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Virtual reality for assessing 
stereopsis performance and eye 
characteristics in Post‑COVID
Wolfgang Mehringer 1*, Maike Stoeve 1, Daniel Krauss 1, Matthias Ring 1, Fritz Steussloff 2, 
Moritz Güttes 2, Julia Zott 2, Bettina Hohberger 2,4, Georg Michelson 2,3,4 & Bjoern Eskofier 1,4

In 2019, we faced a pandemic due to the coronavirus disease (COVID-19), with millions of confirmed 
cases and reported deaths. Even in recovered patients, symptoms can be persistent over weeks, 
termed Post-COVID. In addition to common symptoms of fatigue, muscle weakness, and cognitive 
impairments, visual impairments have been reported. Automatic classification of COVID and Post-
COVID is researched based on blood samples and radiation-based procedures, among others. 
However, a symptom-oriented assessment for visual impairments is still missing. Thus, we propose a 
Virtual Reality environment in which stereoscopic stimuli are displayed to test the patient’s stereopsis 
performance. While performing the visual tasks, the eyes’ gaze and pupil diameter are recorded. 
We collected data from 15 controls and 20 Post-COVID patients in a study. Therefrom, we extracted 
features of three main data groups, stereopsis performance, pupil diameter, and gaze behavior, and 
trained various classifiers. The Random Forest classifier achieved the best result with 71% accuracy. 
The recorded data support the classification result showing worse stereopsis performance and eye 
movement alterations in Post-COVID. There are limitations in the study design, comprising a small 
sample size and the use of an eye tracking system.

In 2019 a new Coronaviridae virus was detected called the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), which led to a pandemic of the coronavirus disease 2019 (COVID-19)1,2. By the time of writing 
this manuscript, the total confirmed cases exceeded 760 million, and over 6.8 million deaths were reported3,4. 
Although it is called a respiratory disease, studies confirmed that multiple organs are involved in the infection’s 
acute phase, affording a multidisciplinary approach to the diagnosis and treatment. Symptoms include but are 
not limited to fatigue, muscle weakness, cognitive dysfunction, gastrointestinal symptoms, pulmonary symptoms, 
inflammation, etc.5–7.

These symptoms can persist for over 12 weeks5,8,9. According to recent definitions, if symptoms persist 
between four and 12 weeks after the acute phase of COVID-19, it is called Ongoing symptomatic COVID-19. 
If symptoms persist over 12 weeks, it is called Post-COVID-19 syndrome (Post-COVID)5,8,9. The most com-
monly reported symptoms in ongoing symptomatic COVID-19 are fatigue, cognitive dysfunction, and muscle 
weakness10–13. However, multiple studies showed persistent gastrointestinal symptoms, pulmonary symptoms, 
myocardial inflammation, and other neuropsychiatric manifestations7,14–18

Even in Post-COVID, fatigue, muscle weakness, and cognitive dysfunction are the main reported 
symptoms8,19. Lu et al. showed micro-structural changes in the central nervous system after 3 months leading to 
memory issues or smell loss, potentially also explaining the cognitive dysfunction20. This is supported by Voruz 
et al.21, who concluded from their study data that the nervous system is affected, and Wu et al.22, who observed 
damage to the nervous system. Other studies observed fatigue, muscle weakness, difficulties in concentration, 
and headaches after an extended period of 6 months23,24. Crivelli et al.25 even stated that cognitive impairments 
could last up to 7 months after COVID.

Accompanied by the damaged nervous system, altered eye movements26,27 and pupil responses28,29 can occur, 
potentially leading to reduced stereopsis performance. This highlights the importance of visual performance 
for Post-COVID.
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Although the prevalence seems unclear, the number of patients with Post-COVID is considerable and can 
exert pressure on the healthcare system30,31. Especially the long course of Post-COVID and the accompanied 
limitations in daily activities might lead to societal issues32,33. Thus, efficiently assessing and managing Post-
COVID patients is crucial. Due to multiple organs being involved and a fuzzy disease pattern, assessment and 
management are symptom-oriented, multidisciplinary, and a diagnosis of exclusion (i.e., exclusion of other causes 
of illness by multiple assessment procedures), including chest imaging, blood samples, pulmonary function tests, 
among many other procedures5,9,34–36. Therefore, several interesting approaches can be found that try to find new 
objective measurements for COVID, Ongoing symptomatic COVID-19, and Post-COVID for further insights 
into how the organism is affected but also approaches that try to classify a patient to automatically support the 
diagnosis of exclusion.

This paper presents a new method combining eye tracking and stereoscopic tasks to gain more knowledge 
about ocular functions and cognitive impairments in Post-COVID patients. Furthermore, we provide a visual 
and cognitive symptom-oriented assessment procedure. We used a Virtual Reality (VR) environment to show 
the stereoscopic visual stimuli. The stimuli vary in levels of difficulty. Accordingly, we can measure the reaction 
time and accuracy of responses for each difficulty and compare the results. The pupil diameter and gaze were 
continuously tracked while the participant responded to the stimuli to measure and evaluate the influence of 
stereoscopic visual stimuli on these parameters. We trained machine learning models to test the feasibility of 
classifying Post-COVID. Machine learning models are algorithms that can learn from data without a human 
having to program their behavior explicitly37. Thus, we provide the collected data and the so-called labels that 
experts created declaring the data as belonging to a control or a Post-COVID patient. Our work, therefore, 
contributes as follows:

•	 It describes a visual and cognitive symptom-oriented assessment procedure;
•	 It provides features resulting from the eye tracking and stereopsis performance data;
•	 It proposes a classification pipeline to distinguish controls from Post-COVID patients.

Related work
In the following section, we will show and discuss related work already applying machine learning approaches to 
the classification of COVID. We also address results on ocular manifestations this work is based on. Furthermore, 
we highlight the previous work of our team that was also used in the presented approach38–43.

COVID assessment using machine learning
Abunadi et al.44 developed a classification algorithm that automatically detects COVID in patients based on 
chest Computed Tomography (CT) images. They trained a deep convolutional neural network based on publicly 
available radiology image datasets and reached a performance of approximately 94%. Although this algorithm 
is designed for detecting COVID and not Post-COVID, it would be possible to monitor the changes in chest 
CT and use the tool for patient management. Phetsouphanh et al.45 observed activated innate immune cells in 
Long-COVID (meaning Ongoing symptomatic COVID-19) patients compared to other COVID recovered not 
showing persistent symptoms. Based on their findings, they built a linear classification model to differentiate 
between the two study populations reaching an accuracy of about 82%. They concluded that the immunological 
parameters could help develop prevention and treatment possibilities. These are two examples from multiple 
approaches applying classification or other machine learning algorithms to COVID-19. As shown by Khan et al.46 
and Meraihi et al.47, CT or X-Ray images are often used for these algorithms.

Nevertheless, the examples are invasive (i.e., blood samples) or emitting radiation (i.e., CT scans). Thus, they 
are at least inconvenient if applied regularly to patients. Furthermore, since the current practice tends to be based 
on a diagnosis of exclusion, additional symptom-oriented assessment tools might be beneficial. Consequently, 
studies suggest further investigation to find objective measures to improve patient assessment and management 
for COVID, Ongoing symptomatic COVID-19, and Post-COVID36,48,49.

Ocular manifestations
As indicated above, common symptoms of Post-COVID are fatigue, muscle weakness, and difficulty concentrat-
ing, but many other symptoms were also observed. For example, ocular impairments in COVID patients (often 
due to retinal manifestations in vein occlusions) were reported, potentially leading to visual impairment50–57. 
Brantl et al.58 found no significant changes in the visual functions after three months. However, they also state 
that the database is insufficient to be certain. Yong59 revealed that the brainstem is affected, and Long-COVID 
symptoms are persistent due to the slow regeneration of these cells. Furthermore, brainstem lesions can lead to 
altered eye movement behavior, in particular the peak velocity of the eyes27. Garcia Cena et al.26 also found that 
the time to react to a stimulus is prolonged.

Further, alterations in pupil responses were found. Bitirgen et al.28 found a higher latency and lower duration 
of pupil contraction in Long-COVID, which appears to be correlated with the symptom severity. Yurttaser Ocak 
et al.29 found that the dilation speed is reduced in COVID patients. Although Bitirgen et al.28 stated that the 
alterations could be measured in Long-COVID patients, Yurttaser Ocak et al.29 contradicted that the alterations 
are not present three months after the acute phase of COVID. Thus, the effects of COVID on ocular functions 
appear contentious and interesting to investigate further.
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Cognitive assessment
As stated in the “Introduction”, the difficulties in concentrating seem to originate from the involvement of the 
nervous system. The general term brain fog is used for difficulties in concentrating and fatigue. Multiple differ-
ent self-report scales are available to assess brain fog in which the patients rate their state5,60,61. However, Lynch 
et al.62 doubt the usefulness of such scales.

In previous work, we showed methods for creating cognitively demanding purely stereoscopic visual tasks 
in which different difficulty levels influence participants’ reaction time38–43. Consequently, we hypothesize that 
these methods could also be used to quantify the cognitive impairment of Post-COVID patients.

Although there already exist approaches to automatically classify patients to support the diagnosis of exclu-
sion, to the best of our knowledge, there is no work objectively assessing ocular changes and cognitive impair-
ment. However, due to the involvement of the nervous system, we expect measurable effects on both ocular 
functions and cognitive performance. Therefore, these measurable effects could serve as features for classification 
algorithms.

Materials and methods
In the following section, we present our approach. First, the used hardware is briefly described, followed by the 
created virtual environment. Furthermore, the study design and procedure are explained. Finally, the data pre-
processing, feature extraction, classification pipeline, and evaluation are specified.

VR headset
To display the VR environment, we used the HTC Vive Pro Eye (HTC Corporation, Taoyuan, Taiwan). The 
headset contains two 3.5″ OLED displays at a resolution of 1440 × 1600 pixels each, and a refresh rate of 90 Hz. 
According to the manufacturer, the field of view (FoV) is 110◦ . To account for a user’s interpupillary distance 
(IPD), the distance between the lenses can be adjusted to 60–73 mm. The headset also contains a built-in Tobii 
eye tracking system (Tobii AB, Danderyd, Sweden) with a 120 Hz sampling rate and an accuracy of 0.5–1.1◦ 
within 20◦ FoV. In addition, the headset’s movements are tracked in 3D space using HTC’s base stations.

As mentioned, we aimed for purely stereoscopic visual stimuli with different difficulty levels. The difficulty 
level in a stereoscopic visual stimulus can be expressed as disparity difference38,39 which is shown in Fig. 1. The 
smaller the disparity difference, the harder it is to differentiate which ball is closer. Thus, the smaller the disparity, 
the better the stereopsis. If we focus on an object, the included angle between the object and the two eyes defines 
a disparity. If two objects are visible, two disparities can be retrieved. Subtracting the two disparities yields the 
disparity difference, representing the difficulty level and given in seconds of arc (arcsec or ″). Disparities are 
rendered by disparate image points on the projection plane63. Thus, the minimum disparity and the minimum 
disparity difference depend on the pixel spacing of the headset. Therefore, we followed the assumption made in 
our previous work, which is the following39: The horizontal resolution of 1440 pixels each display is shown across 
an FoV of 110◦ . Consequently, the minimum disparity difference ddmin can be expressed as

According to Eq. (1), the minimum disparity difference ddmin is 275″ per pixel. We only allowed multiples of this 
value to create different difficulty levels. Richard Musil states that the FoV given by the manufacturer is too high 
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Figure 1.   Definition of the disparity difference. The included angle between an object and the two eyes 
describes a disparity. Object A and B define different disparity values. The difference between those disparities 
defines the level of difficulty in our system. D defines the distance from user to object A and D +�d describes 
the distance from user to object B. Object B shows no horizontal shift and is half the IPD (i.e., a

2
 ) away from each 

eye. Object A is horizontally shifted by e. Image based on39.
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and is, in fact, at about 107◦ which would result in approximately 268″ (see https://​risa2​000.​github.​io/​hmdgdb/). 
Nevertheless, we decided to stick with the manufacturer’s specification since the discrepancy is subtle.

VR environment and stimulus
We used the Unreal Engine Version 4.26 by Epic Games (Epic Games, Inc., Raleigh, USA) to create the VR 
environment and the stimulus. The environment consisted of stadium-like surroundings depicted in Fig. 2a. 
This sport-like environment was due to the previous works from Paulus et al.42, and Schoemann et al.43 that this 
work was based on. Furthermore, rich environments are said to be motivating. Neumann et al.64 showed this 
fact, especially emphasizing sports-related tasks.

The visual stimulus consisted of four balls in a rhombus-like arrangement shown in Fig. 2a. The balls had a 
distance of 200 cm from the user, and each ball was created using the standard sphere mesh with the 3D scale 
factor set to 0.25, resulting in a diameter of 25 cm which resembled a small football. This ball size was experimen-
tally found convenient to look at at the given distance. The middle of the balls’ rhombus arrangement marked 
the center of the stimulus, which defined the overall position of the stimulus pstim . This center was not visible to 
the user. The distance of each ball to the center was 25 cm either vertically or horizontally. Thus, the four balls 
were defined as BallUp , BallDown , BallLeft , and BallRight . These definitions were later used to identify which ball 
the user was looking at.

The stimulus was tested in nine positions. Figure 2a shows the central position where the stimulus was 
floating directly in front of the user. Additionally, eight peripheral positions were defined by spherical coor-
dinates. The black crosses in Fig. 2b represent all nine test positions. The radius r given in spherical coordi-
nates marked the distance between the user and stimulus; as mentioned, this was 200 cm. The inclination 
angle θ was set to 10◦ . This value was experimentally chosen since values above 10◦ cannot be displayed cor-
rectly without distortions induced by the lenses in the VR headset. We defined eight equidistant azimuth angles 
ϕ ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦} . Hence, the position pstim of the stimulus could be retrieved using 
the formula

The Eq. (2) results from a differently defined coordinate system in the Unreal Engine (x-forward, y-right, z-up). 
Thus, the common spherical transformation equation for retrieving cartesian coordinates was rotated by 90◦ 
around the y-axis.

Therefore, it was possible to define nine different testing positions within the FoV of the user, namely the eight 
peripheral positions Down, Lower Right, Right, Upper Right, Up, Upper Left, Left, and Lower Left here given in 
the same order as ϕ , and the Central position that could also be calculated using Eq. (2) with both θ and ϕ set to 
0 ◦ . To avoid losing sight of the stimulus and to ensure that the user had to shift the gaze to focus on the different 
stimulus positions, it followed the user’s head rotation and position so that the relative position to the user was 
always preserved. One of the authors patented this procedure in Europe, and a patent is pending in the US65,66.

As shown in Fig. 1, a disparity difference corresponds to a different distance of the objects depicted as D and 
�d . In our case, one of the balls was closer to the user than the other three balls, which were at the initial 200 cm 
distance. To calculate D for the closer ball based on a given multiple of the minimum disparity difference ddmin , 
we used the following assumptions that can be found in Fig. 1: The disparity difference � is the difference between 
the two disparities �A and �B and was set to a multiple of ddmin.

�B is known since D +�d was given (i.e., 200 cm), and according to Jan Paulus67, we could set the IPD to the 
mean human IPD of 6.3 cm because the observer distance D +�d is significantly larger than the IPD. Thus, the 
small interindividual changes in the IPD will have a negligible effect. Hence, we calculated �B using

(2)�pstim = r ·

(

cos θ

sin ϕ · cos θ
− cosϕ · sin θ

)

.

(3)� = �A −�B.

Figure 2.   VR environment and stimulus.

https://risa2000.github.io/hmdgdb/
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where a denotes the IPD in accordance with Fig. 1. Since �A is shifted horizontally by e, we accounted for that 
by defining the distance of object A to each eye by

�A could be calculated by using

Since �A is a subtraction of two angles, we could apply the addition theorem of the tangent. By reformulating 
Eq. (3) and multiplying both sides with the tangent, we receive

For simplification, we substituted the left-hand side of Eq. (7) with c1 as constant and we also reformulated this 
equation to obtain

We defined two more constants c2 and c3 (see Eq. 9) to finally obtain the quadratic equation shown in Eq. (10).

We could now solve the quadratic equation for D.
Since solving this quadratic equation resulted in two values for D, we checked whether the result was smaller 

than the initial D +�d (i.e., 200 cm) or larger and only kept D that was smaller. We applied this formula to 
calculate D for each of the nine testing positions.

As described in our previous work, a positional change of an object will result in monocular depth cues due 
to the size of known objects and the linear perspective39. To account for that, we applied the same correction to 
the size of known objects by scaling down the closer ball by the factor s (see Eq. 11), which was applied to the 
3D scale of the ball’s mesh with

The linear perspective was solved by adding a random variation to each ball. Each ball received a random vari-
ation between 0 and 2 cm (i.e., empirically evaluated) each time a new stimulus was created. This variation was 
horizontally added to or subtracted from the balls’ position of BallLeft and BallRight and vertically added to or 
subtracted from the balls’ position of BallUp and BallDown . This random variation veiled the effect of linear per-
spective by creating different views for each ball.

The remaining monocular depth cues listed in our previous work were addressed in the following way39: The 
cue overlay of contours was canceled out by avoiding overlaps in the scene. The cue distribution of highlights and 
shadows was avoided by not casting shadows and using one light source that was far away (i.e., the sun in the sky 
sphere). The aerial perspective was not rendered in the scene. Finally, the motion parallax was avoided by attaching 
the stimulus to the user’s head rotation and position so that the relative position to the user was always preserved.

Study design and procedure
The study 2490-PC-2021-V14 ”Discover-Establishment and evaluation of clinical algorithms for objective diagnosis 
of subtypes of Long-COVID as an essential basis for effective patient care” was designed as a prospective case-
control study at the Department of Ophthalmology, University of Erlangen-Nürnberg, Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU). Thirty-five subjects were recruited for this pilot study: 20 patients with 
Post-COVID (age: 29±4 years, gender eight female, 12 male) and 15 controls (age: 25±2 years, gender eight 
female, seven male). Post-COVID syndrome is defined as persistence of symptoms ≥ 12 weeks after SARS-
CoV-2 infection to the S1 Guideline9. SARS-CoV-2 infection was confirmed by a positive real-time reverse 
transcription polymerase chain reaction test. Persistency of Post-COVID symptoms was 389.25±189.34 days at 
recruitment. Anamnestic data of self-reported Post-COVID symptoms were recorded. The patients underwent 
an ophthalmic examination (e.g., measurement of best-corrected visual acuity (BCVA), non-contact intraocular 
pressure (IOP)) next to serological and internal examinations. Best-corrected visual acuity was 1.0±0.0 (Post-
COVID patients) and 1.0±0.0 (controls). The spherical equivalent was −0.12±0.49 (Post-COVID patients) and 
−0.62±1.92 (controls). The most common self-reported Post-COVID symptoms in the present cohort were 
post-exertional malaise (100%), muscular pain (100%), headache (100%), and a Bell Score of 36.50±10.27. The 
Bell Score defines the disability extent caused by chronic fatigue syndrome by giving points ranging from 100 to 
zero, where 100 means no symptoms and zero symbolizes a patient requiring assistance to get out of bed68. No 

(4)�B = 2 · tan−1

(

a

2 · (D +�d)

)

,

(5)l1 = |e|, l2 = |e| + |a|.

(6)�A = tan
−1

(

l2

D

)

− tan
−1

(
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D

)

.

(7)tan (�+�B) =
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D

D2+l1·l2
D2

.

(8)c1 · D
2 + (l1 − l2) · D + c1 · l1 · l2 = 0.
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(10)c1 · D
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local or systemic disorders with retinal affection were recorded within this cohort. The study was approved by 
the Ethics Committee of the Friedrich-Alexander-Universität Erlangen-Nürnberg (see https://​www.​ethik​kommi​
ssion.​fau.​de/, protocol code: 295_20 B), and written informed consent was obtained from all participants involved 
in the study following the declaration of Helsinki. We confirm that all methods were performed in accordance 
with the relevant guidelines and regulations.

Before starting the VR program, the participants were all introduced to the VR headset. Thereon, the VR 
environment and the stimulus were explained using similar images like Fig. 2a. The participants were instructed 
to use the arrow keys on a wired keyboard to decide which ball was closer. Thus, the keyboard was also shown 
and placed in front of them on a desk.

Participants with spectacles were asked to participate without spectacles since this might influence the accu-
racy of the eye tracking system. During the first trial (see below), we only asked if the image was sharp enough 
to see the balls and identify a difference. Therefore, we considered their performance as a confirmation of their 
statement.

After the pre-tests, the participants were advised to wear and familiarize themselves with the headset. We 
used a PC with an AMD Ryzen 9 CPU, 32 GB RAM, and RTX2070 graphics card. Subsequently, HTC’s SRanipal 
runtime (version 1.3.1.1) was used to perform a 5-point calibration for the eye tracking system. The calibration 
procedure additionally checked the IPD settings and headset positioning on the head to achieve optimal headset 
configuration and positioning.

After finishing the calibration, each participant completed three trials of the test paradigm. At the beginning 
of each trial, the four target balls were on the same level, so no disparity difference was set. This was entitled 
the idle phase. The participant could start the trial by pressing one of the arrow keys. Each trial consisted of 81 
stereoscopic visual stimuli (explained in “VR environment and stimulus” section) resulting from three tested 
disparities ∈ {275, 550, 1100} , the nine testing positions, and three repetitions of the combinations of each dis-
parity and testing position. The order of the 81 stereoscopic tasks was random. In each trial, the participant was 
to identify the closer ball and press the appropriate arrow key on the keyboard as fast as possible. The first trial 
was performed to familiarize the participants with the task and program. The second trial was considered train-
ing the system so that learning effects could be avoided. Then, the data from the third trial were considered for 
further processing. Suppose a low performance close to random guessing occurred (i.e., 25% of stimuli correctly 
identified) in the first and second trials. In that case, the participant could have been excluded from the study as 
unable to perceive the depth information. This did not occur in our study population.

We intentionally decided on this number of disparities, stimulus repetitions, and testing positions because 
patients already underwent multiple assessments taking part in the study. Thus, we did not want to overburden 
the participants but provide them with a proper familiarization and training phase. This is why we repeated the 
whole test three times. Moreover, we intentionally wanted to test the system’s sensitivity to variability in the data 
based on a short testing time. The disparities were chosen based on the two most difficult, resulting in 275″ and 
550″. The additional choice of 1100″ was also to test an easier disparity.

For each trial, we recorded 81 responses to the stereoscopic visual stimuli. Each response consisted of the 
reaction time (i.e., time from stimulus onset until an arrow key was pressed), correctness (i.e., whether the closer 
ball was correctly identified), the disparity setting, and the testing position. While performing the stereoscopic 
visual stimuli, the pupil diameter, the gaze direction, and the gaze origin for both eyes were recorded. Therefore, 
we used HTC’s SRanipal plugin for Unreal (version 1.3.3.0). The eye tracking data were synchronously sampled 
with the frame rate of the VR environment’s rendering (tick event in the Unreal-Engine). The pupil diameter 
was recorded in millimeters for the left and right eye. In addition, gaze direction and gaze origin were recorded 
as 3D vectors. The origin defines the position of the left or right eye in the VR environment. The gaze direction 
describes a normalized vector following the gaze of the left or right eye inside the VR environment. Based on the 
gaze direction, the fixated ball was extracted so that for each sampling point BallUp , BallDown , BallLeft , BallRight or 
(in case non of the balls were fixated) nan was recorded. Furthermore, the SRanipal plugin provides an eye open-
ness value for the left and right eye where 1 denoted an open eye and 0 a closed eye. Hence, the data consisted 
of three groups, namely stereopsis performance, pupil diameter, and gaze behavior.

Therefore, this system measures the reaction time and accuracy over different difficulty levels in the stereo-
scopic visual stimuli (i.e., the different disparities). It also measures the pupil response and gaze over different 
difficulty levels. Accordingly, we evaluate how the two groups perform at each disparity and how they perform 
across the disparities to compare the groups’ results. Additionally, we evaluate how the pupil response and gaze 
change across the different disparities and groups. We do not measure and evaluate the best stereoacuity.

For better visualization and ease of understanding, the flowchart of the study design is shown in Fig. 3.

Data pre‑processing
To extract the pupil diameter and gaze behavior data, we performed pre-processing to account for noise and 
artifacts (due to blinking). Furthermore, we adapted the pipeline by Stoeve et al.69 based on the pipeline of Kret 
and Sjak-Shie70 to enhance the signal quality of the pupil diameter data. We excluded all blinks and non-valid 
samples from both data groups. The blinks were identified using the eye openness parameter. If the value was 
below 0.1, the sample was marked as a blink, according to Alsaeedi et al.71. Since we did not further process the 
information on blinks, we retained their initial threshold of 0.1.

Pupil diameter data
For pre-processing the pupil diameter data, we applied the filtering techniques explained by Kret and Sjak-Shie70. 
The following brief list highlights the five raw pupil diameter data filtering steps70:

https://www.ethikkommission.fau.de/
https://www.ethikkommission.fau.de/
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•	 Pupil diameters that were outside a specified range were rejected. The range defines the physiological behavior 
of pupils and spans from 1.5 to 9.0 mm.

•	 Pupil diameters with substantial changes between subsequent samples were rejected. These changes can occur 
due to blinks and other artifacts.

•	 Pupil diameter samples far off a fitted trend line were rejected.
•	 Small clusters of pupil diameter samples that were temporally isolated were rejected.
•	 The mean pupil diameter data were calculated from the left and right eye, and missing data were interpolated.

START

Explanation of VR headset, VR environment, and task

Measurement of VA, recording symptoms (Post-COVID only)

Familiarization with headset, setting of IPD, 5-point calibration

Start trial
(settings: 3 disparities, 9 testing positions,

3 repetitions of each disparity in each position
= 81 stimuli)

eye tracking data collection starts

Present stimulus,
record response (reaction time and correctness)

81 stimuli
done?

Randomly choose from
remaining stimuli

Trial finished,
data collection stops

3 trials done?
Short break

while preparing next trial

RETURN

No

Yes

No

Yes

Figure 3.   Flowchart of the study procedure. The light blue parts of the flowchart represent the steps in which 
the participant was within the VR environment and simulation.

Figure 4.   Exemplary mean pupil diameter signal after applying the filtering steps explained by Kret and Sjak-
Shie70.
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As part of the last step, Kret and Sjak-Shie used a linear interpolation technique in case of missing pupil diameter 
data from both pupils due to previous filtering steps. However, we followed the implementation by Stoeve et al.69, 
who applied the Piecewise Cubic Hermite Interpolating Polynomial (Pchip) method due to results from Dan 
et al.72 investigating the fit of various interpolation methods. For further information on the individual steps 
and the implementation, Kret and Sjak-Shie published their code at https://​github.​com/​ElioS-S/​pupil-​size. An 
exemplary mean pupil diameter signal for one participant is given in Fig. 4.

Gaze behavior data
For the gaze behavior data, we applied a linear interpolation method to fill the missing data due to the removed 
blinks and invalid data samples. We decided on linear interpolation because the missing data gaps were small 
(i.e., 10 sample points matching approximately 220 ms). Thus, the gaze change was expected to be directed and 
follows a linear path.

Feature extraction
In total, we extracted 73 features from the three different data groups. Regarding machine learning, features 
are the input for the model73. In our case, the goal of the model is to learn how to differentiate between control 
and Post-COVID by finding a pattern in the input features. We are oriented on existing literature that extracts 
and creates similar or comparable features69,74–77. In the following, the features are explained in more detail. In 
addition, as part of the supplementary material, Figs. 1, 2, and 3 show visualizations of all normalized features.

Stereopsis performance features
For the stereopsis performance data, we extracted 29 features resulting from nine features for each of the three 
disparities and two additional features. We only evaluated the correct responses from the 81 stimuli responses 
of each run. For example, if a participant identified 70 balls correctly, we only evaluated the reaction time and 
accuracy of those 70 balls. Based on the remaining data, we extracted the maximum, minimum, mean, median, 
standard deviation, variance, skewness, and kurtosis of the reaction time for each disparity. Additionally, we 
calculated the accuracy, which defines the number of correctly identified balls divided by the total number of 
balls tested in the respective disparity. The two additional features were calculated by subtracting the median 
reaction time of two disparity settings. The resulting difference was called the gain and is described in65 as the 
difference between the easiest disparity setting and a more demanding setting. In that way, the individual base 
response time can be eliminated, and only the reaction time difference between easy and more difficult tasks can 
be evaluated. Hence, we calculated the gain between 275″ and 1100″ and between 550″ and 1100″.

Pupil diameter features
Eighteen features were extracted for the pupil diameter data. We extracted eight statistical features maximum, 
minimum, mean, median, standard deviation, variance, skewness, and kurtosis based on the mean pupil diam-
eter signal of the complete test run (i.e., over the complete sequence of 81 stimuli). Furthermore, we calculated 
four features using the Low/High Index of Pupillary Activity (LHIPA) as performed by Duchowski et al.78. The 
LHIPA measures the cognitive load based on the oscillation and variation in the pupil diameter signal. The 
more stable the signal, the less cognitive load is expected, and the more variable (i.e., oscillating) the signal, the 
higher the cognitive load78. The ratio between high and low-frequency bands of the pupil diameter signal can 
be calculated using wavelet decomposition. Thus the pupil response to different cognitively demanding tasks 
can be compared. In our case, the cognitively demanding tasks are the different disparity settings. Note that a 
lower LHIPA value represents more oscillation in the data and, therefore, a higher cognitive load. We computed 
a baseline LHIPA based on one second before a disparity was set (i.e., during the idle phase). Moreover, LHIPA 
values were calculated for each disparity. Since the order of the stimuli was random, the mean pupil diameter 
signal was subdivided based on the 81 stimuli. Finally, the LHIPA value was calculated and averaged across each 
subdivision with the same disparity. We divided the 81 subdivisions into two parts and calculated the signal slopes 
using linear regression as presented by Baltaci et al.79. The signal was divided because the pupil response to the 
stimulus is delayed80–83. So the first part of each subdivision might have been corrupted by the pupil’s response to 
the preceding stimulus. The second part better represented the pupil’s response to the current stimulus. The two 
resulting slopes for the 81 subdivisions were averaged over each disparity. Hence, we received another six features.

Gaze behavior features
From the gaze behavior data, we extracted 26 features. We chose the asymptotic model described by Duchowski 
et al.84. The proposed model calculates the angular velocity based on the angular change in each frame. In our 
case, we sample the gaze direction (i.e., normalized 3D vector where the person was looking at in the VR environ-
ment) at 90 Hz. Thus, we receive the gaze direction each 11 ms. Subsequently, the angular change can be calcu-
lated using the dot product of two consecutive gaze directions. Now, the asymptotic model is applied to calculate 
the angular velocity, and a threshold is set below which a fixation is detected. We applied the algorithm to the 
data of each eye so that the head position mentioned by Duchowski was the gaze origin of the respective eye.

The resulting number of fixations for the right and left eye were added as features. Additionally, we extracted 
the seven statistical features maximum, mean, median, standard deviation, variance, skewness, and kurtosis for 
the angular velocity based on the asymptotic model. The minimum angular velocity was zero for each participant 
in both Post-COVID patients and controls. Consequently, we did not consider the minimum angular velocity 
as a feature. As mentioned in VR Environment and Stimulus, whether the participant focused on a specific ball 
or in the background was recorded. The time spent on each area was also used as a feature.

https://github.com/ElioS-S/pupil-size
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Classification pipeline
We adapted the classification pipeline by Stoeve et al.69 by comparing the performance of various classifiers. 
We chose the following classifiers: Support Vector Machine (SVM) with the linear kernel as well as radial basis 
function (RBF) kernel85, Random Forest (RF)86, and K-Nearest Neighbors (kNN)87. We performed a grid search 
to find the optimal parameter settings for the model (i.e., hyperparameter) with similar ranges described by 
Stoeve et al.69. However, we chose a variation in the hyperparameter Maximum depth for the RF classifier. Fur-
thermore, the RF parameters n_estimators, max_features, and bootstrap were set to {300, auto,True} respectively. 
The parameter search space is summarized in Table 1. To ensure comparable results and reproducibility, we set 
the random_state (if available for the classifier model) to zero. The features were normalized based on the training 
data to a range between zero and one using the MinMaxScaler from the sklearn python package88.

As proposed by Stoeve et al.69, we applied nested cross-validation (NCV) in which the inner loop consisted 
of a fivefold Cross-Validation (CV) for parameter tuning across the search space. A CV splits the data into the 
requested number of folds. For example, a fivefold CV splits the data into five groups based on the participants. 
The data were split using the StratifiedKFold function from the sklearn python package to ensure the same class 
distribution in the resulting splits88. The class here represents the individual participant as belonging to control 
or Post-COVID. We set the StratifiedKFold’s parameters shuffle and random_state to true and zero, respectively. 
We applied a feature selection to evaluate each feature’s importance. However, we did not use the selection to 
optimize for the best number of features since we were interested in testing all available features. Moreover, we 
manually performed a feature selection by subdividing the data based on the three data groups. Additionally, 
computational complexity was not considered a critical factor.

The parameter combination that achieved the inner CV’s best average performance was chosen and applied 
to the outer CV. For the outer CV, we applied a Leave-One-Out Cross-Validation (LOOCV) to evaluate the 
optimized model performance for each participant. The LOOCV leads to the least biased performance estima-
tion and should be applied when working with clinical data since it mimics the clinical use-case scenario of 
diagnosis89. As stated by Stoeve et al.69, the pipeline was used for each classifier to ensure the comparability of 
classification results.

Model evaluation
To evaluate the performance of the individual data groups, we used only the particular feature subsets as input 
for the classification pipeline but also a combination of all subsets. The result of the feature selection was sum-
marized by providing the top ten features, including all data groups. The top ten represent the best features for 
differentiating between control and Post-COVID. We identified the best parameter settings based on the fivefold 
inner loop of the NCV. Only the three most frequent parameter settings were reported and summarized.

Since we applied a LOOCV, we evaluated a single participant in the outer loop of the NCV. However, each 
participant only has one sample (i.e., one value) for each feature. Thus, the accuracy for this participant is either 
zero (e.g., the participant belongs to control but was classified Post-COVID) or one (e.g., the participant belongs 
to control and was classified control) for the overall model performance (outer loop of NCV). Hence, the mean 
accuracy across all 35 participants is given in steps of approximately 2.9% (i.e., 100% if all participants were 
classified correctly, and 97.1% if only one participant was misclassified). Likewise, the standard deviation was 
large due to either zero or one accuracy. Therefore, we did not report the standard deviation. Instead, we created 
confusion matrices for the best-performing classifier in which the number of correctly and incorrectly classified 
participants are shown.

Results
In the following, the results of our study are shown. The chapter is subdivided into two parts according to the 
contributions listed in the “Introduction”. Thus, the first part is based on providing suitable features resulting 
from eye tracking and stereoscopic visual stimuli. The second part is based on proposing a classification pipeline 
to distinguish controls from Post-COVID patients.

Feature rating
The top ten features from the feature selector were identified to be the following: the fixation duration on the 
background for the right eye (nan_Fixation_Duration_Right (Gaze)), the number of fixations done by the left and 

Table 1.   Parameter search space for each classifier. Based on Stoeve et al.69.

Classifier Hyperparameter Search space

SVM (lin kernel) Cost parameter (c) 2
N
,N ∈ {−10,−9, ..., 10}

SVM (rbf kernel) Cost parameter (c)
gamma

2
N
,N ∈ {−10,−9, ..., 10}

2
N
,N ∈ {−10,−9, ..., 10}

kNN # of neighbors weights ∈ {3, 4, ..., 15}
∈ {uniform, distance}

RF

Maximum depth
Min. # of samples to split
Min. # of samples at leaf
n_estimators
max_features
bootstrap

∈ {2, 4, 6}
∈ {2, 4, 6}
∈ {1, 2, 4}
∈ {300}
∈ {auto}
∈ {true}
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right eye (Number_Fixations_Left & Number_Fixations_Right (Gaze)), the mean reaction time for the disparity 
1100″ (Mean_1100.0 (Stereo)), the kurtosis of the reaction times for the disparity 275″ (Kurtosis_275.0 (Ste-
reo)), the minimum reaction time for the disparity 275″ (Minimum_275.0 (Stereo)), the fixation duration on 
the background for the left eye (nan_Fixation_Duration_Left (Gaze)), the kurtosis of the right eye’s angular 
velocity based on the asymptotic model (Kurtosis_Right (Gaze)), the median reaction time for the disparity 
1100″ (Median_1100.0 (Stereo)), the kurtosis of the left eye’s angular velocity based on the asymptotic model 
(Kurtosis_Left (Gaze)).

The result of the classification run combining all feature categories was evaluated to investigate the overall 
performance. The main contributions in the top ten features were provided by stereopsis performance and gaze 
behavior data indicated by Stereo and Gaze in the listing above. Specifically, the fixation duration and the number 
of left and right eye fixations were valuable features from the gaze behavior data. In addition, from the stereopsis 
performance data, the reaction time’s minimum, mean, and median were chosen. However, no features from the 
pupil diameter data were selected.

Classification results
Before looking at the classification accuracy, the resulting parameter settings of the inner CV are shown. The best 
parameter settings for each classifier and each data group are given in Table 2. The numbers in brackets written 
in italic behind the respective parameter settings show the number of times this setting was selected in the inner 
CV. Overall, it can be seen that none of the parameters was solely selected from the extremes of the search space. 
Instead, the parameters are drawn from a wide range of the search space.

Table 3 summarizes the mean accuracies across all participants and the data groups. For the stereopsis per-
formance data, the RF classifier performed best with a mean accuracy of 71%. For the pupil diameter data, the 
kNN classifier achieved the best performance reaching 49%. This is close to random guessing. The SVM classifier 
with rbf kernel yielded the best performance for the gaze behavior data with 66%. Combining all data groups, 
the RF classifier achieved the best accuracy with 66%. Thus, the RF classifier reached top performance in two 
of four cases. The SVM classifier with linear kernel performed worst. Interestingly the SVM with linear kernel 
performed below random guessing in each data group.

The mean accuracy cannot reveal each class’s false positive and false negative rates (i.e., control or Post-
COVID). Thus, Fig. 5 illustrates the confusion matrices for each data group and its best-performing classifier. 
Overall, it can be seen that controls were misclassified more frequently than Post-COVID patients. For example, 
the sensitivity in classifying Post-COVID using stereopsis performance data was 80% (16 out of 20). However, 
the specificity in classifying controls was 60% (nine out of 15).

Table 2.   The three best parameter settings for each classifier and each data group based on the fivefold inner 
CV. The optimized parameter names are given. The number in brackets, written in italic, refers to the number 
of times this setting achieved the best average performance. The parameters were rounded to equalize decimals 
(e.g., 0.001 refers to rounded 2−10).

Classifier Parameter names Stereopsis performance Pupil diameter Gaze behavior All

SVM (lin kernel) c
0.063 (9)
0.001 (8)
0.125 (5)

0.001 (13)
1.000 (8)
256.000 (5)

0.250 (12)
0.001 (7)
1.000 (7)

0.063 (9)
0.001 (8)
1.000 (6)

SVM (rbf kernel) c, gamma
1.000, 0.500 (5)
4.000, 0.500 (5)
0.500, 0.125 (4)

1.000, 2.000 (10)
1.000, 1.000 (5)
256.000, 0.125 (2)

1.000, 4.000 (13)
0.500, 2.000 (8)
0.500, 1.000 (6)

2.000, 1.000 (12)
1.000, 0.250 (7)
4.000, 0.250 (4)

kNN n_neighbors, weights
5, uni (9)
11, uni (5)
9, uni (4)

5, uni (12)
4, dist (6)
3, uni (3)

4, dist (8)
3, uni (5)
6, dist (4)

7, uni (12)
5, uni (7)
10, dist (5)

RF max_depth, min_samples_split, 
min_samples_leaf

2, 2, 2 (11)
2, 2, 1 (10)
2, 2, 4 (10)

2, 2, 1 (9)
2, 6, 1 (6)
2, 2, 2 (5)

2, 2, 4 (15)
2, 2, 1 (9)
2, 2, 2 (2)

2, 2, 1 (17)
2, 2, 2 (6)
2, 2, 4 (3)

Table 3.   Mean accuracy and standard deviation of the different classifiers across all participants and the data 
groups. The best mean accuracy score of the respective data group is written in bold.

Classifier Accuracy stereopsis performance (%) Accuracy pupil diameter (%) Accuracy gaze behavior (%) Accuracy all (%)

SVM (lin kernel) 46 37 43 34

SVM (rbf kernel) 54 37 66 63

kNN 60 49 40 51

RF 71 46 60 66
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Discussion
The classification performance demonstrates that particularly in stereopsis performance and gaze behavior data 
differences between the groups are present. Classification algorithms seem to be a suitable method for highlight-
ing these. The process of data collection only takes approximately one minute. A complete testing paradigm (three 
repetitions), as tested in this study with Post-COVID patients, takes 5 minutes with resting breaks in between. 
In the following, we will discuss our findings in more detail and propose further steps.

The features from the stereopsis performance data were often chosen as the most valuable. For example, if we 
look at the data in Fig. 1 in the supplementary material, one can see that the reaction time was increased. All three 
disparities showed this effect in the minimum, maximum, median, and mean reaction times. Furthermore, the 
standard deviation and variance were slightly increased in Post-COVID patients, indicating that some patients 
had a larger difference in their reaction time. Due to that, the kurtosis tended to be larger for controls. Although 
we could see differences, the classes were not well segregated. The overlapping boxplots in Fig. 1 indicate this in 
the supplementary material. Thus, some patients’ reaction time seemed not to be affected. This might explain the 
misclassification of Post-COVID patients and controls. Still, the reaction time measures were the top features 
of the classification pipeline. The accuracy was decreased for each disparity in patients with Post-COVID sup-
porting studies from literature11,19,21. The neurophysiological deficits and cognitive impairments were expected 
to negatively influence the task’s reaction time and accuracy. However, accuracy was not selected as a valuable 
feature. The reason might be that one patient performed worse than the others (35% accuracy if not normal-
ized). The remaining patients showed a lower accuracy, but no substantial difference from the controls could be 
observed. Therefore, the accuracy seems to be less valuable than the reaction time. Since we only evaluated cor-
rect responses for the reaction time measures, the worse performance of the mentioned patient had less impact. 
We decided not to exclude this patient from the dataset since the performance was above random guessing, and 
the pre-tests indicated visual capability to perform well. A possible reason for the worse performance could be 
interindividual variability so that the patient was, by chance, worse than the other. It could also be that the patient 
did not communicate that the task was misunderstood.

We expected a difference in the eye movements based on the asymptotic model from the gaze behavior data. 
More precisely, we expected a decrease in the velocity for Post-COVID patients because of fatigue and altered 
muscle function that could have led to reduced eye movement27,59,90,91. The results show a decrease in the velocity. 
This effect can be seen in Fig. 3 in the supplementary material for the median and mean on both the left and right 
eye. However, the maximum velocity for the right and left eye shows a much broader distribution, not clearly 
indicating an increase or decrease. In addition, standard deviation and variance did not differ greatly, suggesting 
that patients and controls might respond similarly. Skewness and kurtosis were larger in Post-COVID, indicating 
a data distribution towards higher velocity values. When looking at each target’s fixation duration, it can be stated 
that Post-COVID patients tended to take longer for the testing procedure. This coincides with the observation of 
prolonged reaction times. Note that the overall testing time and time spent on each target ball were increased. We 

Figure 5.   Confusion matrices for the best-performing classifiers of each data group. The rows indicate the true 
label, meaning the group a participant belongs to (i.e., control or Post-COVID (Post-C)). The columns represent 
the predicted value, meaning the classifier’s prediction of which group the participant could belong to.
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assume that Post-COVID patients struggle to identify the correct ball and take more time while controls take less 
time to identify the closer ball. Hence, the target’s fixation durations are all increased in Post-COVID patients.

Based on the selected features, the pupil diameter data were considered unimportant. This indicates small or 
negligible differences in the data. Figure 2 in the supplementary material shows that data. Except for the LHIPA 
value of 275″, no features showed a great difference between Post-COVID and controls. Their alleged unimpor-
tance might result from two effects compensating for each other. On the one hand, the cognitive impairments 
in Post-COVID patients were expected to decrease the LHIPA value (the lower the LHIPA value, the higher the 
cognitive load78). On the other hand, the pupil response after COVID is delayed or slowed down28,29. Since the 
LHIPA value summarizes the oscillation of the pupil diameter signal, a delayed or slowed-down pupil response 
will increase the LHIPA value by inhibiting the high-frequency oscillations of the signal. Accordingly, there 
might be compensating effects mitigating differences between the two groups. However, the only feature clearly 
showing differences is the LHIPA under 275″. A reason could be that the cognitive impairments in Post-COVID 
fully come into play for the hardest stimulus we can test (275″ being the most difficult task). Thus, we can observe 
a decrease in the LHIPA value as expected for this disparity setting.

Furthermore, we expected to observe differences in the pupillary signal’s slope for each tested stimulus. 
Therefore, we divided these signals into two parts, slope 1 and slope 2. Due to a delay in response to the stimulus 
onset, slope 1 might be corrupted by the response to the preceding stimulus. In contrast, slope 2 represents the 
response to the current stimulus79,80,82. We expected smaller slopes for Post-COVID due to the aforementioned 
slowed-down response28,29. We found this effect in 275″ and 1100″. However, the difference was not substantial. 
Note that 0.5 for the slope features in Fig. 2 in the supplementary material represents 0 if not normalized. Conse-
quently, values below 0.5 indicate a negative slope. One reason for the missing difference might be the time spent 
on the stimulus. Instead of showing the stimulus only a pre-defined time, the participants could spend as long as 
necessary before pressing an arrow key. Thus, the signal parts were too long, and subsequent pupil fluctuations 
distorted the response of interest. To improve this, the game must be adapted to present the stimulus only for a 
pre-defined time (e.g., one second).

The best parameter settings for the machine learning classification models summarized in Table 2 show that 
the search space seems to be well selected since no extreme value was chosen over all cases except for the maxi-
mum depth of the RF classifier (i.e., max_depth = 2 ). However, since this RF classifier parameter is a maximum 
value, the true chosen value could also be one88. Therefore, a further reduction of the parameter was not intended, 
although the true prevalence of the depth being one is not known. Furthermore, since no parameter settings were 
consistently selected in the data groups, the performance seems robust against minor changes in the settings.

Although the search space seems well-defined, the classification performance just reached 71%. As stated 
above, this could arise from the data. However, another reason might be that all available features were included 
in the classification task. Especially for the gaze behavior data, we introduce a dependence on the different eyes. 
Each feature in this data group is calculated for the left and the right eye. Thus, they are highly related, and we 
might have affected the performance due to the choices of features we passed to the classification algorithm92.

Hence, the choice of features influences the classification performance. This also applies to the number of 
features. A high number of features is not always beneficial and might be solved by applying dimensionality 
reduction techniques93. Since we did not apply these, future work should investigate if such a technique can 
further increase the classification performance by canceling redundancy and noise introduced by the number of 
features94. Furthermore, features of other modalities could be used. For example, instead of descriptive statistics 
or derived features that represent a whole time series in one value, it might be interesting to apply time series 
analysis which also considers the changes of signals over time95,96. Consequently, different and potentially valu-
able features that replace others not beneficial for the current classification pipeline can be created.

Eye tracking in VR headsets is prone to different results for both eyes due to the short distance between the 
eyes and the eye tracking system. The eye tracking system must be calibrated to ensure that the placement of the 
cameras is optimal97. Still, subtle changes in the positioning of the headset on the head or the individual size of 
the head can lead to altered results, although the calibration might be a success98. Looking at Fig. 3 in the sup-
plementary material, one can see that the data from both eyes in Post-COVID patients differed. Although the 
calibration was completed successfully, this could hint at a systematic false headset positioning. A mean gaze 
value similar to the approach described by Kret et al.70 could be applied to overcome the eyes’ dependence and 
the headset’s systematic false positioning. The mean gaze value would compensate for the systematic error and 
condense the two eyes. Thus, the tendency of the gaze behavior can be compared. This approach, however, should 
not be used if differences in gaze behavior are expected (i.e., onesided eye muscle dysfunction).

We have tested younger adults in a specific age band of 20–35 years. In older adults, however, reduced reaction 
times99, reduced stereopsis100, and different technology usage101 is reported. Although some studies revealed an 
age-related risk of Post-COVID102, other literature does not support this103. Accordingly, to avoid age-related 
confounding factors regarding stereopsis performance, we decided on this specific age band leading to the pre-
sented small dataset of 20 Post-COVID and 15 controls.

However, more data for every age and both groups Post-COVID and controls are required to confirm the 
findings. The need for more data is a significant limitation of this study. Therefore, it is crucial to collect bal-
anced and larger datasets comprising comparable group members equally distributed over age bands, gender, 
and disease pattern. First to support and verify our findings on a larger scale and second, to test whether one 
model can robustly classify Post-COVID patients or if multiple models need to be trained to handle different 
characteristics (i.e., gender or age) separately.

Moreover, a robust classification also means the model can correctly classify data not used for training and 
testing. Thus, the classification should also work for new or so-called unseen data. In future work, unseen data 
should be used to test the classification accuracy outside training and testing datasets to investigate the model’s 
robustness.
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A study limitation is introduced by testing the participants without their spectacles, thus, without the best-
corrected vision. However, stereopsis relies on proper vision and visual acuity104. A decrease in visual acuity 
also decreases stereoacuity, defined as the smallest differentiable disparity104. This might have influenced the 
stereopsis performance data. Hence, in favor of high-quality eye tracking data, we asked the participants to take 
off their spectacles at the risk of corrupting the stereopsis performance data. A possible solution would have been 
to perform the test twice with and without the spectacles and take the stereopsis performance data from the 
run with spectacles and the eye tracking data from the run without the spectacles. Therefore, the study design 
incorporates only one additional run.

Another study limitation is that we did not measure the stereoacuity. Instead, we used the patients’ perfor-
mance in trials one (i.e., familiarization) and two (i.e., training) to indicate sufficient stereopsis. This was done 
since the tested disparities were larger than adequate stereoacuity, which might be around 30″104. Nevertheless, 
without knowing the stereoacuity of individuals, we cannot estimate the influence on our measurement. There-
fore, future studies should measure the stereoacuity to observe possible differences, especially in the stereopsis 
performance data. These changes might occur even if the stereoacuity of a patient is lower than the minimum 
disparity difference the headset can deliver.

Conclusions
We developed a VR environment where four balls served as a three-dimensional stimulus. One ball appears 
closer to the user, which has to be identified as fast as possible using the appropriate arrow key on a keyboard. 
Monocular depth cues were reduced, so the participant needed stereopsis to fulfill the task. Thus, the system could 
measure the stereopsis performance regarding reaction time and accuracy. Moreover, an eye tracking system 
recorded the pupil diameter and the gaze direction throughout the procedure. The raw data were preprocessed 
to cope with invalid or missing data. Therefrom, we extracted statistical features and features describing the 
individual changes in pupil diameter and gaze. We performed a feature selection method to evaluate each fea-
ture’s importance. However, it was not used to optimize for the best number of features. We collected data from 
35 participants (15 controls and 20 Post-COVID) and trained different classifiers (SVM, kNN, and RF) on the 
features we extracted. Finally, we applied NCV with the inner loop for hyperparameter tuning the classifier model 
and the outer loop for the overall model performance. We achieved the best performance (71% accuracy) using 
the RF classifier. We provided features from eye tracking and stereopsis performance data in which differences 
can be observed, although not every Post-COVID patient showed these differences. Since the disease pattern 
is diffuse, not every Post-COVID patient is affected similarly. Furthermore, the sample size is small, only con-
taining 35 participants. Therefore, we identified features showing differences between the groups. However, the 
rather small differences and the lack of sufficiently large datasets should be the subject of further investigations. 
We proposed a classification pipeline to distinguish controls from Post-COVID patients where we achieved an 
accuracy that might not be sufficient yet to be released. However, future work can improve on the discussed 
limitations of the system, and further data collection could support the presented findings. Nevertheless, these 
results indicate great potential for even better classification results.

Although the results seem promising, future work should assess this system in a large study including dif-
ferent age groups. Additionally, the participants were asked to take off their spectacles. This study limitation 
should be addressed in future work since stereoacuity relies on proper vision. By disabling corrections done 
by the spectacles, we might have introduced a reduction in their stereopsis performance, potentially distorting 
the resulting data. Furthermore, different feature types could be used in the classifiers, for example, features 
that consider the signals’ changes over time. Overall, we identified valuable features that seem prominent in 
Post-COVID patients and shed more light on how Post-COVID influences visual functions. We also proposed 
a classification pipeline for Post-COVID patients based on features from stereopsis and eye tracking data. Since 
neurophysiological dysfunctions occur not only in Post-COVID, this method might apply to other disorders 
like mild traumatic brain injuries that often occur in sports.

Data availability
The datasets generated during and/or analyzed during the current study are not publicly available due to data 
privacy restrictions but are available from the corresponding author on reasonable request.
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