navigating through the forest environment; (b) 
Top down view of the environment; presented to participants at the beginning. The starting position is indicated 
by the red X; (c) Schematic showing task structure.
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samples each for slow and fast speeds; for P02, there were 179 samples each for slow and fast speeds; and for P03, 
there were 263 samples each for slow and fast speeds. A bootstrap resampling method was used to determine 
significant area under the curve (AUC) value (see “Methods” section). For all three participants, AUC values 
were significantly above chance (p < 0.05) when using theta and gamma features combined with AUC of 0.72, 
0.66, and 0.62 respectively.

Classifying broad speed groups. We then analyzed how well the decoder could perform binary clas-
sifications between graded virtual-movement speeds for patient one. Seven out of ten classifications passed 
significance testing (Fig. 3). Further, we found a significant correlation between the speed difference between 
the classes compared and the decoding accuracy (r(10) = 0.79, p = 0.006), demonstrating that more separation 
between speed ranges lead to higher accuracy.

Discussion
To the best of our knowledge, we are the first to demonstrate that movement speed can be decoded from human 
hippocampal theta utilizing a virtual-navigation task. Decoding the fastest vs slowest 10% of speeds resulted 
in significant decoding accuracy. These findings extend previous results showing that slow and fast movement 
speeds can be decoded during real-world ambulatory  movement26. Further, we were able to classify between 

Figure 2.  ROC curve for top vs bottom 10% of speeds. ROC plot showing classification of top vs bottom 10% of 
speeds. The area under the curve (AUC) for each patient is reported in the bottom right.

Figure 3.  AUC’s for binary classifications of speed bins in patient one. Matrix showing classification results for 
binary classification between speed groups. Each square shows the AUC value resulting from the classification of 
the speeds labelled in the corresponding row and column. Significantly above chance AUC values marked with 
asterisk; multiple comparisons correction was performed with the maxT test.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14021  | https://doi.org/10.1038/s41598-023-40282-7

www.nature.com/scientificreports/

broad speed groups. These findings suggest that it’s possible to decode a range of speeds from hippocampal activ-
ity. Additionally, larger differences between the speed classes led to improved classification.

Unlike conventional EEG-based wheelchair designs that support only discrete control, our methodology offers 
a potential advantage by providing continuous decoding of movement speed. Decoding of discrete states may be 
insufficient for generating continuous, smoothly varying trajectories that can change at a moment’s notice. By 
contrast, our study aims to decode continuous movement speed in real-time from the hippocampus, a feature 
that has not been previously attempted in the context of BCI control. Incorporating decoded movement speed 
may aid in the development of effective and safe BCI wheelchair control methods.

Due to the naturalistic task design, our dataset is not perfectly balanced in terms of the time spent at various 
speeds. Furthermore, movement speed might be entangled with other factors during driving, such as turning 
intensity. While we aim to directly decode navigational behavior, high decoding accuracy can be achieved using 
secondary signals such as motor imagery or neurofeedback  paradigm4. To improve performance, future research 
should explore how other features may improve virtual-movement speed decoding accuracy; for example, by 
including additional neural features and brain locations. To assess the feasibility of this method to be used in BCI 
it is important to assess which other higher-order navigational features, such as direction and self-location, can 
be decoded from human sEEG recordings as well as if such features can be decoded from imagined navigation.

These results represent the first step towards exploring the feasibility of using hippocampal signals, measured 
with intracranial depth electrodes, for a navigational neural prosthesis. This line of research may one day greatly 
benefit those suffering from paralysis, e.g. by enabling the development of a hippocampus-based cognitive BCI 
for wheelchair control.

Methods
Participants. Three participants (one female, two male, 24, 26, and 46 years of age) with pharmaco-resist-
ant epilepsy were implanted with sEEG electrodes at the Maastricht University Medical Center (Fig. 4). These 
patients did not experience paralysis or significant motor impairments. The choice of participants with epilepsy 
in this study was to leverage the opportunity of sEEG recordings in a clinical setting as a proof-of-concept for 
decoding hippocampal activity related to navigation. This study is not intended to provide immediate benefits to 
the epilepsy patients but rather to lay the groundwork for potential future applications in patients with paralysis 
or motor impairments. Implantation locations were based solely on clinical evaluation and confirmed using 
post-implantation computed tomography.

Stereo-electroencephalography (sEEG) electrode implantation has been used to treat epilepsy, and the risks 
associated with the procedure have been systematically  reviewed27. In cases of refractory epilepsy, the benefits 
of sEEG implantation for seizure control have been demonstrated to outweigh the associated risks. Similarly, 
we believe that for patients experiencing paralysis, the potential to regain the ability to move through the use of 
a hippocampal BCI could also outweigh the risks associated with the implantation procedure. It is important to 
note that the patients in our study received the sEEG implants for the primary purpose of treating their epilepsy, 
and not for the purpose of BCI control. The study was approved by the Medical Ethics Review Committee of 
Maastricht University Medical Center and the local commission of Epilepsy Center Kempenhaeghe. Patients 
provided informed consent in accordance with the principles of the Declaration of Helsinki. After electrode 
implantation, the patient was transferred to the epilepsy monitoring unit at Epilepsy Center Kempenhaeghe.

Data acquisition. All patients were implanted with bilateral hippocampal electrodes. All electrodes were 
DIXI MicroDeep electrodes (DIXI Medical, France). Electrodes had a diameter of 0.8 mm, a contact length of 
2 mm, and a 1.5 mm intercontact distance. A Micromed amplifier was used to record data (Micromed, Italy, 
1024 Hz sampling rate). Contacts were referenced to a common white matter contact. Task and neural data were 
synced via  LabStreamingLayer28.

Pre-operative three-tesla brain magnetic resonance imaging (MRI) and postoperative computed tomography 
(CT) were co-registered. An open-source Python package was then used to identify and label electrode locations 
within the  hippocampus29. Participants had 11, 5, and 7 contacts within the right hippocampus and 3, 5, and 4 
contacts in the left hippocampus, respectively.

Figure 4.  sEEG implantation locations. Electrodes inserted using stereotactically guided implantation. 
Electrode locations superimposed over the patient’s reconstructed brain from MRI.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14021  | https://doi.org/10.1038/s41598-023-40282-7

www.nature.com/scientificreports/

Procedure and task. The participants played a third-person delivery driver navigation video game on a 
laptop in their hospital room. A virtual environment was used because the patient was constrained to their 
hospital bed during the task. The game was custom-built using the Unity 3D game development platform (Unity 
Technologies, San Francisco, CA). The patient used the laptop keyboard, with the up/down keys controlling the 
speed of the car and the right/left keys controlling the turning direction, to drive through the three-dimensional 
virtual environment (Fig. 1a). Virtual movement speed refers to the rate at which the virtual vehicle traverses the 
environment. As the vehicle remains centered on the screen, the speed is determined by the movement of the 
surrounding environment, which provides a perception of displacement. While the forward key was pressed, the 
vehicle would accelerate at a steady rate before reaching maximum speed. Importantly, this means that there are 
no more key presses during fast speeds than during slow speeds. If the patient turned while driving too quickly, 
the car would tip over and reorient after a short delay, thus influencing the participant to regulate their speed. 
In addition to speed, the environment and task were designed to test whether it is possible to decode several 
features including direction, distance traveled, distance from boundaries, visual cues, self-location, path, and 
navigational planning.

The virtual environment consisted of a central loop with access to three visually distinct zones: a forest, city, 
and lake. The view of the three environmental zones was obstructed while on the central road to encourage 
participants to rely on their internal cognitive map, rather than simply responding to visual stimuli. First, the 
participant was presented with the keyboard controls and shown a top-down view of the environment (Fig. 1B). 
Next, participants were given unlimited time to freely explore to familiarize themselves with the environment 
and controls (172, 318, and 224 s, respectively). They were then presented with the task instructions. Subse-
quently, the primary task consisted of twelve trials each containing two phases: drop off and pick up (652, 559, 
and 1079 s, respectively). The car was reset to the starting position at the start of each phase (Fig. 1B, red ‘X’). 
During the drop-off phase, the patient was asked to drop off a package at one of three randomly selected zones. 
The package was automatically dropped off after either a short or long distance upon entering the target zone, 
regardless of the path they chose to take. Next, during the pick-up phase, the patient was instructed to navigate 
to the location of the package they dropped off in the preceding drop-off phase. Upon reaching the package, the 
patient was awarded points based on taking the optimal route and they were reset to the next drop-off phase.

Data pre-processing. The linear trend was removed from the sEEG signals during a given session. To 
be used in decoding analyses, dynamic power in the theta (4–8 Hz) and gamma (52–99 Hz) frequencies were 
extracted. A Butterworth bandstop zero-phase (two-pass forward and reverse) non-causal filter and Hilbert 
transform were used to achieve continuous power signals.

These bands were chosen as the theta band is known to contain information about navigational processes 
and the gamma band closely resembles ensemble  spiking30 which could also provide localized information about 
hippocampal processes. Spectral power and driving speed were windowed into one-second bins with a half-
second overlap by calculating the mean of each bin. This way, each window of neural activity was assigned the 
corresponding speed value. Theta and gamma power were then log-transformed and z-scored across temporal 
windows.

Decoding analysis. For each participant, a separate classifier was trained and tested, using a ten-fold cross-
validation scheme performed within each participant’s data. In this method, 9/10 of the data are used to fit the 
model and the remaining 1/10 is used for evaluation. This is repeated until each sample was used for testing 
exactly once. To classify movement speeds, linear discriminant analyses (LDA) were  used31. LDA was chosen 
because of its resilience toward unbalanced data  sets32. We used shrinkage regularization with the shrinkage 
parameter determined by the analytical procedure described  in33.

Classifier performance was evaluated by plotting receiver operating characteristic (ROC) curves and calculat-
ing the corresponding area under the curve (AUC)34. To determine if classifier performance was above chance 
level, a bootstrapping resampling method was employed to estimate the null hypothesis distribution. In this 
method, labels were shifted 1000 times, and data were re-analyzed using the LDA; AUCs were then calculated 
for each replication. Shifting the data, rather than shuffling, was used to account for temporal autocorrelation 
between the neural and the speed data. AUCs that fell outside of the 95% confidence interval based on the null 
hypothesis were considered significant after correcting for multiple comparisons using the maxT  test35).

To decode slow vs. fast virtual-movement speeds, neural signals were either labeled slow (slowest 10% of 
virtual-movement speeds) or fast (fastest 10% of virtual-movement speeds). Neural signals included theta and 
gamma power from the contacts located within the hippocampus. An LDA classifier was then trained to classify 
a range of virtual-movement speeds. For this analysis, speed data were discretized into five virtual-movement 
speed categories, each incorporating ten-speed units (e.g. 10–20 units/second, 20–30 units/second, etc.). We 
then performed ten binary classifications for each combination of the speed classes.

Data availability
Data available on request to the corresponding author.
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