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Three‑dimensional wormhole 
with cosmic string effects 
on eigenvalue solution 
of non‑relativistic quantum 
particles
Faizuddin Ahmed 

In this paper, we explore the quantum system of non‑relativistic particles in a unique scenario: a 
circularly symmetric and static three‑dimensional wormhole space‑time accompanied by cosmic 
strings. We focus on a specific case where the redshift function Φ(r) to be zero and defining the shape 
function as A(r) = b

r
2
 . After establishing this background space‑time, we investigate the behavior of 

a harmonic oscillator within the same wormhole context. By doing so, we observe the effects of the 
cosmic string and wormhole throat radius on the eigenvalue solution of the oscillator’s eigenvalue 
problem. The primary finding is that these cosmic features lead to modifications in the energy 
spectrum and wave functions of the system, breaking the degeneracy of energy levels that would 
typically be present in a more conventional setting. As a particular case, we present the specific energy 
level E1,ℓ and the corresponding wave function ψ1,ℓ , which are associated with the ground state of 
the quantum system. These results highlight the fascinating and unique properties of the harmonic 
oscillator in the background of a circularly symmetric, static wormhole space‑time with cosmic strings.

The general theory of relativity is a profound scientific framework that establishes a fundamental connection 
between the curvature of space-time and the distribution of matter’s stress-energy1. When matter and energy 
are present, they cause the geometry of space-time to curve, and this curvature governs the dynamics of objects 
moving within it. This theory is exceptionally intricate, with its field equations consisting of ten non-linear dif-
ferential equations. Finding exact solutions to these equations without imposing any symmetry or asymptotic 
conditions is extremely challenging.

To tackle this complexity, scientists often resort to employing both analytic and numerical approximations. 
Through these approximations, they can explore a wide range of fascinating physical phenomena, including 
gravitational lensing, the gravitational collapse of stars leading to the formation of black holes, the Big Bang 
theory, and the cosmic microwave background (CMB). By utilizing these approximation methods, researchers 
can gain valuable insights into the behavior of matter and energy in the presence of gravitational fields, unravel-
ling the mysteries of some of the universe’s most enigmatic and awe-inspiring phenomena.

Numerous authors have successfully derived exact solutions to the field equations in different dimensions, 
including (1+ 1) , (1+ 2) , (1+ 3) , and higher dimensions. In four dimensions, some well-known solutions found 
in the literature encompass the Schwarzschild vacuum  solution2, de-Sitter and anti-de Sitter space-times, Fried-
mann–Robertson–Walker (FRW) space-time, and the Kerr rotating  solution3. However, there are other exact 
solutions that possess peculiar properties, such as the Gödel space-time4, the Som–Raychaudhri space-time5, 
Tipler’s rotating  cylinder6, Gott time machine space-time7, and Ori time-machine space-time8, among others. 
These solutions exhibit characteristics like closed time-like curves (CTCs), closed time-like geodesics (CTGs), 
and closed null geodesics (CNGs), which violate causality conditions in general relativity and potentially allow 
for time travel. To address this issue and prevent the appearance of such peculiar properties in exact solutions 
of the field equations, S. Hawking postulates the Chronology Protection Conjecture (CPC)9. However, despite 
the conjecture, there is currently no rigorous proof available in the literature. Hence, the possibility of closed 
causal curves in certain space-time solutions cannot be easily discarded. It is worth noting that the presence 
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of closed time-like curves in a space-time would lead to the concept of time-travel within the framework of 
relativity theory.

In the context of (1+ 2)-dimensional space-time, there exist several known solutions to the field equations, 
including those presented in Refs.10,11, solutions with string  sources12, spinless BTZ space-time13,14, charged 
black hole  solutions15, solutions with perfect fluid  sources16, charged-free black hole  solutions17, and multi-black 
hole  geometries18. These solutions contribute to a better understanding of the gravitational dynamics in lower-
dimensional space-time scenarios.

Apart from the known solutions of the field equations that exhibit closed causal curves, there are other exact 
solutions featuring curvature singularities, known as black hole space-times. A crucial defining characteristic is 
the presence of an event horizon that covers the curvature singularity, indicating the existence of a black hole; 
otherwise, the solution does not represent a black hole. Two well-known black hole solutions in four dimensions 
are the Schwarzschild  solution2 and the Kerr  solution3. In addition to black hole solutions, there are solutions of 
the field equations that violate the weak energy condition (WEC) and the null energy condition (NEC), creat-
ing wormhole space-times. However, a few wormhole space-time satisfies the weak and null energy condition. 
These solutions have gained significant attention in recent times due to their intriguing properties. Wormholes 
are theoretical structures that could potentially serve as shortcuts or narrow throats connecting two distinct 
regions of the universe. The possibility of traversing these wormholes has led to speculation about their potential 
as a tool for time travel. The concept of wormholes was independently introduced by  Bronnikov19 and  Ellis20 
in four dimensions, resulting in the Ellis-Bronnikov wormhole model. Subsequently, Morris and Thorne pro-
posed a traversable wormhole  solution21 known as the Morris-Thorne wormhole model, which has garnered 
significant attention among researchers. Following these pioneering works, numerous wormhole space-times in 
four dimensions, with or without a cosmological constant, have been reported in the  literature22–29. The study of 
these wormhole solutions continues to be an active area of research, as they present intriguing possibilities and 
implications within the framework of general relativity.

Indeed, efforts have been made to construct wormhole solutions in three-dimensional space-time as well. 
Several intriguing solutions have been proposed, each offering unique characteristics and implications within 
the context of general relativity. Some of the notable three-dimensional wormhole solutions include: travers-
able wormhole  solution30, static and cyclic symmetric traversable  wormhole31, traversable wormhole with a 
cosmological  constant25, stable thin-shell  wormhole32, stable charged thin-shell  wormholes33, circular thin-shell 
 wormholes34, traversable Lorentzian  wormhole35. Each of these solutions contributes to a deeper understanding 
of the possibilities and implications of wormholes in three-dimensional space-time. The study of these solutions 
continues to be an active area of research, as they offer intriguing avenues for exploring exotic geometries and 
potential shortcuts in the fabric of the universe.

Topological defects arise as a consequence of spontaneous symmetry breaking in gauge theories during the 
phase transition in the early universe, as discussed  in36. These defects are categorized into various types, includ-
ing cosmic strings, domain walls, global monopoles, textures, and branes. The presence of topological defects 
significantly alters the geometric properties of the space-time being considered. Cosmic strings and global 
monopoles are two types of topological defects that have received extensive study in the realms of gravitation 
and cosmology, solid-state physics, and quantum mechanics. In quantum systems, the presence of topological 
defects induces changes in the behavior of quantum mechanical particles, thereby shifting the energy spectrum 
and wave functions of these particles, regardless of whether they are spin-zero, spin-half, or spin-one particles. In 
the domain of non-relativistic quantum systems, researchers have investigated the quantum motion of particles 
in the presence of topological defects such as cosmic  strings37, and point-like global  monopoles38–42. Some other 
investigations of the non-relativistic quantum systems in the background of the topological defects have been 
done in Refs.43–50. These studies provide valuable insights into the quantum dynamics of particles in the vicinity 
of topological defects, shedding light on the fascinating effects arising from the interplay of quantum mechanics 
and the underlying geometry of space-time.

Researchers have explored the effects of non-relativistic quantum mechanics on the harmonic oscillator 
problem within the context of topological defects. Notably, investigations have been carried out in scenarios 
such as: an elastic medium with spiral  dislocation51, quantum revival  time52, space-time with a distortion of a 
vertical line into a vertical  spiral53, space-time with a screw dislocation subject to linear confining  potential54, 
conical singularities space-time38, space-time with a linear topological  defect55, in a point-like  defect56, under 
non-inertial effects with a screw  dislocation57, and in a topologically charged Ellis-Bronnikov-type  wormhole58. 
These investigations offer valuable insights into the interplay between quantum mechanics and the presence of 
topological defects, enriching our understanding of the behavior of quantum systems in intriguing and non-
trivial space-time backgrounds. The exploration of such effects holds promise for advancing our knowledge of 
quantum phenomena in diverse physical systems.

A circularly symmetric and static three-dimensional traversable wormhole space-time with cosmic string is 
described by the following line-element30

where Φ(r) is the red shift function, A(r) is the shape function and α < 1 is the cosmic string parameter. Noted 
that we introduce a cosmic string in this wormhole space-time by redefining the azimuthal angle φ in such a 
way that φ → φ′ = α φ . For a traversable wormhole, the shape function A(r) must satisfy flare-out condition, 
that is, A(r)|r=r0 = r0 , and A′(r)|r=r0 < 1 , where r0 is the minimum global radius of the wormhole throat. This 
wormhole geometry to be asymptotically flat provided, we have the condition A(r)r → 0 and Φ(r) → 0 at r → ∞ . 

(1)ds2 = −eΦ(r) dt2 + dr2
(

1− A(r)
r

) + α2 r2 dφ2,
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The radial coordinate r has a range that increases from a minimum value at r0 , corresponding to the wormhole 
throat, to ∞ , that is, r ∈ [r0,∞) and other coordinates are −∞ < t < +∞ , 0 ≤ φ < 2π with an angular deficit 
δφ = 2π (1− α) . To avoid the presence of event horizons, Φ(r) is imposed to be finite throughout the coordinate 
range. The presence of cosmic string changes the geometrical properties of a space-time under investigation.

For the above space-time , the non-zero components of the Einstein tensor are

Below, we discuss a special case by choosing the constant redshift function Φ(r) and different form function 
A(r) as considered in Ref.59.

Special case : constant redshift function
As mentioned earlier, to prevent the formation of event horizons, the redshift function Φ(r) should be finite 

throughout everywhere. A particular case which we are interested here is the solution with a constant redshift 
function, Φ ′(r) = 0 . Without a loss of generality, we have considered Φ(r) = 0 . In that situation, time-component 
of the metric tensor for the space-time (1) is gtt = −1 . This specific case simplifies the field equations signifi-
cantly, and provide particularly intriguing solution. The energy-momentum tensor is chosen to have the form 
T
µ
ν = diag (−ρ, pr , pt) , where ρ represents the energy-density, pr represent the radial pressure, and pt represent 

the tangential pressure.
Under this case, that is, Φ(r) = 0 , one will find the non-zero energy density and zero pressure components, 

respectively given by

A pressure-less perfect fluid which violates the weak energy condition since r A
′(r)−A(r)
A2 < 0 , the flaring-out 

condition. The Ricci scalar and the Kretschmann scalar curvatures for this case are given by

We consider next a few specific choices for the form function or the shape function A(r).

1. Shape function: A(r) = r0
  For this case, the energy-density of the pressure-less perfect fluid, the Ricci scalar R, and the Kretschmann 

scalar K are given by

  From above, we see that the perfect fluid violate violates the weak energy condition (WEC), 
Tµν U

µ Uν = ρ < 0 as well as the null energy condition (NEC), Tµν k
µ kν = ρ Uµ Uν k

µ kν < 0 , where Uµ 
is the time-like vector and kµ is a null vector. Furthermore, we see that all the physical quantities in (5) are 
finite at r = r0 and vanishes for r → ∞.

2.  Shape function: A(r) = r20
r

  For the specific case A(r) = r20
r  , the energy-density of pressure-less perfect fluid, the Ricci scalar R, and 

the Kretschmann scalar K are given by

  Here also, one can see that the perfect fluid violates the weak energy condition (WEC) and the null energy 
condition (NEC). All the physical quantities in (6) are finite at r = r0 and vanishes for r → ∞.

3. Shape function: A(r) = r0

[

1+ γ

(

1− r0
r

)]

  Lastly, we choose the following form function

where 0 < γ < 1 otherwise the flare-out condition will not satisfy.
  In that case, the energy-density of the pressure-less perfect fluid, the Ricci scalar R, and the Kretschmann 

scalar K are given by

At r = r0 , the wormhole throat radius, the energy-density given by

(2)
Gt
t =

eΦ(r)

2 r3

[

A(r)− r A′(r)
]

, Gr
r =

Φ ′(r)

2 r

(

1− A(r)

r

)

,

G
φ
φ = 1

4 r2

[{

A(r)− r A′(r)+ r
(

r − A(r)
)

Φ ′(r)
}

Φ ′(r)+ 2 r
(

r − A(r)
)

Φ ′′(r)
]

.

(3)ρ = 1

2 r3

[

r A′(r)− A(r)
]

= R/2, pr = 0 = pt .

(4)R = −A(r)+ r A′(r)

r3
, K =

[

− A(r)+ r A′(r)
]2

r6
= R2.

(5)ρ = − r0

2 r3
, R = − r0

r3
, K = r20

r6
.

(6)ρ = − r20
r4
, R = −2 r20

r4
, K = 4 r40

r8
.

(7)A(r) = r0

[

1+ γ

(

1− r0

r

)]

,

(8)ρ = r0

2 r4

[

2 γ r0 − (1+ γ ) r
]

, R = r0

r4

[

2 γ r0 − (1+ γ ) r
]

, K = r20
r8

[

− 2 γ r0 + (1+ γ ) r
]2
.
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violate the energy conditions for the given range of γ . All physical quantities given in (8) are finite at r = r0 
and vanishes for r → ∞.

  In this work, we consider the form function or shape function of the second kind given by A(r) = b2

r  , 
where b > 0 . Therefore, circularly symmetric and a static (1+ 2)-dimensional traversable wormhole space-
time with a cosmic string is given by the following line-element

where b = const = r0 is the wormhole throat radius. One can see that if we choose b → 0 , the line-ele-
ment (11) becomes a cosmic string space-time in three dimensions. Finally, introducing a new coordinate 
r2 = (x2 + b2) into this space-time (11) covering the whole wormhole regions, one will obtain the following 
line-element

where x1 = x, x2 = φ . The ranges of the different coordinates are −∞ < t < ∞ , 0 ≤ φ < 2π , and the 
coordinate x runs from −∞ to +∞ , where x = 0 represents the wormhole throat. The non-zero covariant 
and contravariant components of the spatial metric tensor gij are given by

with its determinant g = |gij| = α2 (x2 + a2).

This research work focuses on the investigation of quantum system of non-relativistic particles within the con-
text of a circularly symmetric and static traversable wormhole space-time featuring cosmic strings. The primary 
objective is to explore how the presence of cosmic strings and the wormhole throat radius influence the solution 
of time-independent eigenvalue equation. To achieve this, the study begins by analyzing the quantum behavior 
of particles in the given wormhole background. The wave equation is solved for this specific scenario, allowing 
for the determination of the energy levels and corresponding wave functions. Subsequently, we investigate the 
harmonic oscillator problem within the same wormhole background, considering its impact on the eigenvalue 
solutions. The key findings reveal that the presence of cosmic strings and the wormhole throat radius significantly 
modify the energy levels and wave functions of the quantum particles. The results obtained demonstrate clear 
shifts in the quantum properties of the system under the influence of these factors. Overall, this research uncovers 
the intricate interplay between quantum mechanics and the geometrical properties of a traversable wormhole 
with cosmic strings, shedding light on how such exotic features can shape the quantum dynamics of particles. 
The findings contribute to a deeper understanding of the behavior of quantum systems in non-trivial space-time 
backgrounds and may have implications for various areas of theoretical physics. So far author’s concern, this is 
the first investigation of the non-relativistic quantum system in the background of three-dimensional wormhole 
space-time with a cosmic string.

The paper is structured as follows: In “Non-relativistic quantum particles in three-dimensional wormhole 
with a cosmic string” section, we derive the time-independent wave equation governing the behavior of non-
relativistic particles in a circularly symmetric wormhole space-time background. The wave equation is then 
solved using the Heun function, which allows us to gain insights into the quantum dynamics of particles within 
this unique wormhole configuration. Moving on to “Harmonic oscillator in Three-dimensional wormhole with 
a cosmic string” section, we explore the harmonic oscillator problem within the same wormhole background. 
The wave equation for the harmonic oscillator is solved using the same method employed in “Non-relativistic 
quantum particles in three-dimensional wormhole with a cosmic string” section. This investigation provides a 
deeper understanding of how the harmonic oscillator behaves in the presence of cosmic strings and the worm-
hole throat radius. Finally, in “Conclusions” section, we present our conclusions based on the findings from the 
previous sections. We summarize the key results and discuss their implications in the context of the circularly 
symmetric and static traversable wormhole space-time with cosmic strings. Throughout the entire analysis, we 
adopt a system of units in which the fundamental constants c, � , and G are set to unity, simplifying the math-
ematical expressions and facilitating a more concise representation of the results.

Non‑relativistic quantum particles in three‑dimensional wormhole with a cosmic 
string
In this section, we delve into the quantum system of non-relativistic particles using the time-independent 
Schrödinger wave equation in the presence of a circularly symmetric and static wormhole background with a 
cosmic string. To initiate our investigation, we start by defining the Hamiltonian operator for a non-relativistic 
particle, which is given as  follows38,38–41,56,57:

(9)ρ|r=r0 =
(γ − 1)

2 r20
< 0 (0 < γ < 1)

(10)ds2 = −dt2 + r2 dr2

(r2 − b2)
+ α2 r2 dφ2,

(11)ds2 = −dt2 + dx2 + α2 (x2 + b2) dφ2 = −dt2 + gij dx
i dxj ,

(12)gxx = 1 = gxx , gφφ = α2 (x2 + b2) = 1

gφφ
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where M is the rest mass of the particles, g = |gij| is the determinant of the metric tensor gij with gij its inverse. 
This Hamiltonian operator is a fundamental quantity in quantum mechanics, and its role in describing the 
dynamics of non-relativistic particles in the presence of the considered wormhole space-time with cosmic strings 
is pivotal to our study. We will use this operator to derive the Schrödinger wave equation and explore its solutions, 
shedding light on the intriguing behavior of quantum systems in this exotic space-time background.

Expressing the Hamiltonian (13) in the space-time background (11) and using (12), we obtain

The eigenvalue equation of the non-relativistic particles is given  by38,56

where E is the particles energy eigenvalue.
The wave function can be expressed in terms of the function ψ(x) as follows

where ℓ = 0 ± 1,± 2, ... are the eigenvalues of the orbital quantum number associated with the operator −i ∂̂φ.
Thereby, substituting (14) into the Eq. (15) and using the wave function (16), we obtain the following dif-

ferential equation

where we have set

Here, we see that the orbital quantum number gets shifted or modified, that is, ℓ → ℓ0 = |ℓ|
α

 by the cosmic 
string parameter α.

Introducing a new variable via x2 = −b2 u in the Eq. (17), we obtain the following differential equation

Equation (19) is the confluent Heun equation  form53,60–62 with ψ(u) is the confluent Heun function given by

To obtain bound-states solution of the quantum system, let us consider the function ψ(u) to be a power series 
solution around the  origin63 given by

Substituting this power series (21) in the Eq. (19), we obtain the following recurrence relation

with the coefficient

One can see from the recurrence relation that a closed or compact expression of the energy eigenvalue may 
not be possible by setting fn+1 = 0 and σ 2 b2 = 0 . Therefore, we follow another procedure by setting k = (n− 1) 
where the coefficient fn+1 = 0 . Therefore, using this this condition in the recurrence relation (22), we obtain

(13)Ĥ = − 1

2M

1
√
g
∂i

(√
g gij ∂j

)

,

(14)Ĥ = − 1

2M

[

∂2

∂x2
+ x

(x2 + b2)

∂

∂x
+ 1

α2 (x2 + b2)

∂2

∂φ2

]

.

(15)Ĥ Ψ (x,φ) = EΨ (x,φ),

(16)Ψ (x,φ) = ei ℓ φ ψ(x),

(17)ψ ′′(x)+ x

(x2 + b2)
ψ ′(x)+

[

σ 2 − ℓ20

(x2 + b2)

]

ψ(x) = 0,

(18)ℓ0 =
|ℓ|
α

, σ 2 = 2M E.

(19)ψ ′′(u)+
[

1/2

u
+ 1/2

u− 1

]

ψ ′(u)+
[

(ℓ20 − σ 2 b2)/4

u
+ (−ℓ20/4)

u− 1

]

ψ(u) = 0.

(20)ψ(u) = Hc

(

0,−1

2
,−1

2
,−σ 2 b2

4
,
σ 2 b2

4
+ 3

8
− ℓ20

4
; u

)

.

(21)ψ(u) =
∞
∑

i=0

fi u
i .

(22)fk+2 =
1

2 (k + 2) (2 k + 3)

[

{

4 (k + 1)2 + σ 2 b2 − ℓ20

}

fk+1 − σ 2 b2 fk

]

(23)f1 =
1

2
(σ 2 b2 − ℓ20) f0.

(24)fn = σ 2 b2
[

4 n2 + σ 2 b2 − ℓ20

] fn−1.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12953  | https://doi.org/10.1038/s41598-023-40066-z

www.nature.com/scientificreports/

Now, one can find the individual energy levels and wave functions of the quantum mechanical particles one 
by one by setting n = 1 and others are in the same way. The ground state or lowest state of the quantum system 
is defined by n = 1 , and thus, from the relation (24), we obtain

Comparing Eqs. (23) and (25), we obtain the following ground state energy level given by

And that the corresponding wave function will be

Equation (26) represents the ground state energy level, while Eq. (27) corresponds to the corresponding 
wave function of non-relativistic particles in a circularly symmetric and static wormhole space-time with cosmic 
strings. By following a similar approach, one can obtain other state energy levels and wave functions for the 
mode n ≥ 2 . It is evident from Eq. (26) that the lowest state energy level E±1, ℓ and wave function ψ±1, ℓ are 
influenced by the cosmic string parameter α and the wormhole throat radius b = const . The presence of this 
cosmic string parameter in the quantum system effectively breaks the degeneracy of the energy levels and leads 
to a shift in their values.

To better understand this influence, graphs were generated to illustrate the impact of the cosmic string on 
the energy levels E±1, ℓ and the probability density |Ψ±1, ℓ|2 . These graphs were plotted for different values of 
the orbital quantum number l and the wormhole throat radius b. In Fig. 1, it is observed that the energy level 
E±1,ℓ gradually decreases as the cosmic string parameter α increases up to certain values, after which it reaches 
a saturation point with further increments of this parameter. Moreover, the decreasing energy level is found to 
be more significantly shifted with increasing orbital quantum number ℓ . In Fig. 2, the probability density of the 
non-relativistic particles steadily increases, and this increment is further enhanced with increasing values of the 
orbital quantum number ℓ and the cosmic string parameter α.

These results provide valuable insights into how the presence of cosmic strings affects the energy levels and 
wave functions of the quantum system, offering a deeper understanding of the interplay between the cosmic 
string parameter, the wormhole throat radius, and the quantum behavior of particles within this intriguing 
wormhole space-time background.

(25)f1 =
σ 2 b2

(4+ σ 2 b2 − ℓ20)
f0.

(26)E±1,ℓ =
1

2M b2

[

− 1+ |ℓ|
α

±
√

1+ 2
|ℓ|
α

]

.

(27)Ψ±
1,ℓ(u,φ) = ei ℓ φ

[

(

1− u

2

)

± u

2

√

1+ 2
|ℓ|
α

]

f0.

Figure 1.  The ground state energy level E±1,ℓ with cosmic string parameter α for different values of (ℓ, b).
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For α → 1 , the ground state energy eigenvalue of the non-relativistic particle becomes

The corresponding radial wave function will be

Equation (28) is the ground state energy level and Eq. (29) is the corresponding wave function of the non-
relativistic particles in a circularly symmetric and static (1+ 2)-dimensional wormhole space-time background 
without any cosmic string effects.

Harmonic oscillator in Three‑dimensional wormhole with a cosmic string
In this section, we delve into the quantum system of non-relativistic particles interacting harmonically within a 
wormhole space-time background featuring cosmic strings [as described by Eq. (10)]. In other words, we explore 
the harmonic oscillator problem within this unique space-time configuration. To achieve this, we consider the 
Hamiltonian operator for a harmonic oscillator, which is given as  follows38,56,58:

where ω is the oscillator frequency and other physical entities are mentioned earlier. This Hamiltonian operator 
governs the behavior of the harmonic oscillator in the given wormhole space-time background with cosmic 
strings. By solving the associated Schrödinger wave equation and analyzing its solutions, we gain valuable insights 
into the quantum behavior of the harmonic oscillator within this intriguing and exotic space-time setting. This 
investigation provides a deeper understanding of the interplay between quantum mechanics and the geometric 
properties of the wormhole space-time with cosmic strings.

Expressing Eq. (30) in the space-time background (11) and using (12), we obtain the following equation

The energy eigenvalue equation of a harmonic oscillator is given by

(28)E1,ℓ =
1

M b2

(

− 1+ |ℓ| ±
√

1+ 2 |ℓ|
)

.

(29)Ψ±
1,ℓ(u,φ) = ei ℓ φ

[

(

1− u

2

)

± u

2

√

1+ 2 |ℓ|
]

f0.

(30)Ĥosc = − 1

2M

1
√
g
∂i

(√
g gij ∂j

)

+ 1

2
M ω2 x2,

(31)Ĥosc = − 1

2M

[

∂2

∂x2
+ x

(x2 + b2)

∂

∂x
+ 1

α2 (x2 + b2)

∂2

∂φ2

]

+ 1

2
M ω2 x2.

(32)Ĥosc Ψ (x, θ ,φ) = Eosc Ψ (x, θ ,φ),

Figure 2.  Probability density |Ψ±
1,ℓ|2 for different values of (ℓ,α).
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where Eosc is the energy eigenvalue of the oscillator field.
Thereby, substituting Eq. (31) in the Eq. (32) and using the wave function (16), we obtain the following dif-

ferential equation

where σ 2, ℓ20 are defined earlier.
The requirement of the wave function ψ is that it must be finite and regular everywhere for x → 0 and 

x → ±∞ . Let us suppose a possible solution to the equation (33) given by

where H(x) is an unknown function.
Thereby, substituting solution (34) in the Eq. (33), we obtain the following differential equation

where we have set the parameters

Introducing a new variable via s = − x2

b2
 in the Eq. (35), we obtain the following differential equation

Equation (37) is the confluent Heun  equation53,60–62 and H(s) is the confluent Heun function given by

As stated earlier, to obtain bound-states solution of the harmonic oscillator, we must consider the Heun 
function H(s) to be a power series solution around the  origin63 given by

Substituting this power series (39) in the Eq. (37), we obtain the following recurrence relation

with the coefficient

As mentioned earlier, finding a closed expression for the bound-state energy levels of the harmonic oscillator 
using the Heun function is not always possible. Instead, we will follow a procedure to obtain the individual energy 
levels and wave functions one by one. Let us consider a specific case where we set k = (n− 1) , leading to the 
coefficient dn+1 being equal to zero. This choice ensures that the Heun function H(s) = (d0 + d1s + . . .+ dns

n) 
becomes a finite-degree polynomial, simplifying the expression. Consequently, the wave function Ψ  will be 
regular everywhere, avoiding any singularities. Thereby, setting k = (n− 1) and dn+1 = 0 , from the relation 
(40) we obtain

As a particular case, let’s consider the mode n = 1 , which corresponds to the ground state or the lowest energy 
state of the quantum system. By setting n = 1 in the Heun function expression, we can obtain the energy and 
wave function for the ground state of the harmonic oscillator. For the mode n = 1 that corresponds to the ground 
state or the lowest state of the quantum system, from relation (42) we obtain

(33)ψ ′′(x)+ x

(x2 + b2)
ψ ′(x)+

[

σ 2 −M2 ω2 x2 − ℓ20

(x2 + b2)

]

ψ(x) = 0,

(34)ψ(x) = exp

(

−1

2
M ω x2

)

H(x),

(35)H ′′(x)+
[

x

x2 + b2
− 2M ω x

]

H ′(x)+
[

�
2 − j2

x2 + b2

]

H(x) = 0,

(36)�
2 = σ 2 − 2M ω , j2 = ℓ20 −M ω b2.

(37)H ′′(s)+
[

M ω b2 + 1/2

s
+ 1/2

s − 1

]

H ′(s)+
[

(j2 − b2 �2)/4

s
+ (−j2/4)

(s − 1)

]

H(s) = 0.

(38)H(s) = Hc

(

M ω b2,−1

2
,−1

2
,−b2 σ 2

4
,
b2 σ 2

4
+ 3

8
− ℓ20

4
; s
)

.

(39)H(s) =
∞
∑

i=0

di s
i .

(40)

dk+2 =
1

2 (k + 2)(2 k + 3)

[{

4 (k + 1)(k + 1−M ω b2)+ b2 �2 − j2
}

dk+1 − (b2 �2 − 4M ω b2 k) dk

]

.

(41)d1 =
(b2 �2 − j2)

2
d0.

(42)dn = b2 �2 − 4 (n− 1)M ω b2
[

4 n (n−M ω b2)− j2 + b2 �2)
] dn−1.

(43)d1 =
b2 �2

[

4− 4M ω b2 − j2 + b2 �2
] d0.
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Thereby, comparing Eqs. (41) and (43), we obtain the following energy expression

And that the corresponding wave function will be

Equation (44) represents the ground state energy level, while Eq. (45) corresponds to the corresponding 
wave function of the harmonic oscillator in a circularly symmetric and static wormhole space-time with cosmic 
strings in three dimensions. By employing a similar procedure, one can obtain other state energy levels and 
wave functions for the mode n ≥ 2 . It is important to note that when the oscillator frequency ω tends to zero 
( ω → 0 ), the eigenvalue solution derived in this section reduces to the results obtained in the previous section 
by Eqs. (26)–(27). This limiting case provides a connection between the harmonic oscillator in the wormhole 
space-time with cosmic strings and the harmonic oscillator in a standard space-time without the presence of 
cosmic strings. The obtained solutions offer valuable insights into the quantum behavior of the harmonic oscil-
lator in the exotic background of a traversable wormhole with cosmic strings. Understanding how the oscillator 
behaves in such unique space-time configurations is crucial for exploring the effects of topological defects on 
quantum systems and their implications for various branches of physics. As shown in Eqs. (44)–(45), the energy 
levels and wave functions of the harmonic oscillator are significantly influenced by the cosmic string parameter 
α and the wormhole throat radius b = const . The presence of the cosmic string introduces shifts in the eigenvalue 
solutions of the harmonic oscillator, effectively breaking the degeneracy of the energy levels. The result presented 
in this section is completely different from those results obtained in the previous  work58 which was done in a 
four-dimensional wormhole metric background with global monopole.

To better understand this influence, graphs were generated to illustrate the impact of the cosmic string 
parameter α and the oscillator frequency ω on the energy levels E±1,ℓ for various values of the other parameters. 
Figure 3 demonstrates that the energy level E±1,ℓ gradually decreases as the cosmic string parameter α increases, 
reaching a saturation point for certain values of α . Additionally, the decreasing energy level experiences a greater 
shift with increasing values of the orbital quantum number l and the oscillator frequency ω . In Figure 4, it is 
observed that the energy level E±1,ℓ increases almost linearly with the oscillator frequency ω . Furthermore, this 
increasing energy level experiences a greater shift with increasing values of the orbital quantum number l, while 
keeping the wormhole throat radius b = const and the cosmic string parameter α fixed.

These graphical results offer valuable insights into the behavior of the harmonic oscillator in the presence of 
cosmic strings within the exotic background of a traversable wormhole space-time. The shifts in the energy levels 

(44)E±1,ℓ =
3ω

2
+ 1

2M b2

[

− 1+ |ℓ|
α

±
√

1+ 2
|ℓ|
α

+ 4M ω b2
(

M ω b2 − 3

2

)

]

,

(45)

ψ±
1,ℓ(s) = exp

(

−1

2
M ω s2

)[

(

1− s

2

)

+
{

M ω b2 ± 1

2

√

1+ 2
|ℓ|
α

+ 4M ω b2
(

M ω b2 − 3

2

)

}

s

]

d0.

Figure 3.  The ground state energy level E±1,ℓ with cosmic string parameter α.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12953  | https://doi.org/10.1038/s41598-023-40066-z

www.nature.com/scientificreports/

due to the cosmic string parameter and oscillator frequency provide important information about the effects 
of topological defects on the quantum dynamics of the harmonic oscillator. This understanding is essential for 
gaining a deeper knowledge of the interplay between quantum mechanics and the geometrical properties of 
space-time with cosmic strings and wormholes.

For α → 1 , the ground state energy eigenvalue of a harmonic oscillator will become

And that the corresponding wave function will be

Equation (46) is the ground state energy level and Eq. (47) is the corresponding wave function of the harmonic 
oscillator in a circularly symmetric and static (1+ 2)-dimensional wormhole space-time background without 
any topological defects.

Conclusions
The harmonic oscillator basis offers a formulation that treats momenta and coordinates equally, allowing for 
the incorporation of both long- and short-range interactions. This unique feature makes it particularly advanta-
geous in nuclear-structure theory as it retains all symmetries of atomic nuclei while providing an approximate 
mean-field description related to the nuclear shell model. As a result, it becomes a valuable model for studying 
the behavior of atomic nuclei and their interactions.

The harmonic oscillator potential is an exact solvable potential model in quantum mechanics, making it of 
great interest and significance in various branches of physics and chemistry. Its applications span across different 
areas, providing valuable insights into the behavior of particles and systems in diverse physical and chemical 
contexts. Numerous researchers have attempted to map the free-particle Schrödinger equation to that of the 
Schrödinger equation for the harmonic potential. This mapping aims to explore the similarities and connections 
between these two different scenarios, potentially revealing important relationships and facilitating a deeper 
understanding of quantum systems under the influence of the harmonic potential. Overall, the harmonic oscil-
lator basis is a versatile and fascinating model that not only exhibits exact quantum mechanical potential but also 
finds widespread applications across a multitude of scientific disciplines. Its ability to unify long- and short-range 
interactions in a coherent manner makes it an invaluable tool for investigating complex systems and phenomena.

In this study, we have thoroughly investigated the quantum system of non-relativistic particles within a 
wormhole background featuring topological defects caused by a cosmic string. Specifically, we have considered 
a circularly symmetric and static (1+ 2)-dimensional space-time with cosmic strings. By deriving the radial 
equation of the Schrödinger wave equation and converting it into the confluent Heun differential equation form, 
we were able to obtain exact solutions for the ground state energy level E1,ℓ and wave function ψ1,ℓ as particular 
cases, with similar procedures applicable for higher mode solutions.

Throughout our analysis, we have observed that the presence of the cosmic string and the wormhole throat 
radius significantly influence the energy levels and wave functions of the non-relativistic particles, resulting in 
their modifications. Graphs were generated to illustrate these influences, depicting how the ground state energy 
level E1,ℓ varies with the cosmic string parameter (fig. 1) and how the probability density of the wave function 
changes (fig. 2) for different values of the orbital quantum number ℓ and the wormhole throat radius b.

Moreover, we have explored the harmonic oscillator problem within the same wormhole background, incor-
porating the cosmic string effect. By solving the radial wave equation, we presented the ground state energy level 
E1,ℓ and wave function ψ1,ℓ of the harmonic oscillator as particular cases. Similar to the non-relativistic particles, 
the energy levels and wave functions of the harmonic oscillator are influenced by the cosmic string and wormhole 
throat radius, resulting in modifications to their behavior. Additionally, the presence of the cosmic string leads to 
the breaking of degeneracy in the energy levels of the quantum mechanical particles. Graphs were also generated 

(46)E±1,ℓ =
3ω

2
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M b2

[

− 1+ |ℓ| ±
√

1+ 2 |ℓ| + 4M ω b2
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2
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2
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2

)
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Figure 4.  The energy level E±1,ℓ with oscillator frequency ω for different ℓ keeping fixed b = 1 , α = 1/2.
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to illustrate the effect of the cosmic string parameter (Fig. 3) and the oscillator frequency (Fig. 4) on the ground 
state energy level E1,ℓ for different values of the orbital quantum number ℓ and the wormhole throat radius b.

This comprehensive analysis provides valuable insights into the interplay between topological defects, cosmic 
strings, and wormholes, and their effects on the quantum dynamics of particles and the harmonic oscillator. The 
results shed light on the intricate behavior of quantum systems in exotic space-time backgrounds, advancing our 
understanding of the fundamental principles governing the universe.

Data availability
All data generated or analysed during this study are included in this published article.
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