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Maximum Lyapunov 
exponent‑based multiple chaotic 
slime mold algorithm for real‑world 
optimization
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Slime mold algorithm (SMA) is a nature‑inspired algorithm that simulates the biological optimization 
mechanisms and has achieved great results in various complex stochastic optimization problems. 
Owing to the simulated biological search principle of slime mold, SMA has a unique advantage in 
global optimization problem. However, it still suffers from issues of missing the optimal solution or 
collapsing to local optimum when facing complicated problems. To conquer these drawbacks, we 
consider adding a novel multi‑chaotic local operator to the bio‑shock feedback mechanism of SMA to 
compensate for the lack of exploration of the local solution space with the help of the perturbation 
nature of the chaotic operator. Based on this, we propose an improved algorithm, namely MCSMA, by 
investigating how to improve the probabilistic selection of chaotic operators based on the maximum 
Lyapunov exponent (MLE), an inherent property of chaotic maps. We implement the comparison 
between MCSMA with other state‑of‑the‑art methods on IEEE Congress on Evolution Computation 
(CEC) i.e., CEC2017 benchmark test suits and CEC2011 practical problems to demonstrate its potency 
and perform dendritic neuron model training to test the robustness of MCSMA on classification 
problems. Finally, the parameters’ sensitivities of MCSMA, the utilization of the solution space, and 
the effectiveness of the MLE are adequately discussed.

Meta-heuristic strategies are increasingly becoming a widespread way of working out all types of mathematical 
optimization problems. Unlike the preceded traditional heuristics, meta-heuristics can cope with an extensive 
and more complex range of problem situations because of their generality, which does not depend on the specific 
conditions of a particular  problem1,2. ‘Meta’ can be comprehended as a kind of transcendence and extension 
of the original object. A meta-heuristic is more of an idea or concept developed on heuristic methods. Strictly 
speaking, a heuristic is a fixed solution contrived by the characteristics of a given problem to get a better solu-
tion. Meta-heuristic is a kind of abstract procedure, that constructs a set of universal process or methodology.

Nowadays, as the computational scale and complexity of various engineering application problems increase, 
the original traditional optimization algorithms and heuristics may no longer confront the current practical 
 situation3,4, e.g., image classification and simulation, building load-bearing structure optimization, solar energy 
parameter optimization,  etc5. These problems are multi-dimensional, nonlinear, multi-fitting NP-hard  problems6, 
which have posed great challenges to the existing computing system. As a result, computer scientists expect to 
innovate the whole computing system from hardware and software  aspects7,8. This is where meta-heuristics arise 
as an upgrade to algorithms from the underlying architecture. Meta-heuristics are a refinement of heuristics, 
which are the product of combining stochastic algorithms and local search. They create a process that can get rid 
of local optimum and carry out a robust search in the solution space by coordinating the interaction between local 
improvement and operational  strategies9. During the procedure, search strategies are accustomed to acquire and 
master the information to find the approximate optimal solution effectively. Therefore, the operating mechanism 
of the meta-heuristic is not overly dependent on the organizational pattern of a certain situation. This principle 
can be diffusely applied to the combinatorial optimization and function  calculation10,11.

In meta-heuristics, swarm intelligence has attracted considerable research interest and attention in the fields 
of optimization, computational intelligence, and computer science in recent  years12. It exhibits computational 
intelligent behavior through simple cooperation between each intelligence and shows much stronger selection 
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ability than an individual in the case of optimal  selection13,14. Ant colony optimization (ACO) is a cornerstone 
achievement in the development of systematic swarm intelligence theory. Dorigo et al. investigated the real ant 
colony route planning and the use of biological pheromone mechanism, using pheromone concentration as a 
quality index to guide individuals to the shortest  path15. The next generation population ascertains the superior 
route throughout the whole space according to the pheromone intensity of the previous generation. The greater 
the pheromone intensity in a certain route, the more presumably the individuals are to draw in that route. The 
route with the highest pheromone can be considered as the optimal solution sought by the  algorithm16,17. ACO 
has good global search capability and is widely used in many combinatorial optimization  areas18. For example, 
Gao et al. improved the k-means clustering idea into ACO and proposed a clustering ant colony algorithm which 
has got considerable achievements in solving dynamic location routing  problems19. Particle swarm optimiza-
tion (PSO) differs from ACO in that PSO pays more attention to the decision-making learning direction and 
collaborative information sharing when all particles traverse the solution  space20,21. In per period iteration, per 
particle is obliged to do a learning judgment on whether to modify the route which is predicated on fitness to 
measure the global optimal solution and the local optimal solution. Thus, PSO accelerates the convergence rate 
by extracting the current best, and the particle population has a high convergence rate in terms of exploration. A 
wide range of PSO-based related study has now been implemented in complex systems, traditional optimization, 
and even large-scale engineering  problems22. The above two algorithms are some of the supreme widespread 
and successful population intelligence algorithms. And then a whole bunch of meta-heuristic algorithms with 
swarm intelligence ideas emerged, including firefly  algorithm23, whale optimization algorithm (WOA)24, flower 
pollination  algorithm25, artificial bee colony  algorithm26, etc.

Considering the strengths of swarm intelligence, we choose the slime mold algorithm (SMA)27 as the underly-
ing algorithm, which is also a biological heuristic algorithm with swarm intelligence proposed recently. SMA is 
enlightened by the exclusive motor feedback mechanism of slime molds. This algorithm simulates the feedback 
mimicry of slime bacteria spreading food information, resulting in the exploration of the best pathway to obtain 
energy. This process considers the adaptive bidirectional feedback of the bio-information waves, allowing the 
algorithm to strike a counterbalance during the search process. There were also several algorithms for microbial 
mimicry before. For example,28 put forward a slime network founded on an ant colony system to solve the high-
dimensional traveler problem. Monismith et al.29 draw on the five life forms of biological amoebae to construct 
an artificial neural network (ANN)-based initial lattice to solve the problems of graph theory and generative 
 networks30. Unlike these similarly named bacterial algorithms, SMA primarily uses the adjustment of weights 
in the feedback to model three different biofeedback morphologies of slime molds. Extensive experimental and 
algorithmic variant studies demonstrate the robustness and effectiveness of this algorithm in solving optimiza-
tion  problems31.

Due to the outstanding performance of SMA in the field of stochastic optimization, numerous exceptional 
SMA variants have been widely applied to address diverse problems. Houssein et al.32 proposed a multi-objective 
variant of SMA that utilized an information archive to store the Pareto-optimal solutions obtained by indi-
viduals in the multi-objective search space. This approach yielded remarkable simulation results on CEC2020 
multi-objective benchmark functions and the automotive spring spiral problem. Hu et al.33 addressed the issue 
of induced concentration in the slime molds population by employing a dispersal foraging strategy, effectively 
maintaining the population diversity. This improved algorithm was successfully applied to feature selection 
problems in data mining, efficiently identifying optimal information features while maintaining high classifica-
tion accuracy.  In34, a hierarchical-guided architecture was introduced to enhance SMA for solving mobile robot 
path planning problems. Experimental results in multiple environments demonstrated that the path constructed 
by the hierarchical slime molds population exhibited higher smoothness and faster computation speed. These 
application examples showcase the unique global stochastic optimization capabilities of SMA. By leveraging 
the automatic optimization capability and global exploration advantages of slime mold individuals, different 
improvement strategies are introduced to guide slime molds in performing efficient optimization behaviors, and 
there is still much ongoing work to explore its relevant properties.

Slime molds dynamically adapt their foraging behavior based on bio-wave feedback on the food. When 
biofeedback indicates that this area has higher food pheromones, the probability that they will stay in this area 
and perform a spread search becomes higher. When slime molds engage in this local search behavior, we note 
that this unique behavior is well aligned with the characteristics of chaotic local search. Among the existing 
meta-heuristic algorithms, chaotic maps are somewhat generalizable. They can be used extensively in population 
initialization and in adjusting cross-variance operators to perform an effective local search, thereby increasing the 
probability of discovering the best  solution35,36. Therefore, we consider adding chaotic maps to the local search 
of slime molds, aiming to strengthen the capability of this algorithm in local search and further meliorate the 
stochasticity and ergodicity of the slime molds search behavior.

At the same time, we focus on the essential property of chaotic maps – the maximum Lyapunov exponent 
(MLE). This coefficient is a crucial criterion for determining whether a system is performing a chaotic motion. 
We select the most appropriate chaotic map based on the value of MLE, giving the chance for a second selection 
of chaotic local operator, and ameliorating the overall capability of the entire algorithm in local exploration. In 
this study, we creatively put forward an MLE-based multiple chaotic slime mold algorithm (MCSMA). We for 
the first time select suitable chaotic maps according to their MLE relevance and use a multi-chaotic roulette 
wheel to incorporate these maps into the local search pattern of slime molds, thus realizing a better balance of 
exploitation and exploration. To verify the performance of MCSMA, extensive experiments are conducted based 
on 29 IEEE CEC2017 benchmark function optimization problems, 22 IEEE CEC2011 practical applications, and 
7 real-world classification problems. Statistical results show that MCSMA significantly outperforms its peers. 
Additionally, the parameters’ sensitivities of MCSMA, the utilization of the solution space, and the effectiveness 
of the MLE are systematically discussed to show more insights into MCSMA.
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The remaining part is set up by follows: “Brief description of SMA” section roughly introduces the behavioral 
pattern and search features of slime molds in the underlying algorithm SMA. In “Multi-chaotic local search 
operator” section, we describe the nature and features of the chaotic local operator in detail. In “MLE-based mul-
tiple chaotic SMA” section, we explain exhaustively how to adapt the MLE-based weight adjustment mechanism 
into the chaotic operator. In addition, the whole running process of MCSMA is introduced. The experimental 
data and results of MCSMA on several test function sets are given and analyzed in “Experimental analysis” sec-
tion. “Discussion” section conducts a sufficient discussion on the optimal parameters of MCSMA, the movement 
pattern of the population, and the effectiveness of the MLE-based adjustment mechanism. Finally, we summarize 
and outline the work done in “Conclusion” section, giving some thoughts on future development.

Brief description of SMA
Biologists discovered early on that slime molds, as single-celled organisms, exhibit incredible intelligence. Naka-
gaki et al.37 devised an interesting maze experiment in which oats were placed at certain points in the maze, and 
it was found that the slime molds always chose the path that required the least amount of energy and obtained 
a sufficient amount of food. Tero et al.38 later used slime molds to simulate the railway network throughout the 
Tokyo area. Experiments showed that in complex combinatorial optimization problems, the network formed by 
the connection of slime molds approximated the optimal path in engineering. Therefore, the scientists believe 
that this intelligence of the slime molds can be used in the design of transport networks as well as in complex 
large-scale simulation experiments.

SMA has thoroughly analyzed the mechanisms of cytoplasmic flow and venous structure change as the slime 
molds search for food. Slime molds sense food through a tight network of veins, and when the veins sense a food 
source, a biofeedback wave is propagated by a biological oscillator. When the molds sense this feedback wave, 
they increase the cytoplasmic concentration in the vein, and the thickness of the vein is positively correlated 
with the cytoplasmic concentration. The more abundant the food signal, the greater the cytoplasmic concentra-
tion and the richer the network of veins leading to food, thus establishing the optimal pathway for foraging. 
Moreover, when faced with different quality food sources, the slime molds can also rationalize the veins leading 
to food according to the optimal theory. This algorithm learns the adaptive feedback search strategy and special 
mechanisms of the slime molds and constructs an efficient mathematical optimization model. SMA includes 
seek nutrition, wrap up nutrition, and biological oscillator processes.

Seek nutrition. Microbes generally seek nutrition through residual pheromones in the air and along the 
pathways. Figure 1 is illustrated to understand the visual model of slime molds in seeking nutrition. The asymp-
totic search behavior of slime molds for nutrition can be formulated by:

where each M can be considered as an individual slime mold, and these individuals refresh their positions in 
compliance with the contemporary optimal individual M∗ , and three related parameters α , β and W. Mi(t) , Mj(t) 
represent two randomly selected slime individuals, t implies the number of iterations, and W is a weight learned 
from the foraging behavior of the slime. α is calculated as a balanced parameter based on the number of iterations, 
and β is a decreasing linear coefficient from 1 to 0. r is a random value in [0,1]. q is defined by q = tanh |Fi − F∗| . 
Fi indicates the fitness value of M. F∗ denotes the optimal fitness of the entire iterations.

(1)M(t + 1) =

{
M∗(t)+ α ·

(
W ·Mi(t)−Mj(t)

)
, r < q

β ·M(t), r ≥ q

Figure 1.  Visualization schematic of SMA in 2D and 3D.
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The distribution of α is in the range [−a, a] . The value of a is derived from an inverse hyperbolic tangent 
function regarding the number of iterations, taking values in the range (-1, 1). a can be expressed by:

where tmax is the maximum iteration number. Through this approach, an approximate activity range is assigned 
to slime molds in each generation.

From Fig. 1, we can see the updated changes in the search position of the slime individuals in the two-
dimensional and three-dimensional space. By adjusting the parameters of Eq. (1), the slime molds can investigate 
in random directions within the search space, forming a free-angle search vector that enhances the probability 
and capacity of individuals to find the optimal solution. This process stimulates the wrapped venous network 
formed by the slime bacteria as they approach the food source, searching for everything possible about the food.

Wrap up nutrition. When the venous network receives enough nutrition information, the bio-oscillator 
begins to fluctuate information that can regulate the concentration of cytoplasm and biological structure. This 
process is dedicated to learning about this feedback pattern of slime molds that regulates the structure of bio-
logical tissues. W in Eq. (1) is expressed mathematically as a positive and negative feedback coefficient between 
venous tissues and food pheromone concentrations. The definition of W is outlined as follows:

where Fb means the fitness of the best contemporary individual and Fw means the fitness of the worst contem-
porary individual. The logarithmic function is accustomed to balancing the rate of change of the values and pre-
venting extreme values of the frequency of change. Because of the uncertainty of slime mold’s biological activity, 
a rand factor is attached to model randomness. Case −Half  means the case where Fi is at the hand half ranking 
of the population. Obviously, when the concentration and quality of nutrition are high, the likelihood of a slime 
mold individual staying in the region for an all-encompassing search becomes greater; when the concentration 
and quality of nutrition are low, the individual moves to another region.

Biological oscillator. To better understand the changes in the slime molds of mucilaginous bacteria upon 
receipt of bio-waves, SMA uses W, α and β to go for the regulation mechanism of the oscillator. α and β are two 
coefficients that both oscillate randomly within a certain interval and converge to zero. The mutual modulation 
of these two parameters gives a good indication of the biological stochastic selection behavior of the mucilage. 
When an individual has found the optimal solution in space, the slime molds may still allocate part of their 
population to other areas, enhancing the probability of finding the missing food source. It is also an instinct of 
the organism to find all food sources possible, rather than getting stuck in a localized food area. Furthermore, 
by adjusting the bidirectional feedback coefficients W, the frequency of the bio-wave in the presence of different 
concentrations of food pheromones can be changed. When good quality food sources founded by venous tissues, 
W will be cranked up to change the cytoplasmic concentration and approach the food source more efficiently; 
when the quality and concentration of food are not good in some areas, W will be lessened to slow down the 
tissue extension of the region and save energy, so as to choose food sources more efficiently.

The SMA intuitively visualizes the efficient foraging biological activity of slime molds. Nevertheless, the 
journey to find the best food source is not straightforward and influenced by various factors that may inevitably 
lead to the trap of local optimal. Therefore, we need to consider adding a number of mechanisms to correct this 
trend and remedy some of the algorithm’s flaws.

Multi‑chaotic local search operator
The order of the macro universe is built on the disorder of the micro world. This harmony contains underlying 
laws that existing paradigms cannot describe, explain, or predict. Chaos theory is to study the local uncertainty 
and the stability of the whole, the order hidden in the unpredictable phenomenon. Most scenarios we encounter 
in reality are non-linear systems that cannot be solved by conventional experience and theory, with complex 
interactions between elements within the system that are difficult to quantify. Chaotic systems generally have 
the following three typical characteristics: 

(1) If a system makes a chaotic motion, the orbit of the system is disproportionately sensitive to tiny changes 
in the initial state, or a small change produced in one part of the system can lead to a violent reaction in 
the whole system.

(2) Chaotic systems have fractal properties, that is, the system is irregular in its overall structure from the 
beginning, but the degree of irregularity of the system is repetitive at different scales.

(3) Systems always exhibit a state of mutual antagonism and coupling between static equilibrium features and 
the tendency to fall into non-predetermined patterns.

Chaotic maps. Chaotic map can be conceived as a function used to generate random chaotic arrays. In the 
field of evolutionary computation, algorithms often require pseudo-random number generators for population 
initialization, but sometimes the results are not satisfactory. It is found that due to the unpredictability and ergo-

(2)a = arctanh

(
−

(
t

tmax

)
+ 1

)
,

(3)W(i) =





1+ rand · log
�

Fb−Fi
Fb−Fw

+ 1
�
, Case −Half

1− rand · log
�

Fb−Fi
Fb−Fw

+ 1
�
, Otherwise
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dicity of chaotic maps, better results are attained by replacing pseudo-random generators with chaotic  maps39. 
In our study, 12 representative chaotic maps are chosen, taking one of the well-known maps Chebyshev as an 
example, whose chaotic map formula is:

where x and n belongs to the set of integers. O denotes the order of the Chebyshev map. When O is greater than 
or equal to 2, no matter how approximate the initial value is selected, the resulting iterated sequence has no cor-
relation, i.e., the system is in chaos. Figure 2 shows the histogram of the distribution produced by 12 different 
chaotic maps.

Maximum Lyapunov exponent. The maximum Lyapunov exponent is an essential quantitative indicator 
for measuring and determining whether a non-linear system is undergoing chaotic motion. For chaotic systems, 
trajectories initiated by two enormously close initial variables produce exponential separation over time, and the 
MLE is defined to quantify the quantity that describes this separation rate.

Assume a 1-dimensional discrete dynamical system: xn+1 = f (xn) . After n iterations, whether the initial two 
points are separated or close in space depends on the derivative 

∣∣∣ df (xn)dxn

∣∣∣ . For an initial variable point x0 , we set 
the change in position caused by each iteration to have an exponential separation rate of � . Then the initial 
distance � between the two points after iteration becomes:

Taking the limits � → 0 , n → ∞ , then Eq. (5) can be deformed to

The above equation can be simplified as:

From this we can generalize this definition to all problems and obtain the defining equation for the maximum 
Lyapunov exponent as:

(4)xn+1 = cos (O arccos xn), xn ∈ [−1, 1],

(5)�en� =
∣∣f n(x0 +�)− f n(x0)

∣∣.

(6)� = lim
n→∞

lim
�→0

1

n
ln

∣∣∣∣
f n(x0 +�)− f n(x0)

�

∣∣∣∣.

(7)� = lim
n→∞

1

n

n−1∑

i=0

ln

∣∣∣∣
df (x)

dx

∣∣∣∣
x=x0

.

(8)� = lim
t→∞

lim
δY0→0

1

t
ln

|δY(t)|

|δY0|
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Figure 2.  The histogram of the distribution produced by 12 different chaotic maps.
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where δY(t) and δY0 represent the trajectories of motion caused by two initial values in the dynamical system, 
respectively. It is intuitive to see that if � is greater than or equal to 0, that means that no matter how close the 
initial two tracks are, the difference in their trajectories will be exponentially magnified in space with time. So 
we can draw two conclusions: (1) If a system has at least one MLE greater than 0, the system does the chaotic 
motion. (2) The MLE of periodic motion or steady state must be at least non-positive.

According to the above definitions, we can obtain the MLE of each chaotic map separately, and the value 
of numbers are summarized in Table 1. We consider the MLE as a fundamental characteristic of the different 
chaotic sequences and will discuss later how this fundamental property can be incorporated into the considera-
tion of the local operators.

Chaotic local search operator. Meta-heuristic algorithms are an interactive association of global explore 
strategy and local search operator in essence. The research and improvement of search strategies over the years 
are essential to allow the algorithm to explore the solution space more rationally and get free from the problem 
of being induced by local optima. Following the chaotic properties introduced earlier, the offspring generated by 
a chaotic map are randomly and irregularly varying. If an algorithm is assigned enough computational time and 
computational resources, we can approximately believe that the algorithm is able to travel the whole search area 
and find the target solution we want. But once the problem is of high dimensionality and high computational 
complexity, it will require a huge amount of resources and optimization time, which is not in line with the aim of 
computer science to pursue efficiency. Thus, the utilization of chaotic search operators in small search spaces and 
specific phases can be a significant way to enhance search performance. To date, this operator has been applied to 
extensive algorithms for global search strategies, and many fruitful achievements have been realized.

Alatas et al.40 proposed an improved harmony search algorithm by replacing the random sequence in the 
initialization of harmony search algorithm with each of seven different chaotic maps and tests the performance 
of seven chaotic combination algorithms in solving optimization problems. It was found that this approach 
improved the performance of the algorithms in global search. Yuan et al.41 combined the quantum thinking and 
chaotic local search in traditional artificial bee colony algorithm. In contemporary iterations, the swarm performs 
a disorderly search around the vicinity of the current best food source found, which can well circumvent the 
algorithm being captured by the local optimum through the jumpiness of chaos. Gao et al.42 reformed the local 
search-based differential evolution by chaos, embedding multi-chaos local search operator based on success 
probability in the mutation process. It effectively improves the inherent defects of most differential evolution vari-
ants, namely premature convergence and unstable performance. In addition, four chaotic variants are proposed 
based on different applications of chaotic local search, and the effectiveness of multi-chaos is demonstrated on 
a sufficient number of test problems.

Many examples prove that chaotic local search has a comprehensive and successful application in meta-
heuristic algorithms. Scholars have used chaotic local search in a variety of ways to help algorithms improve 
the capacity of exploring and exploiting the search space, avoid the interference of local optima, and perform 
efficient and accurate convergence behavior.

MLE‑based multiple chaotic SMA
In this section, we specify the sources of inspiration for MCSMA and the operation mechanism of the algo-
rithm. The three questions of how to include a chaotic local search in SMA, which way to call chaotic maps, 
and how to improve the local operator are explained in detail. The flowchart and pseudo-code of MCSMA are 
also introduced.

Inspiration. In the previous section, we have described the biological mechanisms and mathematical mode-
ling process of SMA in detail. The biological activities of single-celled organisms appear to be disorderly and ran-
dom, but there are also characteristic laws behind them. For a microscopic individual such as a slime mold, the 
most challenging task is how to find food information accurately in a vast space. Similarly, for a good algorithm, 
the most critical problem to be solved is how to efficiently find that optimal solution over the entire solution 
 space8,43. In SMA, the individuals of the population update and judge their position by employing positive and 
negative feedback coefficients. From Eq. (1), we can assume that the individuals perform two kinds of ordered 
activities in the solution space under the adaptation of the feedback parameters. When no food information is 
detected temporarily, individuals adjust their corresponding positions to each other, move and search towards 
the region of the angle between two individuals, or possibly continue exploring along the direction of their own 
vector. However, in this process, the globally optimal solution we need may be hidden in the vacant solution 
space of these two alternative paths. We cannot rule out this possibility, so the question of how to allow individu-
als of the population to search more fully through the entire solution space is an urgent problem to be solved. 
The tremendous advantage of chaotic motion is that completely disordered motion in a given region can signifi-

Table 1.  The maximum Lyapunov exponent values of chaotic maps.

Name Bernoulli map Chebyshev map Circle map Cubic map Gaussian map Logistic map

MLE 0.655 0.948 0.295 0.667 2.659 0.692

Name Tent map Singer map Sine map Sinusoidal map ICMIC PWLCW

MLE 0.683 0.423 0.687 0.567 4.719 0.190
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cantly compensate for the algorithm’s weakness in local exploration. From the perspective of exploration and 
exploitation of the overall search space, the slime mold individuals in SMA demonstrate satisfactory exploration 
capabilities, allowing the population to explore all potential regions. However, SMA lacks strong exploitation 
of specific regions, which increases the risk of search stagnation and premature convergence. Considering the 
advantages of chaotic search, we contemplate how to incorporate chaotic local search operator into the feedback 
mechanism of slime individuals for food information. By incorporating chaotic local search operators to per-
turb individual trajectories in an unordered manner, we aim to enhance the algorithm’s specialized exploitation 
capabilities in promising regions, aiding in achieving desired optimization results.

MCSMA. Herein, we present an ameliorated algorithm MCSMA based on the predatory behavior of slime 
molds and multiple chaotic local operators for the first time. The underlying algorithm SMA has proven to be 
a strong global search algorithm. As the number of iterations increases, the distribution of populations in the 
search space exhibits a cross-searching motion track. Especially in the earlier phase of the iterations, the renewal 
of individual positions fluctuates very sharply in the early stages because of the parameters α and W. Thus SMA 
can rapidly converge at an early stage and explore a significant portion of the entire exploration space. Subse-
quent iterations of individuals converge in regions that are likely to be globally optimal and conduct disordered 
exploration. This ensures the global search capability of the algorithm. But when r ≥ q , the population will 
engage in selective behavior, with some of the slime heading towards other regions, and some other individu-
als keeping their original direction for oscillatory search. Along this search trajectory, there is a possibility that 
the optimal solution may be neglected in space, or captured by a local optimum in a small region. We therefore 
consider the insertion of a powerful exploitation mechanism in this process, namely the chaotic local operator.

In a local operator using a single map, the operator generates the next generation of new individuals, employ-
ing a contemporary globally optimal individual Ek . The formula for chaotic search can be expressed as:

where Ẽk denotes the potential individual to replace the contemporary globally optimal. VU is the upper bound 
vector of the population, and VL is the lower bound vector. φ can be understood as a spatial scale that can rep-
resent the chaotic search. ωk represents the distribution variables generated by the chaotic map in this iteration. 
In the contemporary iteration, if Ẽk has a superior fitness than Ek , it renews Ek in the next generation of search 
behavior. This renewal reflects the behavior of an individual, which performs a chaotic expansion in space.

From42, we learn that using multiple chaotic maps can often achieve better results than using single chaos. 
The combinations of plural chaotic maps can incorporate different dynamical properties and keep the dynamics 
changing in space. There are various combinations in the algorithm including parallel, sequential, and permuta-
tion, and so on. In this study, we use the traditional roulette wheel idea, where the selection probability of each 
individual is proportional to its fitness value, and choose 12 chaotic maps with different dynamics to form a 
probabilistic roulette wheel. However, different from the preceding methods, we take the ideology of meritocracy 
as the guide to determine the chaotic map used in the iterations. For a given problem, if a particular chaotic 
map selected by the meritocracy improves the algorithm more in a certain iteration, then we can assume that 
this chaotic map may have good compatibility with the problem and its dynamics can better help the algorithm 
access this problem. In the next iteration, the probability of selecting this superior map in the previous genera-
tion is incremented to find the most suitable chaotic search operator.

Using this roulette strategy based on the principle of meritocracy enables the algorithm to find the best chaotic 
operator to solve the test problem quickly. However, parts of the chaotic maps may be given great weight in the 
initial iteration, resulting in a lack of competition for other chaotic maps in subsequent iterations. This will lead 
to the algorithm missing some relatively superior maps and suffering from the waste of computational resources 
and poor robustness. Based on this consideration, we focus on the maximum Lyapunov exponent, a property 
of chaos itself, aiming to investigate the best chaotic local operator from the fundamental properties of chaotic 
maps. A probabilistic compensation mechanism is introduced to give the operator a second chance to choose 
the suitable map based on a meritocratic roulette wheel selection.

The maximum Lyapunov exponent is an index that measures the tendency of a chaotic system to move over 
time. Twelve different chaotic maps have their MLE values. We can define a correlation coefficient Cij based on 
the MLE, formulated as:

where rand is a random coefficient; Li and Lj represent the MLE values of two distinct random chaotic mappings. 
Cij is the correlation coefficient normalized to the MLE values of any two chaotic maps with values distributed 
in (0, 1). Based on this, we can construct a 12*12 matrix as shown as follows:

This matrix represents the nature of the association between the individual chaotic maps. Once we have chosen 
the most appropriate contemporary chaotic map, it is reasonable to believe that the chaotic map with the clos-
est value of its MLE also has a better improvement on the target problem. Therefore, we give the optimal and 

(9)Ẽk = Ek + φ(VU − VL)(ωk − 0.5)

(10)Cij =
1

tan
(
π
4 + π

4× | Li − Lj | / Lmax

)
× rand

(11)C =




1 C1,2 · · · C1,12

C2,1 1 · · · C2,12

...
...

. . .
...

C12,1 C12,2 · · · 1



12∗12.
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sub-optimal maps a conditioning weight in the probability adjustment of roulette selection. The adjustment 
weights Wk are defined as follows:

where s is a parity ordinal number that takes the value 1 or 2. index(s) represents the index position in the roulette 
wheel of the chosen optimal and sub-optimal maps. ξ is a distribution of chaotic weights in interval (0, 2). When 
adjusting the weights for the optimal chaotic map, as it is the highest priority map, s takes the value of 1. When 
adjusting the weights for the sub-optimal map, as viewed as a sub-optimal chaotic choice, this map is compen-
sated with a smaller adjustment weight, s takes the value of 2. Figure 3 illustrates this weight adjustment process. 
Relying on adjusting s and the correlation Cij values, we can rationalize the span of roulette weights to select the 
most appropriate chaotic map and avoid premature formulation of the map map by the chaotic local operator.

The schematic pseudo-code of MCSMA is illustrated in Algorithm 1. The general flowchart of MCSMA is 
depicted in Fig. 4. The entire operation flow of MCSMA can be generally summarized as follows: 

(1) MCSMA starts to generate the slime molds Mi and evaluate the fitness.

(12)Wk = ξ · Cs
k,index(s)

Figure 3.  The process of adjusting the span of the weighted wheel.
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Figure 4.  A general flow chart of MCSMA.
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(2) Initialize twelve equivalent spans of roulette and generate correlation coefficient matrix C, mutation prob-
ability z.

(3) According to the feedback mechanism of slime molds, the algorithm selects and updates Mi based on 
Eq. (1).

(4) When the algorithm matches the pre-defined scenario, MCSMA enters the phase of chaotic local search 
and utilizes roulette wheel selection to select the chaos operator by Eq. (9).

(5) Update the span of roulette by Eq. (12) and re-tune the chaotic local operator.
(6) Repeat the above steps until reaching the terminal condition.

In summary, we establish a selection weight adjustment mechanism based on the connection of MLE to optimize 
the chaotic local operator. Based on the kinematic properties of chaotic behavior, a plausible screening mecha-
nism is established to guide the search pattern of the local operator. In addition, considering the search behaviors 
and trajectories of slime mold individuals in MCSMA, we expect to explore a general way to refine the underlying 
search logic of the algorithm and guide the algorithm to improve its reliability throughout the search  process44,45.

Ethical approval. No human or animal subjects were involved in this experiment.

 

Experimental analysis
To evince the capability of the proposed algorithm MCSMA, numerous test sets were selected for experimenta-
tion. To validate the effectiveness of MCSMA on different kinds of optimization problems in different dimensions, 
29 problems from CEC2017 were elected to run experiments and data analysis. CEC2017 contains 2 unimodal 
problems (F1, F2), 7 multimodal problems (F3-F9), 10 mixed-state problems (F10-F19) and 10 combinatorial 
optimisation problems (F20- F29). The Wilcoxon rank-sum test, the convergence curve graph, and the box-and-
whisker chart were applied to analyze the experimental data in a multifaceted way. Meanwhile, for the propose 
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of examining the algorithm’s ability to handle real-world problems, we experiment with 22 real-world problems 
from CEC2011 and ANN training.

Experimental set up. For CEC2017: The proportion of population N is regulated by 100, The dimension 
of problems D is designed with three sets of data, i.e., 30, 50, and 100, respectively. This operation is to exam-
ine the effectiveness of MCSMA when facing high-dimensional problems and whether it have defects such as 
overfitting. The maximum number of fitness evaluation is determined as 10000 ∗ D . To obtain a more credible 
experimental result, we position the number of independent runs at 51. The search range is arranged in the 
interval [−100, 100].

For CEC2011: The size of population N is regulated by 100. Because the optimization model is learned from 
the actual problem, each problem has its adapted dimension. The specific situation is summarized in Table 7. We 
set 30 as the number of runs because the optimization time required for the test problems is time-consuming.

The experimental equipment is configured with 16GB RAM and a 3.00 GHz Intel(R) Core(TM) i5-7400 CPU, 
and the test platform was MATLAB.

Comparison analysis on CEC2017. In this set of benchmark experiments, we select  HHO46, WOA, 
 MFO47,  SSA48,  SCA49 and  GLPSO50 as the comparison targets in addition to the underlying algorithm SMA. 
These meta-heuristic algorithms are inspired by the biological phenomena in nature or mathematical laws in 
recent years. For example, HHO simulates the teamwork and chase patterns of a falcon hunting a rabbit, and has 
excellent advantages in solving single-target problems. We expect to test the performance of MCSMA under dif-
ferent circumstances with these algorithms that possess different comparative advantages. The particular param-
eter setting is listed in Table 2.

The first assessment criterion is the Wilcoxon rank-sum test, which is a two-sample t-test51. The median 
confidence interval is set to 95% to infer the distribution of the overall values when comparing two mutually 
independent data sets. Table 3 exhibits the final compared experimental data of the seven control groups in 30 
dimensions. “MEAN” describes the median of the data sample set. “STD” refers to the standard deviation, which 
is an important statistic to measure the degree of dispersion of the data. The Wilcoxon test generally has three 
types of ranking comparison results: “ + ”, “ ≈ ”, and “−”, indicating MCSMA performs better, tied, or worse than 
it comparison algorithms, respectively. In this table, the symbols “W/T/L” indicate the total number of three 
results of win, tied, and lose, respectively. The data group in bold means that the data is the optimal value for the 
same group under this test function. The comparison result between MCSMA and the basic algorithm SMA is 
19/6/4, which indicates that this improved method we proposed has a great advancement on the algorithm. The 
comparison results between MCSMA and the other six meta-heuristic algorithms are 28/1/0, 29/0/0, 29/0/0, 
20/3/6, 29/0/0, and 16/7/6, respectively. This positive result indicates that MCSMA achieves superior performance 
on most of the tested problems. We compare the p-values obtained from the Wilcoxon rank-sum test with the 
significant level of 0.05 to determine the presence of significant differences in the experimental results. Table 4 
provides a detailed comparison of p-values for the 30-dimensional case. The symbols following the specific 
p-values represent the final outcome of the experimental comparison. It is evident that the obtained p-values 
compared with the original and other powerful meta-heuristic are substantially lower, indicating a significant 
improvement in the performance. In addition, we examine the stability and performance of MCSMA in both 
50 dimensions and 100 dimensions, summarized in Table 5 and Table 6, respectively. It is noticeable that the 
MCSMA’s prime value and the number of wins increases as the dimensionality magnifies. This trend proves 
the stability of MCSMA on high-dimensional problems. When other algorithms fall into overfitting or local 
optimum, MCSMA still maintains stronger robustness.

The second assessment criterion is the convergence diagram of different  algorithms52. This test is mainly to 
visually match the convergence speed with performance of the algorithm. As displayed in Fig. 5, the horizontal 
coordination represents the number of evaluations on different function problems, and the vertical coordination 
represents the average optimization error that the algorithm can achieve. We choose six different types of func-
tions F11, F12, F16, F23, F24, and F29 to show the convergence ability of MCSMA. The curve slope of MCSMA 
is the smallest in the first period of evaluation, which indicates that MCSMA is able to converge to desired solu-
tions at a faster rate. The lowest point of the MCSMA curve is always the smallest of the six functions, verifying 

Table 2.  The parameter settings of the comparative algorithms.

Algorithms Settings

MCSMA η = 0.5; z = 0.03

SMA z = 0.03

HHO E0 ∈ (−1, 1); E1 = 2

WOA I = 1; a1 ∈ [2, 0]; a2 ∈ [−2,−1]

MFO I = 1; a ∈ [−1,−2]

SSA c2, c3 randomly located in [0,1]

SCA A = 2

GLPSO c1 = 1.49618;O = 0.7298; pm = 0.1
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that MCSMA has the capability of grasping the best solution. In summary, MCSMA possesses a fast convergence 
speed and excellent performance.

The third evaluation criterion is the box-and-whisker chart. This chart is mainly used to evaluate the quality 
of the solutions obtained by the algorithm. It can visually furnish the distribution characteristics between differ-
ent data groups and manifest their differences. As displayed in Fig. 6, the lines inside the box depict the median 
of the data, and the upper and lower edges represent the quartile spacing boxes. The smaller spacing between 
the edges of the box indicates that the overall distribution of the data is in a confidence interval, which suggests 
the better robustness of the algorithm. The upper and lower black lines outside the box refer to the maximum 
and minimum values of the algorithm’s solution, respectively. The box is located in the lower space, suggesting 
the better solution quality of the algorithm. The red crosses are the outliers in the data, and the fewer outliers 
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Figure 5.  The exhibition of convergence comparison on Functions 11, 12, 16, 23, 24, and 29.
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indicate the more stable performance of the algorithm and the higher confidence of the data. Since outliers often 
have an opposing influence on the distribution and characteristics of a set of data and affect the analysis and 
judgment of the data, we have to consider this factor cautiously. On the six test functions we selected, it is clear 
that MCSMA consistently has the lowest spatial position and the smallest spacing. This illustrates that MCSMA 
has the highest solution quality and the strongest stability in this control group.

In summary, we carry out a series of comparison experiments under different dimensions on the CEC2017 
standard test set and analyze the experimental results using three distinct data evaluation  methods53. The analysis 
shows that MCSMA is quite competitive in terms of the overall solution quality, convergence rate, performance 
stability and robustness of the algorithm.

Engineering practical problem test. In the past, the research of intelligent algorithms mainly focused on 
mathematical theory and simulation modeling. With the rising productivity needs of society, whether an algo-
rithm is superior should also focus on its ability to solve real engineering problems and create social  value54–56. 
To test the capability of MCSMA on some large-scale complex real-world problems, we choose CEC2011 as a 
test set. CEC2011 contains 22 test functions, encompassing real-world problems in various domains. Table 7 
reveals the details of these real-world problems, including dimensions, constraint types, and modeling processes.

Table 8 shows the comparison results between MCSMA and the other six meta-heuristic algorithms. The 
comparison result of “W/T/L” with the original SMA is 8/8/6. Although MCSMA does not achieve a signifi-
cant advantage, it obtains the most number of optimal values, indicating that the method we proposed for 
improvement still has some performance boost in solving complex real-world problems. Compared with other 
meta-heuristic algorithms, MCSMA shows considerably satisfactory comparison results. In particular, MCSMA 
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MCSMA SMA HHO WOA

MEAN       STD MEAN       STD MEAN       STD MEAN       STD

F1 9.401E+03 ± 7.717E+03 7.500E+03 ± 6.498E+03 ≈ 8.066E+06 ± 1.765E+06 + 2.355E+06 ± 1.934E+06 +

F2 3.015E+02 ± 5.027E−01 3.001E+02 ± 7.370E−02 − 9.796E+02 ± 3.608E+02 + 1.593E+05 ± 7.032E+04 +

F3 4.948E+02 ± 1.382E+01 4.907E+02 ± 1.081E+01 − 5.117E+02 ± 2.457E+01 + 5.367E+02 ± 3.795E+01 +

F4 5.714E+02 ± 2.010E+01 5.826E+02 ± 2.014E+01 + 7.168E+02 ± 2.972E+01 + 7.665E+02 ± 5.179E+01 +

F5 6.022E+02 ± 7.549E−01 6.008E+02 ± 6.172E−01 − 6.563E+02 ± 5.915E+00 + 6.673E+02 ± 9.256E+00 +

F6 8.034E+02 ± 1.943E+01 8.143E+02 ± 2.523E+01 + 1.206E+03 ± 7.732E+01 + 1.234E+03 ± 8.860E+01 +

F7 8.765E+02 ± 2.086E+01 8.871E+02 ± 2.264E+01 + 9.511E+02 ± 1.930E+01 + 1.029E+03 ± 4.884E+01 +

F8 1.335E+03 ± 8.465E+02 2.294E+03 ± 1.174E+03 + 5.911E+03 ± 6.254E+02 + 8.003E+03 ± 3.541E+03 +

F9 3.824E+03 ± 5.848E+02 4.041E+03 ± 6.560E+02 + 5.297E+03 ± 6.219E+02 + 5.946E+03 ± 7.043E+02 +

F10 1.172E+03 ± 3.527E+01 1.226E+03 ± 5.640E+01 + 1.250E+03 ± 5.166E+01 + 1.469E+03 ± 1.157E+02 +

F11 1.249E+05 ± 7.938E+04 1.181E+06 ± 1.167E+06 + 7.758E+06 ± 4.810E+06 + 3.871E+07 ± 2.494E+07 +

F12 2.549E+04 ± 2.525E+04 2.663E+04 ± 2.484E+04 ≈ 2.149E+05 ± 1.391E+05 + 1.468E+05 ± 1.036E+05 +

F13 1.140E+04 ± 7.108E+03 3.835E+04 ± 1.972E+04 + 3.008E+04 ± 2.755E+04 + 7.566E+05 ± 9.071E+05 +

F14 1.866E+04 ± 1.559E+04 2.723E+04 ± 1.304E+04 + 5.384E+04 ± 4.722E+04 + 6.047E+04 ± 3.826E+04 +

F15 2.305E+03 ± 3.019E+02 2.419E+03 ± 2.936E+02 + 3.091E+03 ± 3.279E+02 + 3.454E+03 ± 3.710E+02 +

F16 2.045E+03 ± 1.811E+02 2.146E+03 ± 1.853E+02 + 2.574E+03 ± 2.800E+02 + 2.474E+03 ± 2.474E+02 +

F17 2.319E+05 ± 1.984E+05 3.367E+05 ± 2.837E+05 + 5.534E+05 ± 5.243E+05 + 2.617E+06 ± 2.625E+06 +

F18 2.003E+04 ± 1.993E+04 3.514E+04 ± 1.963E+04 + 1.369E+05 ± 9.906E+04 + 3.139E+06 ± 2.089E+06 +

F19 2.432E+03 ± 1.915E+02 2.419E+03 ± 1.563E+02 ≈ 2.692E+03 ± 1.844E+02 + 2.703E+03 ± 1.726E+02 +

F20 2.371E+03 ± 1.949E+01 2.393E+03 ± 2.514E+01 + 2.526E+03 ± 4.017E+01 + 2.556E+03 ± 6.976E+01 +

F21 5.088E+03 ± 1.104E+03 5.228E+03 ± 9.297E+02 ≈ 5.679E+03 ± 2.249E+03 + 6.810E+03 ± 2.066E+03 +

F22 2.720E+03 ± 1.755E+01 2.742E+03 ± 2.236E+01 + 3.034E+03 ± 1.016E+02 + 3.044E+03 ± 9.282E+01 +

F23 2.898E+03 ± 2.207E+01 2.919E+03 ± 2.030E+01 + 3.345E+03 ± 1.323E+02 + 3.172E+03 ± 1.010E+02 +

F24 2.888E+03 ± 1.804E+00 2.888E+03 ± 7.825E+00 − 2.906E+03 ± 1.906E+01 + 2.941E+03 ± 2.984E+01 +

F25 4.350E+03 ± 3.559E+02 4.585E+03 ± 2.521E+02 + 6.747E+03 ± 1.294E+03 + 7.666E+03 ± 1.121E+03 +

F26 3.212E+03 ± 1.068E+01 3.212E+03 ± 1.163E+01 ≈ 3.315E+03 ± 5.812E+01 + 3.363E+03 ± 9.531E+01 +

F27 3.237E+03 ± 2.829E+01 3.238E+03 ± 3.994E+01 ≈ 3.238E+03 ± 2.491E+01 ≈ 3.305E+03 ± 4.597E+01 +

F28 3.590E+03 ± 1.439E+02 3.735E+03 ± 1.794E+02 + 4.284E+03 ± 3.191E+02 + 4.810E+03 ± 4.492E+02 +

F29 1.148E+04 ± 4.274E+03 1.621E+04 ± 4.846E+03 + 9.621E+05 ± 5.029E+05 + 8.941E+06 ± 6.614E+06 +

W/T/L

−−/−−/−− 19/6/4 28/1/0 29/0/0

MFO SSA SCA GLPSO

MEAN       STD MEAN       STD MEAN       STD MEAN       STD

F1 7.870E+09 ± 5.290E+09 + 5.010E+03 ± 5.900E+03 − 1.203E+10 ± 1.565E+09 + 3.641E+04 ± 1.220E+05 −

F2 8.288E+04 ± 5.657E+04 + 3.000E+02 ± 1.180E-08 − 3.569E+04 ± 7.964E+03 + 2.080E+04 ± 1.992E+04 +

F3 8.184E+02 ± 3.305E+02 + 4.950E+02 ± 1.840E+01 ≈ 1.443E+03 ± 2.640E+02 + 5.055E+02 ± 2.984E+01 +

F4 6.896E+02 ± 4.294E+01 + 6.380E+02 ± 4.780E+01 + 7.756E+02 ± 2.159E+01 + 5.674E+02 ± 2.055E+01 ≈

F5 6.248E+02 ± 1.183E+01 + 6.370E+02 ± 1.260E+01 + 6.487E+02 ± 4.466E+00 + 6.002E+02 ± 1.124E-01 −

F6 1.014E+03 ± 1.292E+02 + 8.660E+02 ± 4.060E+01 + 1.122E+03 ± 4.005E+01 + 8.303E+02 ± 2.286E+01 +

F7 9.745E+02 ± 3.910E+01 + 9.290E+02 ± 3.840E+01 + 1.046E+03 ± 1.859E+01 + 8.668E+02 ± 1.686E+01 −

F8 5.989E+03 ± 1.876E+03 + 3.560E+03 ± 1.460E+03 + 5.422E+03 ± 1.202E+03 + 1.373E+03 ± 3.694E+02 +

F9 5.180E+03 ± 6.915E+02 + 5.020E+03 ± 6.570E+02 + 8.185E+03 ± 3.407E+02 + 3.664E+03 ± 4.481E+02 ≈

F10 3.073E+03 ± 2.791E+03 + 1.270E+03 ± 5.540E+01 + 2.082E+03 ± 2.717E+02 + 1.514E+03 ± 3.850E+02 +

F11 9.258E+07 ± 1.646E+08 + 2.500E+06 ± 1.680E+06 + 1.154E+09 ± 2.865E+08 + 3.147E+06 ± 2.980E+06 +

F12 5.371E+05 ± 1.318E+06 + 1.150E+05 ± 8.320E+04 + 3.783E+08 ± 1.618E+08 + 2.137E+04 ± 2.391E+04 ≈

F13 1.358E+05 ± 1.576E+05 + 6.270E+03 ± 3.950E+03 − 1.308E+05 ± 6.233E+04 + 1.815E+05 ± 3.179E+05 +

F14 3.866E+04 ± 2.611E+04 + 5.250E+04 ± 3.640E+04 + 1.309E+07 ± 1.160E+07 + 4.627E+03 ± 3.527E+03 −

F15 2.968E+03 ± 3.474E+02 + 2.570E+03 ± 2.840E+02 + 3.575E+03 ± 2.107E+02 + 2.668E+03 ± 2.644E+02 +

F16 2.402E+03 ± 2.503E+02 + 2.030E+03 ± 1.550E+02 ≈ 2.468E+03 ± 1.645E+02 + 2.190E+03 ± 1.935E+02 +

F17 1.383E+06 ± 2.697E+06 + 1.580E+05 ± 1.380E+05 − 3.160E+06 ± 1.843E+06 + 9.911E+05 ± 1.712E+06 ≈

F18 5.091E+06 ± 2.563E+07 + 4.750E+05 ± 2.510E+05 + 2.688E+07 ± 1.374E+07 + 8.001E+03 ± 6.478E+03 −

F19 2.583E+03 ± 2.296E+02 + 2.440E+03 ± 1.690E+02 ≈ 2.617E+03 ± 1.281E+02 + 2.423E+03 ± 1.620E+02 ≈

F20 2.475E+03 ± 4.056E+01 + 2.400E+03 ± 4.990E+01 + 2.553E+03 ± 2.154E+01 + 2.369E+03 ± 1.660E+01 ≈

F21 5.410E+03 ± 1.758E+03 + 3.510E+03 ± 1.910E+03 − 7.747E+03 ± 2.693E+03 + 2.626E+03 ± 8.997E+02 −

F22 2.820E+03 ± 3.172E+01 + 2.760E+03 ± 3.320E+01 + 2.994E+03 ± 2.626E+01 + 2.736E+03 ± 2.115E+01 +

F23 2.971E+03 ± 3.404E+01 + 2.920E+03 ± 3.210E+01 + 3.158E+03 ± 3.168E+01 + 2.916E+03 ± 2.736E+01 +

Continued
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achieves the most optimal values for some multimodal high-dimensional test problems, indicating that MCSMA 
has considerable potential and advantages for some complex application problems. Therefore, MCSMA can be 
applied to the present engineering and practical fields with desirable results tentatively in the  future57,58.

Performance test on artificial neural model training. Currently, neural networks have become a cor-
nerstone technology in solving image processing and classification prediction problems. Starting from the most 
primitive linear threshold artificial neural network models, many new network models with innovative struc-
tures and simulations of human brain structures have  emerged59,60. Dendritic neuron model(DNM) is a single 
neural network model that simulates the primitive dendritic structure of a nerve cell. This model uses logical 
operators and sigmoid functions to transmit signals and simulates the connections and propagation between 
neurons. Because of its specific synaptic hierarchy, DNM can circumvent some common defects of traditional 
propagation  networks61. In this section, we use DNM to examine the feasibility and performance of MCSMA on 
some general classification problems.

The network structure of DNM is simulated from the cytosolic conformation of human brain neurons, which 
consists of four levels: synapse, dendrite, cell membrane, and soma. Figure 7 illustrates the general structure 
of a simple fully connected dendritic neural network. Similar to actual brain cells, the main role of synapses 
is to receive and hold messages. In DNM, the sigmoid function is selected as the activation function for each 
synapse. The sigmoid function protects the integrity of the data while compressing it. Thus, setting the sigmoid 
function as the activation function in the synaptic layer can effectively protect and process the data signal to a 
large  extent62. Similar to brain potential signals, there are two states of cellular potentials depending on the input 
signal received by the synaptic layer: inhibition and excitation. The two states are represented and regulated by 
two learnable parameters in the sigmoid function.

The dendritic hierarchy is the core structure of the entire network model, where each node on each neural 
branch receives signals from the synapse. The process can be considered as a nonlinear mapping. According 
to brain science, the processing and responses produced by each response center in the cerebral cortex after 
receiving signals from neuronal stimuli can be regarded as a primitive multiplicative law. Between each dendritic 
node, multiplicative logic operations are used to prepare the signal for subsequent processing. After this, the 
signals from each dendritic branch are concentrated at the membrane-layer structure. At the membrane layer 
structure, all signals are summed linearly and the total signal is then transmitted to the cytosol for the nucleus 
to make the final decision. In the soma layer, a threshold exists within the cell body to determine whether the 
neuron emits an electrical signal. After the total potential signal processed by the first three layers exceeds the 
value, the neuron generates an excitation potential and transmits that excitation potential to other neural units. 
That is a complete single-neuron processing  process63.

Potential signals in the dendritic layer will be selectively pruned according to the hierarchical structure 
and functional properties of DNM. When the output of any nerve node is 0, that dendritic nerve is considered 
an invalid dendrite to retain the robust unit with the strongest impact on the soma body. Due to the electrical 
principle of the system, the operation of DNM can be well represented using logic circuit symbols as shown in 
Fig. 8. Figure 8 illustrates a complete structural process of DNM training. When the input data is fed into the 
model as activation potentials, the final soma output is obtained through filtering, pruning, and other operations.

We pick 7 different types of classification problems from the UC Irvine machine learning repository, con-
taining medical, biological, physical, and other fields. Table 9 summarizes the relevant properties about the 
data sets and the training. In this training experiment, we choose MCSMA, SMA, HHO, SSA, and a classical 
back-propagation algorithm(BP) as the comparison training algorithms. BP is the most popular and successful 
neural network learning algorithm. It utilizes two phases of forward and backward propagation to achieve a 
predetermined target  outcome64. To ensure reliable and fair experimental results, the number of evaluations is 
30000, the sample ratio of training samples to test samples is 1:1. Table 10 lists the results of the four compared 
algorithms on the training and test sets. The experimental data are measured by the overall accuracy. From the 
comparison results, MCSMA achieves the best accuracy on the five test sets, indicating that the proposed algo-
rithm achieves the most correct sample classifications on multiple classification problems.

W/T/L

−−/−−/−− 19/6/4 28/1/0 29/0/0

MFO SSA SCA GLPSO

MEAN       STD MEAN       STD MEAN       STD MEAN       STD

F24 3.153E+03 ± 2.752E+02 + 2.910E+03 ± 2.270E+01 + 3.211E+03 ± 7.388E+01 + 2.897E+03 ± 1.448E+01 +

F25 5.460E+03 ± 4.864E+02 + 4.370E+03 ± 9.620E+02 + 6.947E+03 ± 2.710E+02 + 4.659E+03 ± 2.577E+02 +

F26 3.235E+03 ± 1.816E+01 + 3.230E+03 ± 1.850E+01 + 3.407E+03 ± 4.746E+01 + 3.238E+03 ± 1.302E+01 +

F27 4.073E+03 ± 8.395E+02 + 3.220E+03 ± 2.910E+01 − 3.825E+03 ± 1.262E+02 + 3.243E+03 ± 2.597E+01 ≈

F28 4.021E+03 ± 2.939E+02 + 3.910E+03 ± 2.130E+02 + 4.649E+03 ± 2.115E+02 + 3.778E+03 ± 2.167E+02 +

F29 8.486E+05 ± 3.906E+06 + 1.910E+06 ± 1.150E+06 + 7.727E+07 ± 2.985E+07 + 5.730E+04 ± 3.864E+04 +

W/T/L 29/0/0 20/3/6 29/0/0 16/7/6

Table 3.  The CEC2017 experimental results of MCSMA and other comparative algorithms in 30 dimensions. 
Significance values are given in Bold.
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Through the above real-world problem test sets and neural network training experiments, we can conclude 
that MCSMA can cope well with some real-world practical optimization problems and classification problems.

Discussion
In this section, we perform a comprehensive discussion about the parameter and properties of MCSMA. Fur-
thermore, an analysis regarding the effectiveness of our proposed MLE-based selection mechanism is presented, 
comparing it with traditional chaotic improvement methods. We hope to have a valid analysis and discussion of 
the underlying operational structure of the algorithm.

Parameter discussion. In MCSMA, whether the algorithm performs a chaotic local search is determined 
by an evaluation value. When rand ≤ η , the mold individuals move forward or backward along the original tra-
jectory; when rand ≥ η , the population starts a chaotic local search and performs a chaotic oscillatory motion 
along the original motion trajectory. With the complementarity of such different search behaviors, the omission 
of the solution space is complemented and the local trap is jumped out. η is a random value that can take the 
value of (0, 1], and it may have an impact on the performance of the algorithm. We could not determine the 
specific value of η that would result in the maximum improvement in the ability of MCSMA, so we designed a set 
of controlled experiments. Ten real values of η are taken at 0.1 intervals and tested on the CEC2017 problem set.

Table 11 reveals the performance under 10 different parameters of MCSMA on CEC2017 test sets. We perform 
a Friedman test on ten sets of data to arrive at a final ranking. When η takes 0.5, the algorithm has the first Fried-
man rank and performs the best. By analyzing the data, we can conclude that the algorithm performs relatively 
well when η takes 0.4, 0.5, and 0.6. This indicates that taking values for the median allows for a good coupling of 
the chaos operator and the slime mold search. Therefore, we set the parameter η of MCSMA as 0.5 in this study.

Population movement trajectory analysis. For meta-heuristics, the algorithm maintains the popula-
tion updates and motions to perform a probe in the solution space. The size and motion of the population make 

Table 4.  The detailed p-values for Wilcoxon rank-sum test in 30 dimensions.

MCSMA vs

SMA HHO WOA MFO SSA SCA GLPSO

p-value p-value p-value p-value p-value p-value p-value

F1 8.005E−01 ≈ 1.652E−18 + 1.652E−18 + 7.542E−18 + 9.994E−01 − 1.652E−18 + 9.993E−01 −

F2 1.000E+00 − 1.652E−18 + 1.652E−18 + 1.652E−18 + 1.000E+00 − 1.652E−18 + 1.652E−18 +

F3 1.000E+00 − 9.916E−05 + 1.440E−11 + 3.960E−17 + 8.638E−01 ≈ 1.652E−18 + 7.286E−03 +

F4 2.575E−03 + 1.652E−18 + 1.652E−18 + 2.217E−18 + 1.493E−13 + 1.652E−18 + 8.079E−01 ≈

F5 1.000E+00 − 1.652E−18 + 1.652E−18 + 1.652E−18 + 1.652E−18 + 1.652E−18 + 1.000E+00 −

F6 7.561E−03 + 1.652E−18 + 1.652E−18 + 1.421E−17 + 1.672E−15 + 1.652E−18 + 6.652E−09 +

F7 1.407E−02 + 2.217E−18 + 1.652E−18 + 2.217E−18 + 1.891E−11 + 1.652E−18 + 9.906E−01 −

F8 3.984E−09 + 2.644E−18 + 4.473E−18 + 1.267E−17 + 6.986E−15 + 2.003E−17 + 2.155E−04 +

F9 4.848E−02 + 8.768E−16 + 6.717E−18 + 2.974E−14 + 6.195E−13 + 1.652E−18 + 9.107E−01 ≈

F10 4.815E−07 + 2.572E−13 + 1.752E−18 + 1.652E−18 + 1.148E−15 + 1.652E−18 + 9.526E−14 +

F11 1.764E−15 + 1.652E−18 + 1.652E−18 + 1.752E−18 + 2.091E−18 + 1.652E−18 + 2.826E−14 +

F12 6.520E−02 ≈ 1.652E−18 + 3.006E−15 + 5.060E−11 + 6.502E−13 + 1.652E−18 + 2.847E−01 ≈

F13 9.119E−12 + 1.571E−05 + 2.351E−18 + 6.594E−11 + 1.000E+00 − 1.652E−18 + 4.614E−03 +

F14 2.045E−03 + 5.516E−07 + 8.962E−11 + 5.902E−07 + 2.782E−09 + 1.652E−18 + 1.000E+00 −

F15 4.520E−02 + 1.606E−16 + 1.752E−18 + 5.475E−14 + 2.164E−05 + 1.652E−18 + 2.364E−08 +

F16 3.291E−03 + 9.557E−15 + 1.002E−13 + 1.891E−11 + 6.260E−01 ≈ 1.279E−15 + 2.568E−04 +

F17 7.422E−03 + 6.799E−06 + 8.617E−14 + 2.936E−06 + 9.966E−01 − 3.152E−18 + 3.690E−01 ≈

F18 2.164E−05 + 5.969E−15 + 1.652E−18 + 6.123E−10 + 3.157E−17 + 1.652E−18 + 9.993E−01 −

F19 6.336E−01 ≈ 1.146E−08 + 5.180E−10 + 4.296E−04 + 4.920E−01 ≈ 2.426E−06 + 6.707E−01 ≈

F20 1.759E−06 + 1.652E−18 + 1.652E−18 + 1.505E−17 + 7.522E−11 + 1.652E−18 + 5.952E−01 ≈

F21 2.052E−01 ≈ 1.359E−04 + 9.664E−10 + 1.066E−02 + 1.000E+00 − 1.984E−05 + 1.000E+00 −

F22 4.981E−07 + 1.858E−18 + 1.652E−18 + 1.752E−18 + 1.517E−09 + 1.652E−18 + 3.227E−05 +

F23 5.902E−07 + 1.652E−18 + 1.652E−18 + 4.824E−16 + 8.228E−05 + 1.652E−18 + 1.395E−04 +

F24 1.000E+00 − 4.146E−09 + 1.652E−18 + 3.342E−18 + 1.387E−03 + 1.652E−18 + 9.119E−12 +

F25 1.587E−04 + 1.002E−13 + 3.670E−16 + 3.960E−17 + 1.011E−02 + 1.652E−18 + 4.653E−07 +

F26 6.107E−01 ≈ 1.752E−18 + 1.752E−18 + 1.046E−11 + 8.086E−09 + 1.652E−18 + 1.239E−14 +

F27 5.900E−01 ≈ 5.479E−01 ≈ 1.524E−14 + 2.091E−18 + 9.998E−01 − 1.652E−18 + 1.319E−01 ≈

F28 3.320E−05 + 7.781E−17 + 1.752E−18 + 3.626E−13 + 3.780E−12 + 1.652E−18 + 8.159E−06 +

F29 6.985E−07 + 1.652E−18 + 1.652E−18 + 5.556E−17 + 1.652E−18 + 1.652E−18 + 1.088E−16 +

W/T/L 19/6/4 28/1/0 29/0/0 29/0/0 20/3/6 29/0/0 16/7/6



16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12744  | https://doi.org/10.1038/s41598-023-40080-1

www.nature.com/scientificreports/

MCSMA SMA HHO WOA

MEAN       STD MEAN       STD MEAN       STD MEAN       STD

F1 6.525E+03 ± 7.346E+03 1.347E+04 ± 1.127E+04 + 4.057E+07 ± 6.459E+06 + 3.577E+07 ± 1.860E+07 +

F2 3.204E+02 ± 1.079E+01 3.300E+02 ± 1.330E+01 + 9.566E+03 ± 2.580E+03 + 9.805E+04 ± 4.776E+04 +

F3 5.620E+02 ± 4.545E+01 5.729E+02 ± 3.817E+01 ≈ 6.452E+02 ± 5.030E+01 + 7.215E+02 ± 5.938E+01 +

F4 6.758E+02 ± 3.966E+01 6.950E+02 ± 3.680E+01 + 8.731E+02 ± 3.490E+01 + 9.177E+02 ± 8.521E+01 +

F5 6.093E+02 ± 2.031E+00 6.057E+02 ± 4.717E+00 − 6.700E+02 ± 5.483E+00 + 6.788E+02 ± 1.020E+01 +

F6 9.465E+02 ± 3.848E+01 9.713E+02 ± 4.445E+01 + 1.768E+03 ± 6.871E+01 + 1.680E+03 ± 1.068E+02 +

F7 9.674E+02 ± 3.187E+01 9.838E+02 ± 3.672E+01 + 1.160E+03 ± 2.768E+01 + 1.243E+03 ± 7.746E+01 +

F8 4.753E+03 ± 2.852E+03 9.780E+03 ± 4.310E+03 + 1.740E+04 ± 2.133E+03 + 2.288E+04 ± 6.552E+03 +

F9 6.638E+03 ± 8.346E+02 6.737E+03 ± 8.142E+02 ≈ 8.547E+03 ± 9.235E+02 + 1.029E+04 ± 1.292E+03 +

F10 1.279E+03 ± 5.001E+01 1.342E+03 ± 7.082E+01 + 1.439E+03 ± 8.570E+01 + 1.691E+03 ± 1.311E+02 +

F11 1.715E+06 ± 1.024E+06 7.904E+06 ± 3.719E+06 + 5.247E+07 ± 2.266E+07 + 3.038E+08 ± 1.761E+08 +

F12 2.496E+04 ± 1.137E+04 3.648E+04 ± 8.919E+03 + 1.468E+06 ± 7.604E+05 + 4.003E+05 ± 3.578E+05 +

F13 1.192E+05 ± 6.477E+04 1.702E+05 ± 1.108E+05 + 3.642E+05 ± 2.649E+05 + 8.510E+05 ± 6.390E+05 +

F14 2.156E+04 ± 9.497E+03 2.961E+04 ± 6.439E+03 + 2.225E+05 ± 1.022E+05 + 1.218E+05 ± 9.896E+04 +

F15 2.976E+03 ± 4.146E+02 3.184E+03 ± 4.831E+02 + 4.190E+03 ± 5.372E+02 + 5.033E+03 ± 7.102E+02 +

F16 2.678E+03 ± 3.228E+02 3.077E+03 ± 3.676E+02 + 3.623E+03 ± 3.749E+02 + 4.041E+03 ± 4.696E+02 +

F17 6.480E+05 ± 3.728E+05 1.117E+06 ± 5.920E+05 + 2.482E+06 ± 1.471E+06 + 6.463E+06 ± 5.285E+06 +

F18 1.899E+04 ± 1.743E+04 9.599E+03 ± 1.250E+04 ≈ 4.896E+05 ± 3.200E+05 + 3.231E+06 ± 2.784E+06 +

F19 2.949E+03 ± 2.854E+02 2.962E+03 ± 2.839E+02 ≈ 3.419E+03 ± 3.164E+02 + 3.554E+03 ± 3.206E+02 +

F20 2.467E+03 ± 3.445E+01 2.494E+03 ± 3.787E+01 + 2.805E+03 ± 7.453E+01 + 2.863E+03 ± 9.134E+01 +

F21 8.475E+03 ± 9.895E+02 8.266E+03 ± 9.897E+02 ≈ 1.072E+04 ± 9.518E+02 + 1.193E+04 ± 1.364E+03 +

F22 2.892E+03 ± 3.273E+01 2.943E+03 ± 4.086E+01 + 3.601E+03 ± 1.276E+02 + 3.601E+03 ± 1.535E+02 +

F23 3.058E+03 ± 3.900E+01 3.111E+03 ± 4.684E+01 + 4.107E+03 ± 1.326E+02 + 3.671E+03 ± 1.816E+02 +

F24 3.058E+03 ± 2.958E+01 3.040E+03 ± 2.965E+01 − 3.130E+03 ± 3.774E+01 + 3.178E+03 ± 5.223E+01 +

F25 4.229E+03 ± 1.337E+03 5.238E+03 ± 1.324E+03 + 9.660E+03 ± 2.707E+03 + 1.298E+04 ± 1.579E+03 +

F26 3.342E+03 ± 6.650E+01 3.375E+03 ± 7.489E+01 + 3.991E+03 ± 2.478E+02 + 4.320E+03 ± 3.928E+02 +

F27 3.313E+03 ± 2.418E+01 3.299E+03 ± 2.293E+01 − 3.357E+03 ± 3.746E+01 + 3.517E+03 ± 9.187E+01 +

F28 3.984E+03 ± 2.953E+02 4.195E+03 ± 2.575E+02 + 5.320E+03 ± 5.296E+02 + 7.232E+03 ± 7.154E+02 +

F29 1.414E+06 ± 4.021E+05 1.637E+06 ± 3.666E+05 + 1.474E+07 ± 3.283E+06 + 1.113E+08 ± 4.663E+07 +

W/T/L

−−/−−/−− 21/5/3 29/0/0 29/0/0

MFO SSA SCA GLPSO

MEAN       STD MEAN       STD MEAN       STD MEAN       STD

F1 3.362E+10 ± 1.444E+10 + 6.571E+03 ± 8.682E+03 ≈ 5.099E+10 ± 5.797E+09 + 4.108E+04 ± 1.725E+05 ≈

F2 1.776E+05 ± 7.814E+04 + 1.386E+03 ± 1.028E+03 + 1.383E+05 ± 1.953E+04 + 6.296E+04 ± 3.565E+04 +

F3 3.283E+03 ± 1.857E+03 + 5.685E+02 ± 4.637E+01 ≈ 8.073E+03 ± 1.691E+03 + 5.671E+02 ± 4.378E+01 +

F4 9.253E+02 ± 8.262E+01 + 7.966E+02 ± 8.042E+01 + 1.100E+03 ± 3.605E+01 + 6.450E+02 ± 3.219E+01 −

F5 6.475E+02 ± 8.346E+00 + 6.490E+02 ± 9.830E+00 + 6.756E+02 ± 5.819E+00 + 6.002E+02 ± 5.951E-02 −

F6 1.649E+03 ± 3.968E+02 + 1.041E+03 ± 7.306E+01 + 1.730E+03 ± 7.505E+01 + 9.596E+02 ± 4.366E+01 ≈

F7 1.214E+03 ± 6.741E+01 + 1.095E+03 ± 6.373E+01 + 1.409E+03 ± 3.165E+01 + 9.382E+02 ± 2.864E+01 −

F8 1.548E+04 ± 4.078E+03 + 1.085E+04 ± 2.664E+03 + 2.695E+04 ± 5.018E+03 + 2.228E+03 ± 8.533E+02 −

F9 8.495E+03 ± 1.112E+03 + 7.664E+03 ± 7.800E+02 + 1.461E+04 ± 3.521E+02 + 5.651E+03 ± 6.510E+02 −

F10 7.392E+03 ± 5.936E+03 + 1.399E+03 ± 7.994E+01 + 8.584E+03 ± 1.670E+03 + 3.935E+03 ± 2.659E+03 +

F11 4.015E+09 ± 3.442E+09 + 2.659E+07 ± 1.821E+07 + 1.480E+10 ± 2.850E+09 + 8.969E+06 ± 6.580E+06 +

F12 3.489E+08 ± 6.208E+08 + 1.292E+05 ± 9.021E+04 + 4.031E+09 ± 1.247E+09 + 4.824E+04 ± 8.263E+04 ≈

F13 1.071E+06 ± 1.399E+06 + 7.723E+04 ± 6.164E+04 − 2.760E+06 ± 1.217E+06 + 2.069E+06 ± 2.430E+06 +

F14 2.766E+07 ± 8.386E+07 + 5.677E+04 ± 4.327E+04 + 6.767E+08 ± 2.486E+08 + 1.723E+04 ± 3.284E+04 −

F15 4.118E+03 ± 5.162E+02 + 3.342E+03 ± 4.671E+02 + 5.748E+03 ± 3.818E+02 + 3.458E+03 ± 4.214E+02 +

F16 3.931E+03 ± 4.015E+02 + 3.184E+03 ± 3.617E+02 + 4.664E+03 ± 3.071E+02 + 2.925E+03 ± 2.848E+02 +

F17 5.603E+06 ± 8.669E+06 + 6.282E+05 ± 4.406E+05 ≈ 2.184E+07 ± 9.563E+06 + 5.992E+06 ± 5.756E+06 +

F18 6.376E+06 ± 2.521E+07 + 1.202E+06 ± 6.002E+05 + 3.975E+08 ± 1.590E+08 + 1.567E+04 ± 8.471E+03 ≈

F19 3.485E+03 ± 3.327E+02 + 3.062E+03 ± 2.806E+02 + 4.003E+03 ± 1.587E+02 + 2.972E+03 ± 3.482E+02 ≈

F20 2.720E+03 ± 7.047E+01 + 2.550E+03 ± 6.317E+01 + 2.907E+03 ± 3.667E+01 + 2.447E+03 ± 3.435E+01 −

F21 1.020E+04 ± 1.024E+03 + 9.176E+03 ± 1.558E+03 + 1.622E+04 ± 3.493E+02 + 7.433E+03 ± 7.999E+02 −

F22 3.126E+03 ± 6.074E+01 + 2.981E+03 ± 7.560E+01 + 3.524E+03 ± 5.300E+01 + 2.913E+03 ± 4.147E+01 +

F23 3.205E+03 ± 5.237E+01 + 3.113E+03 ± 5.402E+01 + 3.697E+03 ± 5.206E+01 + 3.154E+03 ± 7.540E+01 +

Continued
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a direct difference in the robustness and performance of the algorithm. Individuals in the population intelligence 
first explore the space extensively, looking for more information to decide whether they can obtain sufficient 
rewards. When many individuals always choose a certain region or follow a specific trajectory, it is likely to be 
trapped into a local optimum. At this point, intelligent individuals are needed to develop optimal solutions or 
decisions around known search regions in which to help the algorithm escape the trap of local optimal. The issue 
of how to reasonably design the algorithm’s strategy at different stages is a critical issue.

We visually observe the different stages of the algorithm by the search trajectory of the population. Figure 9 
shows the trajectory and trend of the MCSMA on the three typical problems (F6, F10, and F26) of the CEC2017 
test set for the slime population. On the multi-peaked function F6, we can see that the slime molds are randomly 
spread throughout the space at the beginning of the iteration. This is a search process, with the population search-
ing aimlessly for information about possible food. When the number of iterations reaches 5, we can see that the 
mucilaginous population rapidly clusters into areas of possible optimal solutions. As the number of iterations 
increases, the individual slime bacteria arrange their search strategy according to the available information and 
implement a chaotic local search around this region. From t = 5 to t = 10 , this process interprets the exploita-
tion of a particular region by a population of slime bacteria. We can clearly see the population-specific search 
strategy of MCSMA in the two different types of test functions, F10 and F26. This indicates that the search 
strategy of MCSMA rationally designs the trajectory of the population to achieve the coordination of search 
and exploitation.

Validity of MLE. When algorithms use multiple improvement mechanisms, it is difficult to determine 
which of these improvements on the algorithm is beneficial. Each algorithm has extremely complex mathemati-
cal workings behind it, and there is a degree of black box effect. In this section, we hope to prove that this new 
MLE-based probabilistic adjustment mechanism we proposed has a genuine improvement on the algorithm.

To investigate the impact of MLE of interest on the chaotic behavior perturbation of the search system, we 
design a group of controlled ablation experiments. In this set of experiments, we verify the effectiveness of this 
MLE-based roulette selection mechanism by using MCSMA and a multi-chaotic slime mold algorithm (CSMA) 
as control groups. CSMA also uses a success probability roulette mechanism to involve chaotic maps, but there is 
no quadratic weight probability adjustment based on MLE. The local search operator selects chaotic maps based 
solely on the quality of solutions without considering the guiding significance of the mathematical properties 
of chaotic maps on the selection weights. Table 12 manifests the comparative outcomes between MCSMA and 
CSMA on CEC2017. From Table 12, it can be observed that in the case of unimodal problems F1 and F2, the 
inclusion of MLE seems to have a negative effect, indicating that excessive chaotic perturbations are not benefi-
cial for the evolutionary search of the population in extremely low-dimensional unimodal problems. However, 
in almost all multimodal and complex hybrid problems, MCSMA achieves optimal values and demonstrates 
significantly prior performance compared to CSMA without the MLE-based optimization of weights. The con-
sequence of “W/T/L” shows the validity of the design of MLE-based roulette. This can prove that the proposed 
strategy of reasonably choosing the best chaotic local operator based on the inherent properties of chaos, i.e., 
MLE, is genuinely valid.

Analysis of time complexity. The evaluation of algorithmic time complexity aims to estimate how the 
execution time and resource usage of a program increase with the growth of input size. In initial setting, N 
denotes the population size; D is the dimension scale; T represents the number of iterations. The time complexity 
of MCSMA can be calculated by follows: 

(1) The process of initializing population needs O(N × D)+ O(N).
(2) Generating correlation coefficient matrix C needs O(N).
(3) The fitness evaluation and sorting of individuals costs O(N × T × (1+ logN)).
(4) Updating the Mi requires O(N × T × D).

Table 5.  The CEC2017 experimental results of MCSMA and other comparative algorithms in 50 dimensions. 
Significance values are given in Bold.

W/T/L

−−/−−/−− 21/5/3 29/0/0 29/0/0

MFO SSA SCA GLPSO

MEAN       STD MEAN       STD MEAN       STD MEAN       STD

F24 5.479E+03 ± 2.029E+03 + 3.037E+03 ± 2.643E+01 − 7.177E+03 ± 8.641E+02 + 3.071E+03 ± 2.633E+01 +

F25 7.883E+03 ± 6.401E+02 + 4.566E+03 ± 2.008E+03 ≈ 1.206E+04 ± 7.289E+02 + 5.685E+03 ± 4.049E+02 +

F26 3.554E+03 ± 6.808E+01 + 3.455E+03 ± 9.541E+01 + 4.364E+03 ± 1.755E+02 + 3.454E+03 ± 6.385E+01 +

F27 7.948E+03 ± 1.106E+03 + 3.294E+03 ± 2.508E+01 − 7.252E+03 ± 7.618E+02 + 3.336E+03 ± 3.640E+01 +

F28 5.151E+03 ± 5.115E+02 + 4.911E+03 ± 3.634E+02 + 7.558E+03 ± 7.231E+02 + 4.160E+03 ± 2.748E+02 +

F29 4.582E+07 ± 1.036E+08 + 4.263E+07 ± 8.367E+06 + 9.126+08 ± 2.718E+08 + 1.132E+06 ± 2.228E+05 ≈

W/T/L 29/0/0 22/4/3 29/0/0 15/6/8
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MCSMA SMA HHO WOA

MEAN       STD MEAN       STD MEAN       STD MEAN       STD

F1 1.447E+04 ± 1.524E+04 4.258E+05 ± 2.977E+05 + 3.283E+08 ± 3.882E+07 + 1.234E+09 ± 4.214E+08 +

F2 3.802E+04 ± 1.119E+04 2.010E+04 ± 7.343E+03 − 1.343E+05 ± 1.835E+04 + 7.631E+05 ± 2.247E+05 +

F3 7.284E+02 ± 5.529E+01 6.765E+02 ± 4.166E+01 − 9.829E+02 ± 8.617E+01 + 1.506E+03 ± 1.797E+02 +

F4 1.001E+03 ± 7.673E+01 1.096E+03 ± 9.595E+01 + 1.441E+03 ± 6.315E+01 + 1.497E+03 ± 1.076E+02 +

F5 6.327E+02 ± 8.062E+00 6.265E+02 ± 6.964E+00 − 6.802E+02 ± 3.314E+00 + 6.845E+02 ± 9.276E+00 +

F6 1.447E+03 ± 1.082E+02 1.526E+03 ± 1.244E+02 + 3.593E+03 ± 1.231E+02 + 3.301E+03 ± 1.487E+02 +

F7 1.274E+03 ± 7.186E+01 1.368E+03 ± 9.516E+01 + 1.901E+03 ± 7.126E+01 + 1.942E+03 ± 1.155E+02 +

F8 2.225E+04 ± 3.272E+03 2.549E+04 ± 3.849E+03 + 3.949E+04 ± 4.424E+03 + 4.956E+04 ± 1.292E+04 +

F9 1.465E+04 ± 1.275E+03 1.388E+04 ± 1.157E+03 − 2.016E+04 ± 1.710E+03 + 2.199E+04 ± 2.237E+03 +

F10 2.282E+03 ± 1.859E+02 2.260E+03 ± 1.936E+02 ≈ 3.376E+03 ± 3.343E+02 + 4.228E+04 ± 2.780E+04 +

F11 8.918E+06 ± 4.553E+06 3.746E+07 ± 1.605E+07 + 4.258E+08 ± 1.370E+08 + 1.207E+09 ± 4.695E+08 +

F12 1.613E+04 ± 1.144E+04 6.552E+04 ± 2.336E+04 + 5.164E+06 ± 1.090E+06 + 9.358E+05 ± 7.259E+05 +

F13 4.773E+05 ± 2.863E+05 1.352E+06 ± 6.596E+05 + 1.480E+06 ± 6.066E+05 + 4.099E+06 ± 1.901E+06 +

F14 1.203E+04 ± 9.271E+03 2.493E+04 ± 1.307E+04 + 1.718E+06 ± 2.304E+06 + 5.632E+05 ± 2.852E+06 +

F15 5.060E+03 ± 6.968E+02 5.486E+03 ± 5.878E+02 + 7.353E+03 ± 9.509E+02 + 1.192E+04 ± 1.896E+03 +

F16 4.830E+03 ± 4.869E+02 5.014E+03 ± 5.279E+02 + 6.254E+03 ± 6.681E+02 + 7.276E+03 ± 8.013E+02 +

F17 1.464E+06 ± 7.238E+05 2.968E+06 ± 1.534E+06 + 2.810E+06 ± 9.476E+05 + 4.140E+06 ± 2.209E+06 +

F18 1.856E+04 ± 1.363E+04 2.367E+04 ± 1.373E+04 + 5.482E+06 ± 2.347E+06 + 2.344E+07 ± 1.350E+07 +

F19 4.817E+03 ± 5.785E+02 4.951E+03 ± 5.066E+02 ≈ 5.864E+03 ± 4.342E+02 + 6.261E+03 ± 6.180E+02 +

F20 2.822E+03 ± 6.455E+01 2.895E+03 ± 8.069E+01 + 3.860E+03 ± 1.422E+02 + 3.983E+03 ± 1.880E+02 +

F21 1.665E+04 ± 1.441E+03 1.699E+04 ± 1.432E+03 ≈ 2.321E+04 ± 1.361E+03 + 2.530E+04 ± 2.405E+03 +

F22 3.183E+03 ± 5.300E+01 3.244E+03 ± 7.330E+01 + 4.772E+03 ± 2.329E+02 + 4.773E+03 ± 2.646E+02 +

F23 3.748E+03 ± 7.860E+01 3.828E+03 ± 9.165E+01 + 6.085E+03 ± 3.581E+02 + 6.118E+03 ± 3.612E+02 +

F24 3.401E+03 ± 5.873E+01 3.324E+03 ± 6.035E+01 − 3.649E+03 ± 8.107E+01 + 4.035E+03 ± 1.410E+02 +

F25 1.032E+04 ± 1.651E+03 1.155E+04 ± 8.403E+02 + 2.550E+04 ± 1.912E+03 + 3.155E+04 ± 3.254E+03 +

F26 3.461E+03 ± 4.328E+01 3.479E+03 ± 5.525E+01 + 4.344E+03 ± 2.679E+02 + 4.950E+03 ± 5.799E+02 +

F27 3.491E+03 ± 4.220E+01 3.421E+03 ± 4.478E+01 − 3.642E+03 ± 5.566E+01 + 4.368E+03 ± 1.965E+02 +

F28 6.299E+03 ± 5.196E+02 6.591E+03 ± 6.012E+02 + 9.293E+03 ± 8.715E+02 + 1.437E+04 ± 1.757E+03 +

F29 1.185E+04 ± 5.198E+03 1.044E+05 ± 3.904E+04 + 3.448E+07 ± 1.036E+07 + 3.933E+08 ± 1.679E+08 +

W/T/L −−/−−/−− 20/3/6 29/0/0 29/0/0

MFO SSA SCA GLPSO

MEAN       STD MEAN       STD MEAN       STD MEAN       STD

F1 1.317E+11 ± 4.122E+10 + 1.029E+04 ± 1.217E+04 − 2.921E+11 ± 3.109E+10 + 2.772E+09 ± 7.348E+08 +

F2 6.593E+05 ± 1.489E+05 + 1.362E+05 ± 2.476E+04 + 6.796E+05 ± 6.356E+04 + 4.696E+05 ± 4.644E+04 +

F3 2.121E+04 ± 1.061E+04 + 6.999E+02 ± 4.960E+01 − 8.244E+04 ± 1.686E+04 + 1.470E+03 ± 1.976E+02 +

F4 1.694E+03 ± 1.553E+02 + 1.253E+03 ± 1.109E+02 + 2.333E+03 ± 8.828E+01 + 1.000E+03 ± 7.633E+01 +

F5 6.678E+02 ± 6.332E+00 + 6.614E+02 ± 6.009E+00 + 7.221E+02 ± 7.726E+00 + 6.063E+02 ± 1.908E+00 −

F6 3.978E+03 ± 7.224E+02 + 1.748E+03 ± 1.657E+02 + 6.664E+03 ± 1.648E+03 + 1.525E+03 ± 1.265E+02 +

F7 2.025E+03 ± 1.338E+02 + 1.581E+03 ± 1.224E+02 + 2.678E+03 ± 8.331E+01 + 1.330E+03 ± 5.685E+01 +

F8 4.300E+04 ± 4.461E+03 + 2.460E+04 ± 2.782E+03 + 1.374E+05 ± 1.414E+04 + 4.871E+03 ± 2.337E+03 −

F9 1.738E+04 ± 2.027E+03 + 1.564E+04 ± 1.497E+03 + 3.210E+04 ± 4.956E+02 + 3.024E+04 ± 5.417E+02 +

F10 1.357E+05 ± 6.761E+04 + 2.852E+03 ± 2.326E+02 + 2.172E+05 ± 3.358E+04 + 1.021E+05 ± 4.352E+04 +

F11 3.219E+10 ± 1.479E+10 + 2.427E+08 ± 1.138E+08 + 1.130E+11 ± 1.269E+10 + 3.217E+08 ± 9.073E+07 +

F12 3.962E+09 ± 3.015E+09 + 8.150E+04 ± 3.745E+04 + 2.014E+10 ± 3.297E+09 + 1.192E+04 ± 5.917E+03 +

F13 9.816E+06 ± 1.458E+07 + 5.991E+05 ± 3.777E+05 ≈ 7.558E+07 ± 2.239E+07 + 3.398E+06 ± 2.422E+06 +

F14 8.167E+08 ± 9.519E+08 + 7.385E+04 ± 3.036E+04 + 7.214E+09 ± 1.522E+09 + 5.291E+03 ± 3.355E+03 ≈

F15 7.997E+03 ± 9.140E+02 + 6.167E+03 ± 7.352E+02 + 1.512E+04 ± 7.345E+02 + 5.668E+03 ± 6.391E+02 +

F16 7.937E+03 ± 1.673E+03 + 5.155E+03 ± 5.879E+02 + 4.236E+04 ± 2.817E+04 + 5.028E+03 ± 6.261E+02 +

F17 1.253E+07 ± 1.499E+07 + 1.164E+06 ± 5.757E+05 − 1.541E+08 ± 4.782E+07 + 3.162E+06 ± 2.456E+06 +

F18 7.058E+08 ± 7.901E+08 + 5.300E+06 ± 2.009E+06 + 6.437E+09 ± 1.267E+09 + 6.272E+03 ± 4.356E+03 ≈

F19 5.700E+03 ± 5.766E+02 + 5.062E+03 ± 5.885E+02 + 7.843E+03 ± 2.190E+02 + 6.964E+03 ± 2.102E+02 +

F20 3.566E+03 ± 1.366E+02 + 3.041E+03 ± 1.311E+02 + 4.279E+03 ± 9.810E+01 + 2.916E+03 ± 9.930E+01 +

F21 1.989E+04 ± 1.757E+03 + 1.812E+04 ± 1.490E+03 + 3.410E+04 ± 5.073E+02 + 3.176E+04 ± 5.610E+03 +

F22 3.724E+03 ± 9.394E+01 + 3.469E+03 ± 1.170E+02 + 4.908E+03 ± 8.796E+01 + 3.433E+03 ± 7.813E+01 +

F23 4.270E+03 ± 1.343E+02 + 3.969E+03 ± 1.292E+02 + 6.528E+03 ± 1.857E+02 + 4.116E+03 ± 9.279E+01 +

Continued
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(5) The phase of chaotic local search costs O(N × T × D).

So the time complexity of MCSMA can be summarized as O((N + 2N × T)× D + 2N + N × T × (1+ logN)) . 
According  to27, the original SMA’s time complexity is O((1+ N × T)× D + N × T × (1+ logN)) . It can be 
observed that the time complexity of both algorithms remain at the linear-logarithmic order, indicating that our 
proposed improvement method does not lead a significant increase in program complexity and does not require 
sacrificing computational resources for performance improvements.

Table 6.  The CEC2017 experimental results of MCSMA and other comparative algorithms in 100 dimensions. 
Significance values are given in Bold.

W/T/L −−/−−/−− 20/3/6 29/0/0 29/0/0

MFO SSA SCA GLPSO

F24 1.251E+04 ± 5.666E+03 + 3.352E+03 ± 6.509E+01 − 4.610E+04 ± 8.525E+03 + 4.073E+03 ± 1.714E+02 +

F25 1.684E+04 ± 1.257E+03 + 1.233E+04 ± 3.947E+03 + 3.773E+04 ± 1.917E+03 + 1.448E+04 ± 1.407E+03 +

F26 3.890E+03 ± 1.755E+02 + 3.683E+03 ± 8.215E+01 + 7.414E+03 ± 3.846E+02 + 3.873E+03 ± 7.320E+01 +

F27 1.793E+04 ± 2.278E+03 + 3.451E+03 ± 4.782E+01 − 3.742E+04 ± 2.995E+03 + 4.183E+03 ± 1.611E+02 +

F28 1.099E+04 ± 5.414E+03 + 8.573E+03 ± 7.588E+02 + 4.727E+04 ± 1.849E+04 + 6.894E+03 ± 5.809E+02 +

F29 1.875E+09 ± 1.311E+09 + 4.359E+07 ± 2.236E+07 + 1.285E+10 ± 1.661E+09 + 3.932E+05 ± 1.893E+05 +

W/T/L 29/0/0 23/1/5 29/0/0 25/2/2

Table 7.  The summary of CEC2011 test problems.

Problem No. Dimensions Constraints Definitions of problems

F1 6 Bounded To solve the multimodal problem in the music field regarding optimizing parameters for FM sound waves to simulate 
timbres.

F2 30 Bounded To test the algorithm’s performance in tuning the structure of Lennard-Jones, a 20-sided body, so that the molecular 
potential energy is minimized.

F3 1 Bouned A chemical catalyst conversion methyl optimisation problem dealing with multiple systems of differential equations simul-
taneously.

F4 1 Unconstrained The problem of optimal control of chemical reactions in stirred reactors, finding the most suitable value for the coolant 
flow rate to maximize the target chemical product.

F5 30 Bounded To address the problem of minimizing the potential energy between silicon atoms in covalent power systems.

F6 30 Bounded The problem of selecting the appropriate waveform to handle the radar pulse is formulated as a non-linear optimization 
problem with continuous variables.

F7 20 Bounded The optimization problem of planning a collection of transmission lines to minimize their cost while meeting constraints 
on line power.

F8 7 Equality and inequality Solving the pricing problems in the power system which is a multi-factorial constrained optimization concerning costs, 
benefits, loss rates, markets, etc.

F9 126 Linear equality To design an antenna array, considering its received signal area, orientation angle, and the proper arrangement between 
array patterns.

F10 12 Bounded The problem of non-reciprocal constraints in dynamically dispatching generation schedules based on each hour’s demand 
for electricity.

F11 120

Inequality
Aimed at statically dispatching the fuel cost optimization problem of a generating unit within an operating cycle. Seven 
problems are designed based on upper and lower limits of operating power and conflicting factors between specific 
regions. This complex problem can be classified as a multimodal multi-constraint optimization problem under different 
dimensional conditions.

F12 216

F13 6

F14 13

F15 15

F16 40

F17 140

F18-F20 96 Inequality
The problem of rationalizing the integration of hydroelectric and thermal power generation in a hydrothermal power 
system to meet load requirements. It is designed as 3 problems taking into account fuel cost, hydro network, delayed 
scheduling, etc.

F21 26 Bounded Orbit planning for spacecraft under multiple gravity fields with propulsion engines, which is a large-scale global optimiza-
tion problem.

F22 22 Bounded A high-dimensional continuous optimization problem of multiple interplanetary spacecraft orbits.
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Table 8.  Results of MCSMA and other heuristic algorithms on the CEC2011 real-world problem. Significance 
values are given in Bold.

MCSMA SMA HHO WOA MFO SSA SCA

MEAN       STD MEAN       STD MEAN       STD MEAN       STD MEAN       STD MEAN       STD MEAN       STD

F1 1.233E+01 ± 
4.976E+00

1.611E+01 ± 
6.061E+00 +

1.531E+01 ± 
4.399E+00 +

1.728E+01 ± 
6.049E+00 +

1.743E+01 ± 
5.064E+00 +

1.528E+01 ± 
6.050E+00 +

1.376E+01 ± 
3.220E+00 ≈

F2 − 2.003E+01 ± 
5.176E+00

− 1.604E+01 ± 
5.135E+00 +

−2.176E+01 ± 
2.471E+00 ≈

−1.995E+01 ± 
4.015E+00 ≈

−1.269E+01 ± 
3.678E+00 +

−1.949E+01 ± 
3.163E+00 ≈

−1.023E+01 ± 
1.539E+00 +

F3 1.151E−05 ± 
4.991E−15

1.152E−05 ± 
1.323E−09 +

1.151E−05 ± 
4.528E−19 −

1.151E−05 ± 
1.262E−17 −

1.151E−05 ± 
2.944E−19 −

1.151E−05 ± 
3.793E−18 −

1.151E−05 ± 
9.473E−12 +

F4 1.425E+01 ± 
1.771E−01

1.420E+01 ± 
2.349E−01 −

1.423E+01 ± 
2.275E−01 −

1.423E+01 ± 
2.063E−01 −

1.771E+01 ± 
3.426E+00 ≈

1.483E+01 ± 
1.669E+00 −

1.532E+01 ± 
1.517E+00 +

F5 −3.286E+01 ± 
1.527E+00

− 3.285E+01 ± 
2.023E+00 −

− 2.665E+01 ± 
2.840E+00 +

−2.686E+01 ± 
4.104E+00 +

−3.094E+01 ± 
4.084E+00 ≈

−2.845E+01 ± 
3.244E+00 +

−2.036E+01 ± 
1.827E+00 +

F6 −2.519E+01 ± 
3.361E+00

− 2.563E+01 ± 
3.469E+00 −

− 2.120E+01 ± 
2.934E+00 +

−1.965E+01 ± 
3.419E+00 +

−2.503E+01 ± 
3.564E+00 ≈

−2.040E+01 ± 
3.750E+00 +

−1.441E+01 ± 
1.470E+00 +

F7 1.525E+00 ± 
2.255E−01

9.714E−01 ± 
1.863E−01 −

1.590E+00 ± 
1.919E−01 ≈

1.764E+00 ± 
2.115E−01 +

1.236E+00 ± 
2.264E−01 −

1.029E+00 ± 
1.752E−01 −

1.933E+00 ± 
2.073E−01 +

F8 2.200E+02 ± 
0.000E+00

2.200E+02 ± 
0.000E+00 ≈

2.354E+02 ± 
2.931E+01 +

2.698E+02 ± 
2.798E+01 +

2.372E+02 ± 
2.119E+01 +

2.476E+02 ± 
3.116E+01 +

3.742E+02 ± 
2.218E+02 +

F9 3.335E+03 ± 
1.750E+03

4.054E+03 ± 
1.149E+03 +

3.534E+05 ± 
1.096E+05 +

2.840E+05 ± 
1.164E+05 +

3.828E+04 ± 
3.806E+04 +

1.449E+04 ± 
1.098E+04 +

3.911E+05 ± 
8.225E+04 +

F10 − 1.778E+01 ± 
3.052E+00

−1.403E+01 ± 
3.002E+00 +

−1.150E+01 ± 
6.056E−01 +

−1.071E+01 ± 
1.403E+00 +

−1.269E+01 ± 
1.492E+00 +

−1.256E+01 ± 
2.414E+00 +

−1.074E+01 ± 
5.344E−01 +

F11 5.249E+04 ± 
6.074E+02

5.228E+04 ± 
5.297E+02 ≈

8.274E+04 ± 
4.819E+03 +

1.030E+06 ± 
1.737E+05 +

9.582E+06 ± 
9.528E+06 +

6.275E+04 ± 
1.773E+04 +

1.739E+08 ± 
1.805E+07 +

F12 1.734E+07 ± 
2.108E+04

1.738E+07 ± 
3.536E+04 +

1.821E+07 ± 
1.309E+05 +

2.376E+07 ± 
1.110E+06 +

2.386E+07 ± 
1.683E+06 +

1.874E+07 ± 
2.565E+05 +

4.670E+07 ± 
9.229E+05 +

F13 1.548E+04 ± 
3.082E+01

1.551E+04 ± 
5.418E+01 ≈

1.551E+04 ± 
6.582E+01 +

1.554E+04 ± 
7.134E+01 +

1.552E+04 ± 
3.303E+01 +

1.551E+04 ± 
3.449E+01 +

1.566E+04 ± 
1.492E+02 +

F14 1.914E+04 ± 
1.342E+02

1.914E+04 ± 
2.137E+02 ≈

1.934E+04 ± 
1.954E+02 +

1.934E+04 ± 
2.179E+02 +

1.925E+04 ± 
2.038E+02 ≈

1.889E+04 ± 
1.487E+02 −

1.939E+04 ± 
6.335E+02 ≈

F15 3.288E+04 ± 
8.071E+01

3.298E+04 ± 
1.317E+02 +

3.322E+04 ± 
9.686E+01 +

4.886E+04 ± 
7.116E+04 +

3.303E+04 ± 
8.867E+01 +

3.334E+04 ± 
1.209E+03 +

6.219E+04 ± 
3.344E+04 +

F16 1.319E+05 ± 
2.870E+03

1.340E+05 ± 
3.224E+03 +

1.478E+05 ± 
5.854E+03 +

1.478E+05 ± 
7.415E+03 +

1.422E+05 ± 
5.981E+03 +

1.429E+05 ± 
8.169E+03 +

2.102E+05 ± 
9.053E+04 +

F17 1.952E+06 ± 
2.261E+04

1.941E+06 ± 
2.216E+04 −

2.734E+06 ± 
6.822E+05 +

1.099E+10 ± 
3.175E+09 +

2.745E+08 ± 
4.263E+08 +

2.156E+06 ± 
3.356E+05 +

8.727E+09 ± 
1.337E+09 +

F18 9.503E+05 ± 
5.144E+03

9.503E+05 ± 
4.570E+03 ≈

1.437E+06 ± 
4.662E+05 +

2.031E+06 ± 
2.227E+06 +

1.072E+06 ± 
3.240E+05 +

9.641E+05 ± 
6.388E+04 ≈

2.360E+07 ± 
4.870E+06 +

F19 1.107E+06 ± 
9.647E+04

1.151E+06 ± 
1.127E+05 ≈

2.112E+06 ± 
8.109E+05 +

2.734E+06 ± 
1.547E+06 +

1.335E+06 ± 
1.994E+05 +

1.591E+06 ± 
2.263E+05 +

2.321E+07 ± 
4.352E+06 +

F20 9.513E+05 ± 
3.867E+03

9.547E+05 ± 
1.710E+04 ≈

1.506E+06 ± 
4.665E+05 +

2.265E+06 ± 
2.069E+06 +

1.080E+06 ± 
3.773E+05 +

1.004E+06 ± 
2.047E+05 ≈

2.327E+07 ± 
4.152E+06 +

F21 1.705E+01 ± 
1.693E+00

1.561E+01 ± 
2.163E+00 −

3.146E+01 ± 
7.239E+00 +

3.701E+01 ± 
7.379E+00 +

2.177E+01 ± 
5.454E+00 +

2.748E+01 ± 
4.243E+00 +

4.168E+01 ± 
4.647E+00 +

F22 1.854E+01 ± 
3.581E+00

1.698E+01 ± 
4.342E+00 ≈

3.750E+01 ± 
5.885E+00 +

3.834E+01 ± 
6.525E+00 +

2.421E+01 ± 
4.229E+00 +

2.639E+01 ± 
2.625E+00 +

3.734E+01 ± 
6.260E+00 +

W/T/L −−/−−/−− 8/8/6/ 18/2/2 19/1/2 16/4/2 15/3/4 20/2/0

Figure 7.  A schematic diagram of the fully connected dendritic neuron model.
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Figure 8.  The general learning procedure of dendritic neural network model.

Table 9.  The relevant properties settings of data sets and the training process.

Data set # of features # of classes # of training sets # of test sets # of dendrite (DNM)

XOR 2 2 8 8 4

IRIS 4 3 75 75 6

LIVER 6 2 173 172 8

GLASS 9 2 107 107 11

CANCER 9 2 350 349 11

WINE 13 3 89 89 14

HABERMANS 3 2 306 306 10

Table 10.  The overall accuracy results on classification data sets. Significance values are given in Bold.

Dataset

SMA MCSMA HHO SSA BP

Train(%) Test(%) Train(%) Test(%) Train(%) Test(%) Train(%) Test(%) Train(%) Test(%)

XOR 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 97.500 97.500

IRIS 97.600 94.000 97.333 93.200 96.933 94.133 96.533 94.533 92.667 90.667

LIVER 69.360 63.815 69.942 65.607 63.837 59.653 59.186 57.688 59.302 56.647

GLASS 91.682 88.224 96.075 91.215 96.075 92.243 95.981 89.626 96.168 91.963

CANCER 97.221 96.286 96.991 96.429 97.994 96.371 97.249 95.457 96.934 95.771

WINE 68.202 62.022 91.461 89.775 87.640 83.371 91.011 87.753 72.697 65.843

HABERMANS 78.954 71.307 76.601 74.183 76.536 73.268 74.510 72.810 80.327 71.503
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Conclusion
In this paper, we propose a novel algorithm, MCSMA, that incorporates a multi-chaotic local operator while 
retaining the unique sticky bacteria feedback search in SMA. We consider for the first time the fundamental 
property of chaotic motion, i.e., the maximum Lyapunov exponent, and add it as an evaluation criterion to the 
meritocratic multi-chaotic roulette wheel. By constructing the MLE correlation matrix of the chaotic map as a 
moderating factor for probabilistic adjustment, the most efficient and suitable chaotic operator for the algorithm 
is screened. We compare the performance of MCSMA on three different types of test sets, i.e., IEEE CEC2017, 
CEC2011, and a challenging neural network learning task. Experimental results verify the effectiveness and 
feasibility of MCSMA.

It has been a pressing challenge for computational intelligence to effectively address the need of compensat-
ing for some specific drawbacks of algorithms while avoiding compromising their  advantages12,65. We aspire to 
construct a general enhancement mechanism to improve the local exploitation capability of existing algorithms, 
and the issue of how to optimize and generalize the structure of such chaotic local operators is a focus of future 
work. It is also worthwhile to apply MCSMA to other areas, such as control scheduling, industrial modeling, 
and data  processing66,67.

Table 11.  The parameter η control group experimental results on CEC2017.

η = 0.1 η = 0.2 η = 0.3 η = 0.4 η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

F1 7.479E+03 9.450E+03 8.513E+03 6.162E+03 7.969E+03 6.942E+03 7.263E+03 7.222E+03 7.290E+03 8.481E+03

F2 3.006E+02 3.009E+02 3.017E+02 3.016E+02 3.012E+02 3.020E+02 3.022E+02 3.026E+02 3.025E+02 3.026E+02

F3 4.958E+02 4.977E+02 4.965E+02 4.947E+02 5.021E+02 4.988E+02 4.977E+02 4.980E+02 4.953E+02 5.002E+02

F4 6.002E+02 5.745E+02 5.720E+02 5.701E+02 5.680E+02 5.778E+02 5.773E+02 5.738E+02 5.719E+02 5.708E+02

F5 6.037E+02 6.011E+02 6.031E+02 6.024E+02 6.018E+02 6.037E+02 6.041E+02 6.049E+02 6.048E+02 6.052E+02

F6 8.131E+02 8.051E+02 8.030E+02 8.032E+02 8.080E+02 8.087E+02 8.082E+02 8.055E+02 8.098E+02 8.120E+02

F7 9.124E+02 8.910E+02 8.721E+02 8.758E+02 8.850E+02 8.742E+02 8.762E+02 8.780E+02 8.724E+02 8.727E+02

F8 2.122E+03 1.273E+03 1.263E+03 1.240E+03 1.107E+03 1.190E+03 1.152E+03 1.111E+03 1.073E+03 1.192E+03

F9 3.940E+03 3.943E+03 3.980E+03 3.970E+03 3.690E+03 3.789E+03 3.859E+03 3.794E+03 4.044E+03 3.827E+03

F10 1.173E+03 1.174E+03 1.175E+03 1.175E+03 1.182E+03 1.177E+03 1.182E+03 1.187E+03 1.189E+03 1.194E+03

F11 1.157E+05 1.081E+05 1.091E+05 1.297E+05 1.125E+05 1.081E+05 1.092E+05 1.015E+05 1.018E+05 1.226E+05

F12 3.260E+04 2.427E+04 2.891E+04 2.374E+04 2.537E+04 2.388E+04 2.629E+04 2.568E+04 2.749E+04 2.595E+04

F13 1.187E+04 1.381E+04 1.377E+04 1.298E+04 1.096E+04 1.177E+04 1.281E+04 1.429E+04 1.154E+04 1.196E+04

F14 2.111E+04 1.759E+04 1.485E+04 2.067E+04 2.011E+04 1.681E+04 1.907E+04 1.688E+04 1.819E+04 2.011E+04

F15 2.266E+03 2.307E+03 2.328E+03 2.274E+03 2.290E+03 2.221E+03 2.270E+03 2.240E+03 2.266E+03 2.275E+03

F16 2.067E+03 2.022E+03 2.020E+03 2.069E+03 2.011E+03 2.017E+03 2.067E+03 2.051E+03 2.044E+03 2.061E+03

F17 2.520E+05 2.497E+05 2.606E+05 3.089E+05 2.532E+05 2.823E+05 3.281E+05 2.085E+05 2.741E+05 2.283E+05

F18 2.418E+04 2.790E+04 2.425E+04 2.290E+04 2.803E+04 2.724E+04 2.759E+04 3.369E+04 3.272E+04 2.991E+04

F19 2.442E+03 2.430E+03 2.376E+03 2.394E+03 2.429E+03 2.416E+03 2.437E+03 2.428E+03 2.395E+03 2.384E+03

F20 2.403E+03 2.374E+03 2.379E+03 2.376E+03 2.371E+03 2.370E+03 2.371E+03 2.372E+03 2.374E+03 2.381E+03

F21 5.168E+03 4.937E+03 5.110E+03 5.092E+03 4.744E+03 5.181E+03 4.840E+03 4.592E+03 3.997E+03 3.294E+03

F22 2.735E+03 2.728E+03 2.723E+03 2.718E+03 2.720E+03 2.720E+03 2.721E+03 2.727E+03 2.728E+03 2.724E+03

F23 2.903E+03 2.899E+03 2.900E+03 2.897E+03 2.897E+03 2.899E+03 2.901E+03 2.900E+03 2.896E+03 2.896E+03

F24 2.886E+03 2.888E+03 2.891E+03 2.893E+03 2.888E+03 2.891E+03 2.891E+03 2.892E+03 2.891E+03 2.891E+03

F25 4.496E+03 4.329E+03 4.329E+03 4.352E+03 4.371E+03 4.404E+03 4.374E+03 4.392E+03 4.346E+03 4.385E+03

F26 3.208E+03 3.208E+03 3.210E+03 3.208E+03 3.208E+03 3.211E+03 3.213E+03 3.209E+03 3.208E+03 3.212E+03

F27 3.219E+03 3.227E+03 3.241E+03 3.239E+03 3.227E+03 3.239E+03 3.251E+03 3.247E+03 3.247E+03 3.248E+03

F28 3.654E+03 3.628E+03 3.644E+03 3.637E+03 3.613E+03 3.626E+03 3.629E+03 3.611E+03 3.603E+03 3.627E+03

F29 1.201E+04 1.220E+04 1.285E+04 1.262E+04 1.252E+04 1.335E+04 1.329E+04 1.313E+04 1.347E+04 1.388E+04

Rank 8 4 6 3 1 2 9 7 5 10
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Figure 9.  The population movement trajectory on F6, F10 and F26.
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The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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