
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13088  | https://doi.org/10.1038/s41598-023-40083-y

www.nature.com/scientificreports

Neural network based corrosion 
modeling of Stainless Steel 316L 
elbow using electric field mapping 
data
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Stainless steel (SS) is widely employed in industrial applications that demand superior corrosion 
resistance. Modeling its corrosion behavior in common structural and various operational scenarios 
is beneficial to provide wall-thickness (WT) information, thus leading to a predictive asset integrity 
regime. In this spirit, an approach to model the corrosion behavior of SS 316L using artificial neural 
networks (ANNs) is developed, whereby saline water at different concentrations is flown through an 
elbow structure at different flow rates and salt concentrations. Voltage, current, and temperature 
data are recorded hourly using electric field mapping (EFM) pins installed on the elbow surface, which 
serve as training data for the ANNs. The performance of corrosion modeling is verified by comparing 
the predicted WT with actual measurements obtained from experimental tests. The results show the 
exceptional performance of the proposed single ANN model to predict WT. The error is calculated by 
comparing the estimated WT and actual measurement recorded, where the maximum error for each 
setting is range from 0.5363 to 0.7535% . RMSE and MAE values of each pin in every setting are also 
computed such that the maximum values of RMSE and MAE are 0.0271 and 0.0266, respectively. 
Moreover, a concise account of the observed scale formation is also reported. This comprehensive 
study contributes to a better understanding of SS 316L corrosion and offers valuable insights 
for developing efficient strategies to prevent corrosion in industrial environments. By accurately 
predicting WT loss using ANNs, this approach enables proactive maintenance planning, minimizing 
the risk of structural failures and ensuring the extended sustainability of industrial assets.

Pipelines and other infrastructure form the backbone of the global economy. It is of utmost importance to ensure 
their structural integrity in order to prevent downtime and disruptions in the supply chain. They play a crucial 
role in transporting fluids and are vital infrastructure for various sectors, including hydroelectric, marine, nuclear 
power plants, food processing, and oil and gas industries. However, these pipelines are susceptible to issues like 
corrosion, dents, defects, and cracks, which can lead to failures and pose significant safety risks. Such failures can 
result in leaks, ruptures, fatal accidents, environmental damage, and financial consequences such as expensive 
repairs, outages, and production delays. To mitigate these risks, it is essential to prioritize the maintenance and 
integrity of pipeline assets by implementing regular inspections and maintenance practices. As a result, the field 
of pipeline corrosion inspection, evaluation, modeling, and prediction has gained significant attention in both 
academic and industrial settings. This focused area of study aims to develop effective methods and tools to assess 
and predict pipeline corrosion, enabling proactive measures to prevent failures and ensure the continued safe 
operation of these critical infrastructure  systems1–5.

Corrosion is the most frequent phenomenon and serious pipeline failure  mechanism3, which significantly 
shortens the operational life of pipelines. It may come in various forms, including general or  uniform6, pitting, 
crevice, inter-granular, erosion–corrosion (E–C), corrosion brought on by bacterial activity, and environment-
induced cracking. The corrosion rate in the pipeline is associated with external and internal factors. Some exam-
ples of external factors are workplace environment, soil composition and condensation for buried pipelines, or 
water chemistry for underground pipes. Meanwhile, several internal factors causing corrosion are flowing liquid 
activity, type of fluid transported, temperature, flow rate, and tension of the  fluids7. In this context, accurately 
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measuring the loss of wall thickness in pipelines in real-time and during operation becomes a critical task. This 
is particularly relevant for SS pipes, which are prone to flow accelerated corrosion and scaling caused by harsh 
fluids.

This work focuses on the modeling and prediction of E–C in SS elbows, taking into account the presence of 
a saline solution. Stainless steel, despite being an expensive and heavy alloy, offers numerous advantages that 
outweigh its drawbacks in various applications and industries. SS is widely preferred in many fields due to its 
extensive range of types and grades, its versatility in different applications, and its ability to resist UV rays and 
corrosion. It is known for its durability, strength, and food-grade status, making it suitable for high-temperature 
environments. Industries such as food and beverage rely on SS due to its resistance to microorganism growth, 
while wastewater treatment equipment benefits from its ease of maintenance. Furthermore, an interesting advan-
tage of SS hardware is that it retains its monetary value even if there are changes in operating procedures or the 
plant is salvaged. This adds to its appeal in different settings. In the following section, we will provide a brief 
overview of notable works that have been conducted on the subject of E–C in SS.

Certain coatings can be used to protect SS surfaces from corrosion and prevent or reduce the degradation of 
pipes. These coatings act as a protective layer and are applied to the SS surface. However, over time, these protec-
tive layers can be stripped away from the SS surface due to friction from sand or other corrosive agents present 
in the fluid. This process is known as E–C and can accelerate corrosion. If E–C occurs in conjunction with fluid 
flow dynamics, it can lead to significant thinning of the pipe walls. In fact, E–C can cause wall infiltration at a 
greater rate compared to corrosion or erosion alone. Piping elbows, in particular, are highly susceptible to this 
phenomenon and are considered the most vulnerable part of the piping  system8.

In this sense, semi-conductivities of passive films on the surface of SS 304 elbow were investigated in saline 
fluid containing sand over a loop  system9. The mixture included 0.9 wt% sand particles (size of 400–500 µ m) 
and 3.5 wt% NaCl. The semi-conductivities and materials of passive films using spectroscopy were reported in 
regard to the impacts of flowing fluid at the elbow. E–C of a carbon steel (CS) elbow in a CO2 environment with 
sand particles as part of the flow loop was reported  in10. There were three characteristics relying on the fluid 
velocity discovered such as the formation of protective scales at low velocities yielding low rates of corrosion, 
the prevention of scales formation at higher velocities generating higher and more uniform rates of corrosion, 
and localized points were monitored along with the cumulative formation of protective scales with deep pits at 
intermediate velocities. Furthermore, a computerized model for predicting sand erosion in pipes was provided 
to estimate the sand erosion in the pipelines. The environmental levels over which E–C is useful to estimate 
pipeline material thickness loss were  investigated11. In particular, the degradation of pipeline steel (API X65) 
owing to E–C with flowing fluid containing sand in a CO2-saturated atmosphere was studied. E–C prediction 
was improved by adding environmental or external parameters, such as temperature, fluid flow rate, and solid 
loading, to the empirical, amechanistic, and computational models.

Some results to evaluate the degradation rate in 90◦ elbows were studied in various scenarios. Numerical 
simulations were carried out for a 90◦ elbow with air–sand–water flow under a pseudo-slug flow erosion  setting12. 
The finding indicated that the top of the elbow suffers the most erosion compared to the other parts for the hori-
zontal direction. Some experimental tests were conducted to study erosion in a 90◦ elbow with numerous fluid 
 flows13. The results showed that tees and elbows are the most prone parts to experience erosion. A high material 
loss caused by E–C was studied  in14 for 3D-printed 90◦ elbow carbon steel. A study comparing the E–C char-
acteristic of CS 1018 and SS 304L for 90◦ long-radius elbows in slug flow settings containing sand particles was 
reported  in15. The findings revealed that SS had a smoother surface than CS, CS elbow E-C rate was four times 
greater than SS elbow E–C rate, and the E–C rate on the top half of the elbow was higher than the lower half for 
both materials. As a result, it can be concluded that SS has excellent corrosion resistance in comparison to CS.

The SS loss was predicted for nuclear-grade SS 316 in high-temperature sodium conditions using sodium 
corrosion rate  equation16. This equation was constructed by some elements such as the impact of temperature, 
sodium oxygen levels, and sodium velocity. Corrosion estimation was studied for SS 316L under flow-accelerated 
corrosion (FAC)17. A mass transfer investigation was carried out by introducing a corrosion model into the 
numerical study. The prediction values for pipe sections with abruptly variable diameters were compared to 
the measured ones. Nevertheless, the predicted corrosion depth was approximately 1.3 to 3.5 times the average 
experimental corrosion depth for the uniform part.

Several approaches have been proposed to predict and detect defects and failures in the field of pipeline integ-
rity assessment. An overview of the use of machine learning techniques for evaluating the integrity of corroded oil 
and gas pipelines was presented  in18. Various pipeline corrosion aspects such as corrosion detection, prediction 
of remaining useful life, and risk assessment were discussed. Some applications of machine learning in assessing 
the integrity of corroded oil and gas pipelines were explored. A corrosion model was developed  in19 to predict 
pipeline defects due to the failure pressure in the pipeline using ANN. The training data were generated from 
the finite element method (FEM). Full-scale burst tests were used to validate before conducting various pipeline 
failure simulations with numerous corrosion geometry features and loadings. The prediction errors achieved by 
ANN were between −9.39 and 4.63% with a coefficient of determination ( R2 ) of 0.9921 when compared with the 
finite element analysis (FEA) results. The same approach was also proposed  in20 with a different presentation.

The phenomenon of stray current corrosion in Q235A steel and the developing prediction model for this 
type of corrosion was studied  in21. Through experimental analysis, the corrosion behavior of Q235A steel was 
examined under varying chloride concentrations and stray current densities. The aim was to investigate the 
corrosion mechanisms and identify key factors influencing the process. Another approach was proposed  in22 
to identify a crack in the pipeline by integrating a deep learning algorithm and 3D shadow modeling (3D-SM). 
The crack shadow below the crack area utilizing light sources was projected. This approach was verified in the 
experimental test and has 93.53% accuracy and a 92.04% regression rate to identify the crack.
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For corrosion data modeling and knowledge mining, a deep structure model called densely connected cascade 
forest-weighted K nearest neighbors (DCCF-WKNNs) was investigated  in23. The effectiveness of the model was 
evaluated using a dataset comprising 409 outdoor atmospheric corrosion samples of low-alloy steels. By combin-
ing random forests-K nearest neighbors RF-WKNNs and DCCF-WKNNs, the proposed approach surpassed 
commonly employed machine learning algorithms like ANN, support vector regression (SVR), RF, and cascade 
forests (cForest) in terms of accurately predicting corrosion rates in this study. Additionally, the model showed 
the capability to forecast corrosion rates under varying environmental conditions by considering individual 
factors such as pH, temperature, relative humidity, SO2 , rainfall, or Cl− . In summary, the determination coef-
ficients ( R2 ) of the proposed methods are between 0.785 and 0.924 with ANN and DCGF-WKNNs as the worse 
and best results, respectively.

The ANN-based model was proposed  in24 by considering various parameters into account such as pipe 
material properties, defect characteristics, and operating conditions to predict the failure pressure of buried 
high-strength pipes. The model was trained using a dataset generated from a numerical simulation of the pipe’s 
response to internal pressure and stray current corrosion. The results demonstrated that the proposed ANN 
model can effectively predict the failure pressure of the pipes with a high level of accuracy. The application of 
SVM and ANN methods for assessing the vulnerability of urban buried gas pipeline networks was studied  in25. 
The study found that both SVM and ANN methods effectively assessed the vulnerability of the gas pipeline 
network, with SVM demonstrating slightly higher accuracy. The findings of this research contribute to improv-
ing the understanding of vulnerability assessment methods for gas pipeline networks and can be useful for 
decision-making in urban planning and risk management. ANNs models to predict the kinetics of gas hydrate 
formation in multiphase systems was proposed  in26. The experiments were conducted using a pure system and 
a multiphase system with crude oil to analyze the rate of formation in both cases. The results showed that the 
addition of crude oil influenced the rate and mole consumption of gas hydrate formation, with the multiphase 
system forming hydrates faster due to the non-Newtonian behavior of crude oil at high pressure and low tem-
perature. The prediction models demonstrated satisfactory performance, with high R2 values close to 1 and low 
MSE values close to 0.

The remaining life of the pipeline was predicted using historical operational data  in27. The recurrent neural 
network (RNN) model was trained on various input parameters such as operating pressure, temperature, and 
corrosion rate. The study demonstrated the effectiveness of the proposed approach by comparing its predictions 
with actual data from a dry gas pipeline. The RNN model performs well during training, testing, and validation 
stages, with high R2 values and low mean square error (MSE) values. The model accurately predicts the pipe’s 
condition and corrosion defects even when certain input parameters are missing. Additionally, the RNN model 
effectively estimates the pipe life based on different parameters, such as wall thickness and pressure. ANN model 
was developed  in28 using real-time risk inspection data to predict the remaining useful life of piping based on 
parameters such as pressure, corrosion, wall thinning, age, thickness, outer radius, and product type. The model 
demonstrated strong performance with an R2 value of 0.99 and a validation accuracy of 97.51% . Corrosion was 
found to have the highest impact on the piping system, while age had the lowest impact.

The study focused  in29 on comparing different machine learning algorithms, including ANN, support vector 
machines (SVM), and decision trees (DT), to determine their effectiveness in predicting corrosion risk. Some 
experiment evaluations were conducted using a dataset comprising corrosion-related parameters and compar-
ing the performance of the machine learning models. The results showed that the ANN model outperforms the 
SVM and DT models in terms of accuracy, precision, and recall. The ANN model demonstrated its capability 
to effectively predict corrosion risk and provides valuable insights for corrosion management strategies. An 
approach for fault diagnosis in natural gas compressors was proposed  in30 by using vibration analysis, adap-
tive stochastic resonance (ASR), and generative adversarial networks (GANs). The objective was to overcome 
the challenges of detecting faults in complex and nonlinear vibration signals by introducing controlled noise 
through ASR and enhancing fault features using GANs. The combined ASR-GAN approach is validated using 
experimental data and demonstrates improved accuracy and efficiency compared to traditional methods. SR 
performance was evaluated by measuring its accuracy range between 93.42 and 97.26% under various parameter 
settings. Another development was presented  in31 for predicting the life condition of crude oil pipelines. ANN 
was proposed to create the predictive model. The study focused on addressing the challenges associated with 
monitoring and maintaining the integrity of crude oil pipelines, which are critical for oil transportation. Various 
factors affecting pipeline degradation, such as corrosion rate, pressure, temperature, and time were considered 
for modeling. The pre-processed data and train the ANN model were conducted utilizing a backpropagation 
algorithm. The results demonstrated that the ANN-based model has the capability to predict the life condition 
of crude oil pipelines based on the input parameters.

Due to the large span of pipeline systems, it is critical to determine and predict the remaining WT of SS 
caused by a corrosive environment. Even though there are several investigations conducted on corrosion in the 
SS pipeline. However, the extensive ANN model for the complex corrosion and passive layer formation inside 
an SS 316L elbow taking into account water salinity and flow dynamics is deficient in the literature. Surface 
corrosion of 316L steel was elaborated using ANN and statistical analysis in 5 wt% NaCl  solution32. Some 2D 
grayscale images were presented to illustrate the corrosion morphology.

From the aforementioned literature, it becomes possible to predict the extent of wall thickness loss in advance 
by utilizing NNs. This forecast capability greatly assists in maintaining pipeline facilities. Furthermore, by training 
similar models for specific applications, it can assess the associated risks. The methodology finds a wide range 
of applications, including the food industry, nuclear reactors, water desalination, and more. Recently, an initial 
result of the ANN model for WT of SS 316L elbow as the section of a running saline water loop was reported by 
the  authors33. However, it was developed for wall thinning prediction with a single flow rate and salt concentra-
tion. By extending the results  in33, a more general ANN model SS 316L elbow flown by saline water with various 



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13088  | https://doi.org/10.1038/s41598-023-40083-y

www.nature.com/scientificreports/

flow rates and concentrations is studied in this paper. The target is to have a single ANN model representing the 
corrosion behavior. It is constructed using voltage, current, and temperature measurements recorded hourly 
by the experimental setup consisting of EFM pins attached to the elbow section. According to the best authors’ 
knowledge, this is the first investigation used to develop an ANN model for SS elbow with various flow rates 
and salt concentrations. Moreover, this paper concisely describes a comprehensive chemical and microscopic 
analysis of scales formed on the internal surfaces.

The remainder of the paper is organized as follows. The experimental setup is presented  in next section. 
Following that, the materials and methods of the experiments are explained in next section. The modeling part 
includes brief literature surveys of NN, training set, and corrosion modeling presented in next section. Then in 
“Results”, the ANN model is tested under various settings illustrated using several figures and a table to show 
the quantitative performance. The conclusion and direction for future work are presented in the last section.

Experimental setup
In this section, the experimental setup consisting of a state-of-the-art flow loop representing the real-time 
industrial conditions is presented as illustrated in Fig. 1. It has two centrifugal pumps from Lowara Company, 
model number TG334, flow rate (Q) 45 m3/h, head (h) 110 m, OMEGA turbine flow meter (FTB730), power 
switch (Eurotherm 2500P Schneider Electric), Plexiglass pipe section for inspecting the flow condition visually, 
and elbow section of SS 316L. This section is 3.01 m long with 4 in. internal diameter and a nominal wall thick-
ness WT of 6.03 mm. The flow inlet and outlet arms of the elbow are 1.2 and 1.25 m long (including 0.6 m long 
Plexiglass), respectively. The inlet arm, elbow section, and outlet arm of the pipe elbow are all made of corrosion-
resistant SS 316L. The schematic and column layout of the flow loop can be seen in Figs. 2 and 3.

Figure 1.  Experimental setup.

Figure 2.  Schematic diagram of mini flow loop.
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EFM monitor with an array of non-intrusive sensing pins are permanently attached to the surface of the elbow 
in the matrix of 16 columns and 7 rows, i.e., a total of 112 pins, as illustrated in Fig. 3. These pins have non-
intrusive characteristics and do not penetrate the pipe. From the pins, the measured amount of excitation current 
and simultaneous measurements of the voltage pattern injected into the structure is recorded. The collected data 
are composed of a time series of differential pin voltages (in µ V) and the corresponding array of current shunt 
measurements (in Amperes). The resistance of a volume is oppositely related to the WT, where a thinner wall 
contains a higher resistance to current flow. As a result, it generates a higher voltage drop for the same amount 
of excitation current. An extra temperature compensation step is added to account for the change in resistivity 
due to the existing temperature variations resulting from the fluid flow and ambient conditions. Supplemental 
pins for temperature measurements are utilized for this purpose. The system is configured to read electrical 
data and compute the remaining WT of the elbow section. Nevertheless, the manufacturer does not provide 
this calculation software. The workflow scheme is that data is uploaded to their server, and then they provide all 
calculations and the WT results after several weeks. This situation inspires us to develop a local NNs-based model 
to estimate the WT using the available voltage, current, and temperature measurements in relatively less time.

Materials and methods
Pure dried vacuum (PDV) salt was thoroughly dissolved in 1 m3 of tap water without sand to evaluate the effect 
of simulated seawater on corrosion and scale deposit. The salinity of the prepared solution with various concen-
trations and flow rates is measured using a handheld refractometer (REF234), as shown in Table 1. The fluid was 
drained from a 2 m3 storage tank and flown using both centrifugal pumps, as presented in Fig. 1. These pumps 
have a maximum combined flow rate of 70 m3/h. Control valves were deployed to manage the flow rates at the 
pump’s entrance and exit. An inline turbine flow meter was used to measure the rates and total flow pumped.

At the start, the experimental data included baseline measurements of the pipe WT taken with an ultrasonic 
testing (UT) probe as well as hourly recorded differential voltage ( �V  ), differential current ( �I ), and tempera-
ture (T). The manufacturer provided a server to feed the pipe thickness reading prior to the experiment. ANN 
is deployed to train �V  , �I , and T measurements as the training input and the WT of the pipe WT delivered 
from the manufacturer’s analysis software as output data. UT probing reported elevated WT as a result of scale 
formation and a decrease in WT after scale removal from the pipe at the end of the experiment, as explained in 
Section “Scale formation” and “WT monitoring”.

Scale formation. Spectroscopic analysis was conducted on the scale deposit sample retrieved from the pipe 
during cleaning. The composition of the water running through the system was discovered to be the cause of 
scale formation, as it contained calcium with a concentration of 291 mg/L. Figure 4a depicts the percentage ele-

Figure 3.  Illustration of the elbow pipe showing positions of 16 columns by 7 rows pin positions.

Table 1.  Flow rate and salinity concentration data.

Flow rate (m/s) Concentration No of samples for each pin

Scenario 1 2 3.5 358

Scenario 2 1 3.5 361

Scenario 3 1 3 121

Scenario 4 2 4 352
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mental composition of the extracted sample obtained from scanning electron microscopy with energy dispersive 
spectroscopy (SEM-EDS) characterization. The X-ray fluorescence shown in Fig. 4b represents the oxide state of 
the elements not captured by EDS analysis. The Fourier-transform infrared spectroscopy (FT-IR) spectrum of 
the aragonite-CaCO3 scale illustrated in Fig. 4c has distinctive peaks at 709.1, 854.3, and 1486.7 cm−1 due to the 
C–O stretching and bending modes. As shown in Fig. 4d, the sharp peak of the X-ray diffractogram is typical 
of a crystalline compound with 2θ values ranging from 25◦ to 50◦ . The short peak at 2θ of 35◦ was unexpected 
and suspected to be foreign materials of contaminants in the sample. The presence of a high crystalline nature 
indicates that the CaCO3 scale is in the aragonite phase. This was verified by comparing the SEM micrograph of 
the sample shown in Fig. 4a with the study reported  in34.

WT monitoring. These readings were taken externally with the UT gauge to monitor the change in WT as 
the experiments progressed. The same matrix as EFM pins was utilized to confirm that subsequent measure-
ments were performed on the same points. The results for baseline or reference WT, after the experiment to 
assess the deposition of scale, and after cleaning for wall loss measurement are illustrated in Fig. 5. The data col-
lected revealed an average 3% increment in WT and a maximum raise of approximately 13% due to scaling. WT 
data obtained after a thorough cleaning with the strong-pressure washer was also evaluated by comparing it to 
the baseline, showing a mean of 2.6% and a maximum 14% reduction. These measurements and observations are 
in conformance with the findings published in the  literature35–37. It stated that wall thinning is severe at the bend 
compared with other parts of the pipe because of sudden changes occurring in the flow direction and velocities. 
Figure 6 shows the WT distribution at the center of the matrix outlay (Row 4). It is illustrated in the graph that 
the elbow section thickness increases after six months of exposure to the solution due to the scale deposit on the 
WT of the elbow. After cleaning, the WT decreased below the baseline, with the greatest thickness loss recorded 
near the middle of the elbow section (Row 4, point 7) of the pipe.

Modeling
This section begins with a background of previous works related to corrosion modeling using NNs, their types 
and a comparison is given. Following that, the description of the data sets and NN used are presented.

Background. Modeling in particular applications with complex processes, such as corrosion, is extremely 
difficult, if not impossible, and beyond the scope of conventional machine learning algorithms. In this situation, 

Figure 4.  Spectroscopic analysis of extracted scale deposit; (a) SEM-EDS; (b) XRF; (c) FT-IR; (d) XRD. The 
figure was reproduced with permission from our previous  work33.
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NNs composed of neurons structured as input, output, and single or multiple hidden layers come into play. 
These layers serve as the basis for learning hidden patterns in the existing data. The number of hidden layers and 
neurons grows in proportion to the complexity of the data. Interested readers are directed  to38 for a thorough 
discussion on the fundamentals, operation, and structure of NNs, which has been left out of this section for 
breviary. A probabilistic NN, generalized regression neural network (GRNN), was employed  in39 to model and 
predict the corrosion potential and current densities of CS samples in soils with various parameters that signifi-
cantly impact the corrosion rate of steel. Moreover, the soil parameters were subjected to sensitivity analysis. 
ANNs were utilized to predict the pitting corrosion of SS 316L and EN 1.4404, while environmental conditions 
were taken into account  in40,41. The results in the marine environment, in particular, were later reported.

The pitting corrosion in stainless steel was explored utilizing statistical and ANN modeling of AISI 316 
LVM passivation process, which aims to provide a passive protective layer on the steel surface for biomedical 

Figure 5.  Pipe WT color map before the experiment (top), after the experiment (middle), and after cleaning 
(bottom). The figure was reproduced with permission from our previous  work33.

Figure 6.  Pipe WT color map before the experiment (top), after the experiment (middle), and after cleaning 
(bottom). The figure was reproduced with permission from our previous  work33.
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 applications42. In this case, pitting corrosion and passivation were used as variables for the models. It was 
determined that only ANN provided precise predictions with a low mean relative error compared to statisti-
cal approaches. Some interesting results to predict the pitting corrosion for AISI 316 using ANN, for example 
 in43 corrosion modeling was developed by considering various environmental variables and  in44 with different 
classification models. The pitting corrosion of SS 304 by seawater containing Cl for construction purposes was 
discussed in another  work45. By considering the variables that influence this process, stochastic models were 
designed to estimate the life of the corroding steel structure last for. The parameter that defines the onset of a 
leakage, i.e maximum pit depth, was particularly modeled. It was observed that it is primarily determined by 
the electro-chemical driving force and the time elapsed.

A comprehensive study on the modeling for predicting stress corrosion cracking (SCC), specifically in struc-
tural materials used in nuclear power plants, was recently published  in46. Numerous references were presented 
and discussed, with positive outcomes of using ANNs for prediction. Numerical simulations were conducted  in47 
to explore the SCC propagation behavior for a specific scenario of a stainless steel 316L elbow with an extremely 
high WT (about 80 mm) used in nuclear reactors. An artificial defect was proposed on the internal surface to 
imitate the actual crack.

Types and comparison of NNs. There are several types of NNs that can be employed depending on the 
application  requirements38. The most widely utilized are perceptron, feed-forward (FF), convolution, recurrent, 
Kohonen maps, and support vector machines (SVM). The most fundamental and smallest NN is perceptron, 
which performs specific computations to detect some features in input data. This type can only be implemented 
for the solutions of linearly separable problems due to its simple structure.

Meanwhile, FF NNs can be used in more complicated applications such as speech processing, image process-
ing, and other computer vision applications. This method can be divided into single-layered and multi-layered 
NNs. In this case, the number of layers varies according to the system’s complexity. Additionally, it has the 
capability to deal with significant amounts of noisy data and is quick and simple to implement. Convolutional 
NNs, on the other hand, are difficult to build and perform slowly depending on the number of hidden layers.

Recurrent NNs is an approach that can be proposed to model sequential data. It can be applied for more 
advanced tasks such as grammar checking, translation, text auto-suggest, and text-to-speech. Nevertheless, 
training data can be complicated. Kohonen maps can be employed in specific applications to recognize patterns 
in data, for example, in medical analysis to categorize data. SVMs have to be highly reliable in various prediction 
applications including regression, classification, and outliers detection.

Description of the training set. The training inputs used in this work are �V  , �I collected from an 
array with 7 rows and 16 columns following the EFM pin pattern. The temperature (T) is measured at the 10 
spots on the SS elbow. It means that there are 234 measurements that can be used for training data. The meas-
urements are recorded hourly with various flow rates and concentrations for several days providing 121–358 
measurements for every parameter, as shown in Table 1. Each row was opened separately and concatenated 
with the next one to create the training input model for NNs, resulting from 7 rows and 16 columns in a total 
of (16 columns× 7 rows =)112 series. Figure 7 depicts the structure of the first two rows as an example of data 
restructuring, where the hours were converted into rows.

The flow rate 2 m/s saline water with concentration 4% measurements (scenario 4) is used as training data. 
There are 352 measurements for each pin recorded hourly. Therefore, the dimension of each training input was 
from 352 by 234 for �V  , �I , and T, resulting in a 352 by 234 matrix for all the parameters.

The targets were determined by measuring the remaining WT values between the pin locations, therefore 
resulting in (15 spots between the pin columns× 7rows =)105 samples of remaining WT monitored for 482 h. 
It means that the dimension of the target was 482 by 105. This data is distributed for NN modeling, 70% of data 
was allocated for training, 15% for validation, and 15% for testing. In other words, 246, 53, and 53 measurements 
were selected for training, validation, and testing, respectively. To avoid constant observations of WT measure-
ments that can terminate the training process, white noise with zero mean and standard deviation 5× 10−3 mm 
is applied to the WT data during the training. This value is less than 0.1% of the nominal WT.

NN for corrosion modeling. Due to the aforementioned benefits, FF NN was chosen for this study from 
the NNs discussed above. Furthermore, it was intended to begin with the most basic NN after Perceptron, i.e., 
the FF network, and progress to more advanced ones if the corrosion process was not adequately modeled. The 
model was trained using supervised learning due to the availability of input and output training data sets. In this 
research, the Levenberg–Marquardt algorithm is used for modeling SS corrosion. The Levenberg–Marquardt 
algorithm is an optimization algorithm commonly used for training NNs. It is an extension of the Gauss–New-
ton algorithm, which is used for solving nonlinear least squares problems. The Levenberg–Marquardt algorithm 

Figure 7.  Illustration of data restructuring for NN training.
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combines the advantages of the Gauss–Newton method and the gradient descent method to efficiently find 
the optimal weights of a neural network. Unlike conventional methods that require computation of the exact 
Hessian matrix, this algorithm operates using the gradient vector and the Jacobian  matrix48–51. A loss function 
defined as a sum of squared errors is expressed by

where m is the number of training samples.
The Jacobian matrix of the loss function can be defined as a matrix that consists of the derivatives of the errors 

with respect to the parameters as represented by

for i = 1 . . . n and j = 1 . . .m , where m is the number of samples in the data set and n is the number of param-
eters in the neural network.

The gradient vector of the loss function is generated by

where e =
[

e1 · · · em
]T represents all error terms. The following expression is used to approximate the Hessian 

matrix

where � is a damping factor to ensure its positivity, and I is an identity matrix. The Levenberg–Marquardt algo-
rithm defines the process of improving the parameters as expressed by

where i = 0, 1 . . . . From the above information, it can be seen that when the damping parameter � is set to zero, 
the method being utilized is essentially Newton’s method, employing an approximation of the Hessian matrix. 
Conversely, if � is assigned a large value, the method transitions into gradient descent with a low learning rate.

The initial value of the parameter � is set to a large value, ensuring that the initial updates in the gradient 
descent direction are small. If an iteration fails, � is increased by a certain factor. On the other hand, as the loss 
function decreases, � is decreased, allowing the Levenberg–Marquardt algorithm to gradually approach the 
Newton method. This iterative process generally enhances the convergence speed towards the minimum value. 
The first step of the training process of ANN using the Levenberg–Marquardt algorithm is by computing the 
loss, the gradient, and approximating the Hessian matrix. Following that, the damping parameter is tuned to 
minimize the loss in every iteration.

The architecture of the Marquardt–Levenberg algorithm can be summarized as follows

• Initialization: The algorithm starts by initializing the parameter vector to some initial values. These initial 
values can significantly impact the convergence and accuracy of the algorithm. Careful initialization based 
on prior knowledge or heuristics is often required.

• Jacobian matrix: The algorithm calculates the Jacobian matrix, which represents the partial derivatives of the 
objective function with respect to the parameters. The Jacobian provides information about the sensitivity 
of the objective function to changes in the parameters.

• Gauss–Newton step: The algorithm performs a Gauss–Newton step by approximating the objective function 
as a quadratic function around the current parameter values. It solves a linear system of equations to estimate 
the update for the parameters. However, this step can be sensitive to ill-conditioned problems, where the 
Hessian matrix is poorly conditioned or not invertible.

• Levenberg–Marquardt step: To address the sensitivity issue in the Gauss–Newton step, the algorithm intro-
duces the Levenberg–Marquardt step. It modifies the linear system of equations by adding a damping term 
to the diagonal elements. This damping term controls the trade-off between the Gauss–Newton and gradient 
descent steps, as discussed earlier.

• Parameter update: The algorithm updates the parameter vector based on the computed step size obtained 
from either the Gauss–Newton or the Levenberg–Marquardt step.

• Convergence check: After each parameter update, the algorithm checks if the convergence criteria are met. 
If the criteria are satisfied, the algorithm terminates; otherwise, it proceeds to the next iteration.

To evaluate the performance of ANN, the coefficient of determination ( R2 ), root mean square error (RMSE), 
and mean absolute error (MAE) are computed using the following equations

(1)f =

m
∑

i=1

e2i ,

(2)Ji,j =
∂ei

∂wj
,

(3)Ji,j = ∇f = 2JT e,

(4)Hf ≈ ∇f = �I + 2JT J ,

(5)wi+1 = wi − (�iI + 2JTi Ji)
−1(2Ji

T ei),

(6)R2 = 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2
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where yi and ŷi are the actual and estimated i-th outputs with n sampling data, respectively. The average of actual 
outputs is denoted by ȳ.

The input is denoted to be xi , i = 1, 2, . . . , n where n = 234 , such that each of length 352 results in the training 
input size of 234 by 452. The input parameters were divided into three categories, where EI (x1, x2, . . . , x112) , EV 
(x113, x114, . . . , x224) , and T (x225, x226, . . . , x234) . On another side, the output was denoted by yi = y1, y2, . . . , y105.

The MATLAB neural network toolbox has means to adjust the network variables or parameters to improve 
learning  accuracy52. There are some parameters that can be adjusted to increase the learning performance such as 
the number of epochs that can be selected by default provided by NN toolbox. While others such as the number 
of neurons and size of hidden layers can be chosen by trial and error  experience53. The error and average error 
to evaluate the effectiveness of the model are computed using (9) and (10), respectively.

where N is the number of data points.
There are 352 measurements recorded hourly in scenario 4 as presented in Table 1. The size of layers is selected 

to be 10 using random data division and the Lavenberg–Marquardt training algorithm. The validation perfor-
mance achieved is 2.6520× 10−5 at 11th epoch and R values of 1.00, 1.00, and 1.00 are achieved for training, 
validation, and test sets, respectively. This implied that the selected model had outstanding learning capabilities. 
The detail of the training model can be seen in Table 2.

Results
This section presents several numerical tests showing the performance of the trained NNs model in predicting the 
remaining WT. In Figs. 8, 9 and 10, a comparison is made between the estimated WT values and the measured 
ones, focusing on scenarios 1, 2, and 3 at pin locations C1-1, C8-3, and C13-6, respectively. The results highlight 
an interesting observation that the WT of the SS elbow varies within the same row but in different columns. Spe-
cifically, it is evident that the remaining WT around the ends of the elbow arm (pin C1-3 and C8-3) is thicker than 
the center of the elbow (pin C8-3). Figures 8a, 9a and 10a provide a visual representation of this phenomenon. 
The difference in WT distribution is attributed to the manufacturing process of the pipe. Nevertheless, despite 
these variations, the NN model shows its robustness y providing highly accurate predictions with minimal errors 
in estimating the remaining WT.

The provided visualizations offer valuable insights into the relationship between the predicted and actual 
WT values. By examining the different scenarios and pin locations, it becomes evident that the remaining WT 
is not uniform across the SS elbow. The observed disparity in thickness, especially between the ends and the 
center of the elbow, can be attributed to the manufacturing techniques employed during the production of the 
pipe. Despite this non-uniformity, the trained NN model demonstrates its effectiveness by accurately estimating 
the remaining WT. The small errors in prediction indicate the model’s capability to handle these variations and 
provide reliable estimations.

Figure 11 provides a comprehensive overview of the minimum, maximum, and average errors associated with 
each pin in the WT prediction. This visualization allows for easy comparison and analysis of the NN model’s 
performance across different pins. It can be seen that the NN model demonstrates its ability to accurately pre-
dict the WT values under varying flow rates and concentrations. To facilitate a more convenience presentation 
of the errors, Table 3 presents the errors for each pin across scenarios 1, 2, and 3 involving all 112 data points. 
The table clearly illustrates the exceptional accuracy of the NN model in estimating WT measurements across a 
range of flow rates and concentrations. Remarkably, the maximum error observed is extremely small i.e. 0.7535% 
in scenario 1.

(7)RMSE =

√

√

√

√

1

n

n
∑

i=1

(ŷi − yi)2

(8)MAE =
1

n

n
∑

i=1

|ŷi − yi|,

(9)error =
|estimated WT−measured WT|

measured WT
× 100%

(10)average error =

∑N
i=1 |error|

N
,

Table 2.  NN training to map predictors using Lavenberg–Marquardt algorithm.

Observations MSE R value

Training 246 2.3648× 10−5 1.00

Validation 53 2.6520× 10−5 1.00

Test 53 2.7001× 10−5 1.00
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These findings emphasize the robustness and reliability of the NN model when it comes to predicting WT 
values in diverse conditions. By considering multiple scenarios and incorporating a wide range of data points, 
the model demonstrates its ability to consistently generate accurate estimates. Even under challenging circum-
stances involving different flow rates and concentrations, the NN model maintains a high level of accuracy. This 
is evident in the minimal and maximum error values presented in Table 3, further validating the effectiveness 
and precision of the NN model in WT prediction tasks.

RMSE and MAE are also calculated for scenarios 1, 2, and 3 for further evaluation, as presented in Table 4. 
This table presents the maximum, minimum, and average values of RMSE and MAE computed from each EFM 
pin. The results from these calculations highlight the exceptional performance of the NNs in estimating the 
remaining WT of SS elbows. All the values demonstrate the outstanding ability of NNs in this regard.

The findings presented above show that NN modeling is a valuable tool for the in-depth analysis of pipe 
corrosion characteristics. These results highlight the potential of utilizing NN models to gain comprehensive 
insights into the behavior of pipes. In particular, the study emphasizes the importance of understanding the 
elbow section of a pipe that can be used for the construction of NN models. By incorporating all the necessary 
measurements obtained through the principle of EFM, a trained NN model can be developed. This approach 
holds promise for accurately modeling and predicting corrosion in pipelines. From this study, it can be concluded 
that the NN model could contribute significantly to the field of pipe corrosion research and facilitate proactive 
maintenance and management strategies.

Figure 8.  WT prediction at pin C1-3.

Figure 9.  WT prediction at pin C8-3.
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Figure 10.  WT prediction at pin C13-6.
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Figure 11.  The minimum, maximum, and average errors for three scenarios given in Table 3.

Table 3.  Error between measured and estimated WT.

Maximum error ( %) Minimum error ( %) Average error ( %)

Scenario 1 0.7535 3.6981× 10−4 0.3077

Scenario 2 0.6359 1.0500× 10−4 0.2639

Scenario 3 0.5363 1.0624× 10−6 0.1570
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Conclusion
This paper studied the initial findings of an artificial neural network (ANN) model applied to predict corrosion 
in an SS 316L elbow exposed to saline water with different flow rates and concentrations. The measurement 
setup included a SS 316L elbow with EFM pins attached to measure the voltage and current readings, as well as 
temperature. These measurements were carried out for a period of 352 h and were used to train and test the ANN 
model. The trained model accurately estimated wall thickness (WT) using readings obtained at various flow rates 
and concentrations. The maximum errors computed over the entire elbow section were 0.7535% , 0.6359% , and 
0.5363% under scenarios 1, 2, and 3, respectively. Moreover, the RMSE and MAE of all pins in every scenario 
were calculated with the maximum value of RMSE being 0.0271 and the maximum value of MAE being 0.0266. 
The promising results obtained motivate further exploration and implementation of an online ANN-based tool 
for real-time prediction of remaining WT in SS elbows. Also, it will be interesting to compare other machine 
learning approaches to estimate the remaining WT of various SS elbow in future works. This tool would offer 
valuable insights for maintenance and integrity management in industrial applications.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to the confiden-
tiality but are available from the corresponding author on reasonable request.
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