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Increased incidence of live births 
in implanted day 5 versus day 
6 blastocysts following single 
embryo transfers with PGT‑A
Chien‑Hong Chen 1,2,5, Chun‑I Lee 1,2,3,4,5, Chun‑Chia Huang 1,2, Hsiu‑Hui Chen 1,2, 
Chih‑Ying Chang 1, En‑Hui Cheng 1,2, Pin‑Yao Lin 1,2, Chung‑I Chen 1, Tsung‑Hsien Lee 1,3,4* & 
Maw‑Sheng Lee 1,2,3,4*

Elective single-embryo transfers of euploid or low-level mosaic blastocysts were analyzed in this 
retrospective study to determine the correlations of live birth (LB) probability with embryonic 
developmental features of implanted day 5 (D5, n = 245) or day 6 (D6, n = 73) blastocysts using 
time-lapse (TL) monitoring. According to the logistic regression analyses (adjusted odds ratio 
[OR] = 0.341, 95% confidence interval [CI] = 0.169–0.685, P < 0.05), the LB probability was negatively 
associated with the D6 group. The LB rate of the D5 group was higher than the D6 group (88.2% 
vs. 75.3%; P < 0.05). Compared with the D5 blastocysts, the D6 blastocysts exhibited comparable 
dysmorphisms except for the multinucleation at the 4-cell stage (10.9% vs. 2.9%, P < 0.05). Moreover, 
D6 blastocysts had considerably slower developmental kinetics and poorer blastocyst morphologies. 
Further analysis confirmed that the LB rate was not associated with developmental kinetics or 
dysmorphisms but rather with blastocyst morphology (inner cell mass [ICM] grade ≤ C vs. ICM grade 
A, adjusted OR = 0.155, 95% CI = 0.04–0.596, P < 0.05; trophectoderm [TE] grade ≤ C vs. TE grade A, 
adjusted OR = 0.157, 95% CI = 0.032–0.760, P < 0.05). In conclusion, D6 implanted blastocysts have 
a considerably lower LB rate than D5 implanted blastocysts. As determined by TL monitoring, the 
diminished blastocyst morphology can be one of the primary reasons underlying the decreased 
likelihood of LB.
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Although randomized controlled trials have revealed no difference in pregnancy outcomes between frozen and 
fresh embryos1,2, advances in embryonic cryopreservation technology, specifically the development of vitrifica-
tion techniques, have not only greatly increased the safety and usefulness of embryo freezing but also helped 
women seeking to preserve their fertility by promoting the widespread use of blastocyst frozen embryo transfer 
(FET)3. Research has also indicated that endometrial receptivity is adversely affected by ovarian stimulation dur-
ing in vitro fertilization (IVF) procedures, which have a negative effect on endometrial normality and influence 
endometrial development4,5. These findings indicate that FET may be advantageous for endometrial–embryonic 
synchronization during IVF cycles.

High-resolution next-generation sequencing (hr-NGS) has been increasingly used worldwide in preimplanta-
tion genetic testing for aneuploidy (PGT-A) because of its high precision, effectiveness, and throughput6,7. When 
combined with the FET strategy, embryo selection through PGT-A can substantially improve the implantation 
outcomes of single-embryo transfer (SET) cycles8. Cytogenetic studies have indicated that approximately 50% 
of miscarriage samples contain chromosomal abnormalities, which are regarded as the most critical cause of 
spontaneous miscarriages9,10. Specifically, advanced maternal age has been associated with a sharp increase 
in miscarriages11. In IVF cycles, the application of PGT-A has been reported to effectively mitigate the risk 
of miscarriage12–14. However, miscarriages are still maintained at a low level after the implantation of euploid 
embryos, and their underlying causes remain unclear15.

Recent studies on embryo–endometrium interactions have indicated that women with a risk of miscar-
riage may be less selective than their counterparts in terms of embryo implantation. During peri-implantation, 
embryonic signals reach the decidualized endometrium and stimulate endometrial cell migration, and the bio-
sensor of these endometrial cells selects a qualified blastocyst for implantation16–19. Therefore, selecting the most 
viable embryo before embryo transfer (ET) is essential to mitigate the miscarriage risk of successfully implanted 
embryos in PGT-A cycles.

Accordingly, selecting qualified frozen blastocysts is critical for optimizing the pregnancy outcomes of FET. 
Numerous studies have indicated that fast-growing blastocysts are associated with better clinical outcomes 
than those of slow-growing blastocysts. They have also indicated that the differences in the embryonic factors 
between fast-growing and slow-growing blastocysts are a topic that warrants further study20–23. Time-lapse (TL) 
monitoring has been used in IVF to provide a detailed and dynamic evaluation of the kinetics, dysmorphisms, 
and morphology of fertilized embryos, all of which have been proposed as being able to predict embryo growth, 
ploidy status, and pregnancy success24–27. The primary objective of the present study was to evaluate the TL 
data of individual implanted embryos in PGT-A cycles to determine whether developmental kinetics, cleavage 
anomalies, and blastocyst morphologies are related to the likelihood of fetal loss (FL) or live birth (LB). These TL 
features can be used in noninvasive analyses to improve the selection of competent embryos that may have high 
LB potential after implantation. This may be particularly useful for IVF patients who have a risk of miscarriage.

Materials and methods
Study design.  This retrospective cohort study was performed in accordance with relevant guidelines and 
regulations. The Institutional Review Board of Chung Shan Medical University (approval number CS1-21156) 
provided a waiver of written informed consent for this study. Data on pregnant women undergoing ET of fro-
zen–thawed blastocysts after PGT-A cycles were gathered from Lee Women’s Hospital from January 2018 to 
December 2021. Patients with an endometrial thickness of 7 mm or less, severe uterine abnormalities, transfers 
of more than one embryo, and a transferred embryo with a mosaic level of 50% or higher were excluded. A total 
of 318 FET cycles, in which intrauterine pregnancies were confirmed by visualizing at least one gestational sac, 
from 304 patients were included. The baseline characteristics and FET cycle parameters were collected, includ-
ing the number of previous IVF cycles, age, anti-Müllerian hormone (AMH) level, body mass index (BMI), 
serum estradiol (E2), and progesterone (P4) levels on the day of ET, oocyte sources, sperm quality, endometrial 
preparation protocols, embryo ploidy status, and blastocyst vitrification day.

Laboratory procedures.  All laboratory procedures were conducted in accordance with the standard pro-
tocols described in our previous reports25,26. Briefly, a gonadotrophin-releasing hormone (GnRH) agonist long 
protocol (Lupron; Takeda Chemical Industries, Osaka, Japan) or a GnRH antagonist protocol (Cetrotide; Merck 
Serono, Geneva, Switzerland) was used for controlled ovarian stimulation. Follicle development was stimulated 
by the administration of exogenous gonadotropin (GONAL-f, Merck Serono; Menopur; Ferring Pharmaceu-
ticals, São Paulo, Brazil) until the size of the leading follicle reached or exceeded 18 mm. Human chorionic 
gonadotropin (hCG, 250 μg, Ovidrel; Merck Serono, Modugno, Italy) was then used to stimulate oocyte matura-
tion, and ultrasound-guided ovum retrieval was conducted 36 h after the administration of hCG. The derived 
oocytes inseminated by the method of intracytoplasmic sperm injection or conventional insemination were 
cultured in a TL culture system (EmbryoScope + ; Vitrolife, Kungsbacka, Sweden) with sequential media (SAGE 
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Biopharma, Bedminster, NJ, USA) in an environment containing 5% O2, 5% CO2, and 90% N2 at 37  °C. TL 
assessments of individual embryos for morphokinetics, cleavage dysmorphisms, and morphology were subse-
quently performed at 118 h post insemination (hpi) by using all of the recorded TL images in accordance with 
the process outlined in our previous report26. Briefly, the blastocyst expansion levels were annotated to highlight 
the specific developmental features, including a blastocoel cavity beginning to form (level 1), to expand (level 
2), and to herniate (level 3). Additionally, the evaluations of ICM and TE quality were conducted following the 
manufacturer’s guidelines, which were applied to generalize the Gardner blastocyst grading system to time-lapse 
imaging. Detailed information is provided in Supplementary Table 1.

Qualified blastocysts on day 5 (D5) or day 6 (D6) expanded blastocysts (embryo diameter ≥ 150 µm) with an 
inner cell mass (ICM) grade of at least B or a trophectoderm (TE) grade of at least B were selected for embryo 
biopsy. Micromanipulation with inverted microscopy and a laser system was applied to carefully separate 5 to 8 
trophectoderm (TE) cells from a blastocyst. The separated TE cells were rinsed with phosphate-buffered saline 
thoroughly and then cautiously placed on the bottom of an RNAse–DNAse-free polymerase chain reaction tube 
for the following tests. The remaining blastocysts were incubated in vitro for at least 3 h prior to cryopreserva-
tion. An hr-NGS platform (Illumina, San Diego, CA, USA) was used to determine the mosaic levels of biopsied 
blastocysts as per the manufacturer’s instructions.

Embryo cyropreservation and FET.  Vitrification and warming of the biopsied blastocysts were accom-
plished using the Cryotech method (Cryotech, Tokyo, Japan). Women undergoing FETs of a single blastocyst 
selected on the basis of hr-NGS results and blastocyst morphology were subjected to a natural (NC), modified 
natural (mNC), or artificial (AC) cycle of endometrial preparation. The ovulation of the dominant follicle in a 
NC was monitored by transvaginal ultrasound detection. A mNC was defined by triggering the ovulation of the 
leading follicle (≥ 18 mm) using hCG injection (250 μg, Ovidrel; Merck Serono, Modugno, Italy). Luteal-phase 
support (LPS) for NC and mNC was offered from the first day after ovulation to the day of the pregnancy test, 
including oral dydrogesterone 10 mg three times a day (Duphaston, Abbott Biologicals B.V., the Netherlands), 
vaginal micronized progesterone 90 mg two times a day (Crinone 8%, Merck Serono, Darmstadt, Germany), and 
oral estradiol valerate 6 mg daily (Estrade, Synmosa, Taipei, Taiwan). In the AC, the patients were administered 
with an estradiol valerate supplementation regimen of endometrial preparation as follows: (1) 4 mg daily on days 
3–4 of their natural menstrual cycle; (2) 8 mg daily on days 5–7 of their natural menstrual cycle; (3) 12 mg daily 
on days 8–12 of their natural menstrual cycle. From day 13 of the menstrual cycle to the day of the pregnancy 
test, LPS for an AC was offered for patients with sufficient endometrial thickness, including oral dydrogesterone 
10 mg three times a day, vaginal micronized progesterone 90 mg three times a day, and oral estradiol valerate 
6 mg daily. The embryo transfer was performed on day 5 after ovulation in the NC and mNC or after progester-
one administration in the AC for the patients with endometrial thickness of at least 8 mm. If the endometrial 
thickness was less than 8 mm, the transfer was canceled and shifted to the next cycle. The LPS with oral dydro-
gesterone and vaginal micronized progesterone continued up to 10 weeks of gestation for pregnant patients.

On the ET day, the endometrial thickness and serum E2 and P4 levels were measured for each patient, and 
then the clinical outcomes of pregnant patients with a visualized intrauterine gestational sac were evaluated. A LB 
was defined as a baby born alive at 24 weeks of gestation or more. A FL was defined as a pregnancy characterized 
by the occurrence of a blighted ovum, absence of a fetal heartbeat, intrauterine fetal death or growth restriction, 
or stillbirth (fetal death at 20 weeks of gestation or more).

Statistical analysis.  All statistical analyses were performed using IBM SPSS Statistics version 20.0 (IBM, 
Armonk, NY, USA) or GraphPad Prism version 6.0 h (GraphPad Software, San Diego, CA, USA). Proportions 
were used to summarize categorical variables, and means with standard deviations were used to summarize 
continuous variables. Generalized estimating equation (GEE) analysis with logistic regression settings was used 
to assess the correlations between the LB probability and independent variables in unadjusted (univariate) and 
adjusted (multivariate) models. The confounders were determined by the backward elimination procedure until 
the remaining variables in the multivariate regression model had a P value < 0.2. The differences between groups 
were assessed using the Kolmogorov–Smirnov test, Fisher’s exact test, or chi-square test, as applicable. Statistical 
significance was set at P < 0.05 in all analyses.

Ethics approval and consent to participate.  This retrospective cohort study was reviewed and 
approved by the Institutional Review Board of Chung Sun Medical University, Taichung, Taiwan (Approval 
Number CS1-21156).

Results
Potential factors influencing the LB probability of implanted blastocysts.  Women (n = 304) 
who underwent FETs with single euploid or low-level mosaic blastocysts and who exhibited a positive sign 
of pregnancy through gestational sac visualization 5 weeks after their last menstrual period were included in 
this study. Of the cohort of 318 SETs, 245 women successfully gave birth. Univariate logistic analysis with the 
GEE model revealed that none of the patient characteristics were correlated with the probability of LB, i.e., 
the number of previous IVF cycles, age, AMH level, BMI, E2, and P4 levels on the day of ET, oocyte sources, 
sperm quality, endometrial preparation protocols, and embryo ploidy status, with the exception of the blastocyst 
vitrification day. Compared with ETs with a D5 blastocyst (i.e., the D5 group), ETs with a D6 blastocyst (i.e., 
the D6 group) were negatively correlated with the probability of LB (odds ratio [OR] = 0.41, 95% confidence 
interval [CI] = 0.207–0.813; P = 0.011; Table 1). When taking consideration of the confounders (i.e., AMH, E2 
levels, oocyte sources, and ploidy status) determined by the backward elimination procedure, ETs with a D6 
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blastocyst were still negatively correlated with the probability of LB (adjusted OR = 0.341, 95% CI = 0.169–0.685; 
P = 0.003; Table 1). In addition, the D5 group had lower rates of FL at ≤ 12 weeks (10.6% versus [vs.] 17.8%), > 20 
to ≤ 20 weeks (0% vs. 2.7%), and > 20 weeks (1.2% vs. 4.1%) than those of the D6 group, which resulted in a sig-
nificant increase in the LB rate in the D5 group (88.2% vs. 75.3%; P < 0.05; Fig. 1).

Baseline characteristics of transfer cycles with D5 and D6 implanted blastocysts.  Table 2 pre-
sented the differences in the patient characteristics between the D5 and D6 groups. The Kolmogorov–Smirnov 
test revealed that the female age (oocytes and recipients), AMH level, BMI, E2, and P4 levels on the FET day, 
number of previous IVF cycles, and infertility periods did not differ between the two groups. The chi-square 
test or Fixher’s exact test revealed no differences in infertility status, oocyte sources, sperm quality, endometrial 
preparation, or ploidy status (Table 2).

Table 1.   The correlations between live birth probabilities and cycle variables were determined using logistic 
regression analysis in the generalized estimating equation model. The abbreviations “IVF”, “AMH”, “BMI”, 
“E2”, “P4”, “OD”, “AT”, “EGB”, “AC”, “NC”, “mNC”, “D6”, and “D5” denoted in vitro fertilization, anti-Mullerian 
hormone, body mass index, serum estradiol, serum progesterone, oocyte donation, autologous, egg bank, 
artificial cycle, natural cycle, modified natural cycle, day 6, and day 5, respectively.

Variables

Univariate Multivariate

Odds ratio

95% Confidence interval

P value Adjusted odds ratio

95% Confidence interval

P valueLower Upper Lower Upper

Previous IVF cycle numbers 1.020 0.940 1.107 0.629 – – – –

Female age (recipient, years) 1.016 0.963 1.071 0.562 – – – –

Female age (oocyte, years) 0.978 0.928 1.031 0.409 – – – –

AMH (ng/mL) 0.930 0.863 1.002 0.057 0.903 0.836 0.977 0.011

BMI (kg/m2) 1.011 0.924 1.107 0.811 – – – –

E2 (ET day, pg/mL) 1.000 0.999 1.000 0.233 1.000 0.999 1.000 0.104

P4 (ET day, ng/mL) 1.001 0.993 1.009 0.834 – – – –

Oocyte sources, OD vs. AT 1.909 0.597 6.101 0.275 2.297 0.568 9.289 0.243

Oocyte sources, EGB vs. AT 2.005 0.450 8.934 0.362 3.288 0.672 16.081 0.142

Sperm quality, normal vs. abnormal 1.358 0.703 2.623 0.362 – – – –

Endometrial preparation, NC and mNC vs. 
AC 0.713 0.376 1.354 0.302 – – – –

Ploidy status, mosaic vs. euploid 3.077 0.933 10.153 0.065 3.603 0.985 13.179 0.053

Vitrification day, D6 vs. D5 0.410 0.207 0.813 0.011 0.341 0.169 0.685 0.003

Figure 1.   The postimplantation outcomes of day 5 vs. day 6 blastocysts. Following embryo transfer and 
implantation, Fisher’s exact test was used to compare the fetal loss and live birth rates between day 5 and day 6 
groups. Abbreviations “wks”, “D5”, and “D6” denoted the weeks of gestation, day 5, and day 6, respectively.
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Embryological characteristics of D5 and D6 implanted blastocysts.  TL monitoring was used to 
evaluate the differences in the embryological characteristics between the D5 and D6 groups. Fisher’s exact test 
or chi-square test was used to determine the differences in embryonic dysmorphism between the groups. The 
results indicated that the incidence of embryonic dysmorphism in the implanted embryos was typically less than 
10%. However, TL monitoring revealed an increased frequency of uneven cleavage at the four-cell stage (13.7% 
to 15.9%), multinucleation at the two-cell stage (21.6% to 24.7%), noncentral juxtaposition (74% to 76.3%), 
uneven pronuclear size (39.7% to 42%), and vacuolization (9% to 10.9%). A comparison of the D5 and D6 blas-
tocysts revealed that the proportions of embryonic dysmorphisms (i.e., uneven cleavage at the two-cell stage, 
uneven cleavage at the four-cell stage, multinucleation at the two-cell stage, noncentral juxtaposition of pronu-
clei, no pronuclear contact, uneven pronuclear size, unsynchronized pronuclear fading, twist-and-crumble divi-
sion, incomplete chaotic division, direct unequal cleavage, reverse cleavage, delayed cleavage, vacuolization, and 
premature compaction) were not significantly different between the groups (Table 3). However, the rate of multi-
nucleation at the 4-cell stage (10.9% vs. 2.9%) was significantly higher in the D6 group than that in the D5 group.

After pronuclear fading, the embryonic kinetics of the D5 group were faster than those of the D6 group. 
Specifically, significant differences were observed between the groups in t3 (13.9 ± 1.3 h vs. 15.5 ± 1.5 h), t4 
(14.8 ± 2.3 h vs. 16.5 ± 1.9 h), t5 (27.6 ± 2.8 h vs. 31.7 ± 4.7 h), t8 (32.7 ± 6.5 h vs. 37.6 ± 6.9 h), tM (62.8 ± 6.9 h 
vs. 70.9 ± 6.9 h), tSB (71.6 ± 4.7 h vs. 79.6 ± 6.5 h), and tB (80.2 ± 5.0 h vs. 90.3 ± 7.2 h). In addition, blastocyst 
formation took longer in the D6 group (tSB–tB, 10.7 ± 4.2 h) than in the D5 group (tSB–tB, 8.7 ± 2.9 h; P < 0.05). 
When the KIDScore™ D5 algorithm was used, these differences in embryonic kinetics resulted in considerably 
lower scores in the D6 group (2.9 ± 1.6) than in the D5 group (4.8 ± 1.3; Table 4).

The components of the blastocyst morphology were redefined through a detailed evaluation completed using 
TL monitoring at a specific time window (118 hpi). Substantial differences were noted between the D5 and 
D6 groups in terms of expansion level ≥ 2 (99.2% vs. 78.1%), ICM level ≥ B (98.4% vs. 74.0%), and TE level ≥ B 
(92.7% vs. 46.6%; Table 5).

Table 2.   Comparisons of cycle characteristics between the implanted day 5 and day 6 blastocyst groups. 
The abbreviations “SD”, ”NS” “AMH”, “BMI”, “E2″, “P4″, “OD”, “AT”, “EGB”, “AC”, “NC”, and “mNC” denoted 
standard deviation, non-significance, anti-Mullerian hormone, body mass index, serum estradiol, serum 
progesterone, oocyte donation, autologous, egg bank, artificial cycle, natural cycle, and modified natural cycle, 
respectively. The differences between groups were evaluated using Kolmogorov–Smirnov test, chi-square test, 
or Fisher’s exact test, as appropriate.

Groups Day 5 (n = 245) Day 6 (n = 73) P value

Female Age (oocyte, mean ± SD) 33.5 ± 5.6 34.9 ± 5.7 NS

Female Age (recipient, mean ± SD) 36.4 ± 5.3 37.3 ± 5.2 NS

AMH (ng/mL, mean ± SD) 4.8 ± 3.8 4.2 ± 3.3 NS

BMI (Kg/m2, mean ± SD) 22.2 ± 3.4 21.8 ± 2.9 NS

E2 (pg/mL, mean ± SD) 436.8 ± 558.8 388.4 ± 330.9 NS

P4 (ng/mL, mean ± SD) 39.8 ± 35.0 34.6 ± 22.6 NS

Previous IVF cycles (mean ± SD) 3.7 ± 3.3 4.6 ± 4.1 NS

Infertility periods (years, mean ± SD) 2.9 ± 3.1 2.9 ± 2.5 NS

Infertility status (%) NS

Tubal factors 6 (2.4) 3 (4.1)

Ovarian factors 51 (20.8) 10 (13.7)

Male factors 6 (2.4) 3 (4.1)

Multiple factors 172 (70.2) 55 (75.3)

Unknown factors 10 (4.1) 2 (2.7)

Oocyte sources (%) NS

AT 200 (81.6) 62 (84.9)

OD 29 (11.8) 4 (5.5)

EGB 16 (6.5) 7 (9.6)

Sperm quality (%) NS

Normal 167 (68.2) 48 (65.8)

Abnormal 78 (31.8) 25 (34.2)

Endometrial preparation (%) NS

NC and mNC 75 (30.6) 20 (27.4)

AC 170 (69.4) 53 (72.6)

Ploidy status (%) NS

Euploid 210 (85.7) 58 (79.5)

Mosaic 35 (14.3) 15 (20.5)
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Embryological factors influencing the LB probability of implanted blastocysts.  Logistic analy-
sis with the GEE model was used to determine the correlation between the probability of LB and embryological 
factors, which varied between the D5 and D6 groups. The results revealed that multinucleation at the 4-cell stage, 
embryonic developmental kinetics, KIDScore™ D5 scores, and expansion levels were not significantly associated 
with the probability of LB (Tables 6 and 7). However, compared with ICM level A, ICM levels ≤ C were nega-
tively correlated with LB in univariate (OR = 0.179, 95% CI = 0.049–0.656, P = 0.009) and multivariate (adjusted 
OR = 0.155, 95% CI = 0.04–0.596, P = 0.007) logistic regression models. Compared with TE level A, TE levels ≤ C 
were negatively correlated with LB in univariate (OR = 0.226, 95% CI = 0.061–0.844, P = 0.027) and multivariate 
(adjusted OR = 0.157, 95% CI = 0.032–0.760, P = 0.021) logistic regression models (Table 7). A blastocyst mor-
phology ≥ 2BB was defined as a favorable morphology. As indicated in Fig.  2, the LB rate was considerably 
higher in blastocysts with a favorable morphology (≥ 2BB, 88.1%) than in those with a poor morphology (< 2BB, 
72.4%). However, a comparison of D5 and D6 blastocysts with the same embryonic morphology indicated that 
the LB rate did not differ between the poor-morphology (84.2% vs. 66.7%) and favorable-morphology (88.5% 
vs. 85.3%) blastocyst groups (P > 0.05).

Table 3.   The differences of embryonic dysmorphisms between implanted day 5 and day 6 blastocysts. The 
differences between groups were evaluated using chi-square test or Fisher’s exact test, as appropriate. The 
abbreviation ”NS” denoted non-significance. The dysmorphisms were defined in the Supplementary Table 1.

Groups Day 5 (n = 245) Day 6 (n = 73) P value

Uneven cleavage (%)

 2-cell 16 (6.5) 3 (4.1) NS

 4-cell 39 (15.9) 10 (13.7) NS

Multinucleation (%)

 2-cell 53 (21.6) 18 (24.7) NS

 4-cell 7 (2.9) 8 (10.9)  < 0.01

Non-central juxtaposition (%) 187 (76.3) 54 (74.0) NS

No pronuclear contact (%) 7 (2.9) 3 (4.1) NS

Uneven PN size (%) 103 (42.0) 29 (39.7) NS

Unsynchronized PN fading (%) 1 (0.4) 0 (0) NS

Twist-and-crumble division (%) 14 (5.7) 3 (4.1) NS

Incomplete chaotic division (%) 6 (2.5) 3 (4.1) NS

Direct unequal cleavage (%) 1 (0.4) 2 (2.7) NS

Reverse cleavage (%) 8 (3.3) 1 (1.4) NS

Delayed cleavage (%) 5 (2.0) 1 (1.4) NS

Vacuolization (%) 22 (9.0) 8 (10.9) NS

Premature compaction (%) 4 (1.6) 2 (2.7) NS

Table 4.   The differences of embryonic morphokinetics and KIDScore™ D5 scores between implanted day 5 
and day 6 blastocysts. The differences between groups were evaluated using Kolmogorov–Smirnov test. The 
abbreviation ”NS” denoted non-significance. The morphokinetic parameters were defined in Supplementary 
Table 1.

Groups Day 5 (n = 245) Day 6 (n = 73) P value

t2 2.7 ± 0.5 2.8 ± 0.7 NS

t3 13.9 ± 1.3 15.5 ± 1.5  < 0.001

t4 14.8 ± 2.3 16.5 ± 1.9  < 0.001

t5 27.6 ± 2.8 31.7 ± 4.7  < 0.001

t8 32.7 ± 6.5 37.6 ± 6.9  < 0.001

tM 62.8 ± 6.9 70.9 ± 6.9  < 0.001

tSB 71.6 ± 4.7 79.6 ± 6.5  < 0.001

tB 80.2 ± 5.0 90.3 ± 7.2  < 0.001

tM–tB 17.5 ± 6.0 19.4 ± 5.9 NS

tSB–tB 8.7 ± 2.9 10.7 ± 4.2  < 0.001

KIDScore™ D5 scores 4.8 ± 1.3 2.9 ± 1.6  < 0.001
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Table 5.   The differences of blastocyst morphology between implanted day 5 and day 6 blastocysts using 
time-lapse monitoring at 118 h post insemination. The differences between groups were evaluated using chi-
square test or Fisher’s exact test, as appropriate. The components of blastocyst morphology were defined in 
Supplementary Table 1.

Groups Day 5 (n = 245) Day 6 (n = 73) P value

Expansion levels  < 0.01

 ≤ 1 (%) 2 (0.8) 16 (21.9)

2 (%) 189 (77.2) 56 (76.7)

3 (%) 54 (22.0) 1 (1.4)

ICM levels  < 0.01

A and B (%) 241 (98.4) 54 (74.0)

 ≤ C (%) 4 (1.6) 19 (26.0)

TE levels  < 0.01

A and B (%) 227 (92.7) 34 (46.6)

 ≤ C (%) 18 (7.3) 39 (53.4)

Table 6.   The correlations of live birth probabilities with developmental dysmorphisms and kinetics were 
determined using univariate logistic regression analysis in the generalized estimating equation model. The 
definitions of developmental kinetics were described in Supplementary Table 1.

Variables

Live birth probabilities

Odds ratio

95% Confidence 
interval

P valueLower Upper

Multinucleation at the 4-cell stage 1.134 0.246 5.217 0.872

t3 1.007 0.764 1.327 0.962

t4 1.042 0.891 1.219 0.605

t5 0.949 0.874 1.029 0.206

t8 1.008 0.962 1.056 0.749

tM 0.979 0.938 1.020 0.311

tSB 0.964 0.914 1.016 0.172

tB 0.979 0.936 1.025 0.365

tSB-tB 1.038 0.937 1.150 0.471

KIDScore™ D5 scores 1.196 0.994 1.439 0.058

Table 7.   The correlations between live birth probabilities and the components of blastocyst morphology 
were determined using logistic regression analysis in the generalized estimating equation model. Adjusted 
odds ratio: the odds ratio was adjusted by AMH, serum estradiol levels, oocyte sources, and ploidy status. The 
components of blastocyst morphology were defined in the Supplementary Table 1.

Variables

Univariate Multivariate

Odds ratio

95% Confidence 
interval

P value Adjusted odds ratio

95% Confidence 
interval

P valueLower Upper Lower Upper

Expansion level ≤ 1 0.391 0.119 1.286 0.122 0.390 0.120 1.263 0.116

Expansion level 2 1.302 0.606 2.801 0.499 1.338 0.601 2.981 0.476

Expansion level 3 1 – – – 1 – – –

ICM level ≤ C 0.179 0.049 0.656 0.009 0.155 0.040 0.596 0.007

ICM level B 0.308 0.118 0.799 0.016 0.262 0.089 0.766 0.014

ICM level A 1 – – – 1 – – –

TE level ≤ C 0.226 0.061 0.844 0.027 0.157 0.032 0.760 0.021

TE level B 0.618 0.183 2.080 0.437 0.475 0.105 2.159 0.336

TE level A 1 – – – 1 – – –
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Discussion
In our previous study28, in which a hr-NGS platform was used for PGT-A, we reported that FET groups of 
euploid and low-level mosaic blastocysts have comparable abortion rates. This means that the transfer of low-level 
mosaic embryos results in the birth of healthy, viable children. In the present study, we investigated the factors 
that likely influence the postimplantation development of euploid or low-level mosaic blastocysts in FET cycles. 
Logistic regression analysis with and without controlling for confounders revealed a correlation between the LB 
probability of implanted frozen–thawed embryos and blastocysts developing on D5 or D6 (Table 1). According 
to array comparative genomic hybridization and single-nucleotide polymorphism data, the LB rate per FET 
cycle is considerably higher in D5 euploid blastocysts than in D6 euploid blastocysts29–31. Even when confound-
ers are adjusted for, the associations between the blastocyst development rate and clinical outcomes remain 
notable29. However, given the similar FL rates, the differences in the LB rates of successfully implanted embryos 
are nonsignificant between D5 and D6 euploid transfers29,30,32. In our clinical setting, we discovered that the D6 
blastocysts were associated with an increased risk of FL in pregnant patients who received euploid or low-level 
mosaic blastocysts, which resulted in a considerably lower LB rate of D6 blastocyst transfers compared with D5 
blastocyst transfers (Fig. 1). Generally, delayed blastocyst development is associated with an increased risk of 
mosaicism26, indicating that the incidence of aberrant ploidy in D6 blastocysts may increase and thereby lead to 
an increased risk of FL in non-PGT-A cycles33–35. However, according to our findings, the difference in ploidy 
status between the D5 and D6 blastocysts may not be the only intrinsic factor influencing the postimplantation 
development of embryos. Therefore, further understanding the differences between blastocysts developing on 
D5 and D6 through TL monitoring is essential. Embryonic factors may also serve as biomarkers for embryo 
selection that can be used to mitigate the risk of FL after implantation.

Several in vitro coculture studies have supported the concept of embryo–endometrium interactions in the 
selection of potent embryos for implantation. According to these studies, the production of implantation regu-
lators of decidualized endometrial cells, such as the cytokines of interleukin (IL)-1β, heparin-binding epider-
mal growth factor-like growth factor, IL-6, and IL-10, is substantially inhibited in developmentally impaired 
human embryos16. In cocultures of embryos with a poor morphology, the migratory response of decidualized 
endometrial cells derived from normally fertile women is diminished17. However, for women with a risk of FL, 
the migratory response of decidualized endometrial cells is not inhibited in embryos with a poor morphology. 
According to molecular evidence, in women with recurrent pregnancy loss (RPL), endometrial cells downregu-
late the expression of mucin-1, which is a regulator of embryonic implantation, and thereby prevent the attach-
ment of embryos with a poor morphology to the endometrium18,19. In addition, aberrant expression of decidual 
markers, such as prolactin and prokineticin-1, indicates impaired decidualization, which extends the receptiv-
ity window for the implantation of low-viability embryos10,36. These findings suggest that selecting blastocysts 
with a favorable quality for ET not only influences implantation and pregnancy outcomes but also mitigates 
the risk of FL after implantation34,37. Our results indicate that the cycle and patient characteristics were similar 
between the D5 and D6 implanted blastocyst groups (Table 2). Under these conditions, TL analysis indicated 
a low frequency of embryonic dysmorphisms in implanted embryos selected by PGT-A and no substantial dif-
ferences between the D5 and D6 groups, with the exception of the multinucleation at the 4-cell stage (Table 3). 

Figure 2.   The live birth rates of implanted blastocysts stratified by embryo morphology. Following embryo 
transfer and implantation, Fisher exact test was used to compare the live birth rates of implanted blastocysts 
with morphology < 2BB or ≥ 2BB. The abbreviation “2BB” denoted blastocysts with the level 2 of expansion, the 
grade B of inner cell mass, and the grade B of trophectoderm. The abbreviations “D5” and “D6” denoted day 5, 
and day 6, respectively.
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Moreover, a comparison of the embryonic kinetics in the groups with implanted D5 vs. D6 blastocysts revealed 
considerably delayed cell division during both the early cleavage and blastocyst stages, prolonged intervals of 
blastocyst formation, and lower scores of KIDScore™ D5 model in the D6 group (Table 4). Nevertheless, logistic 
regression analysis revealed that the probability of LB was not associated with any dysmorphisms or develop-
mental kinetics (Table 6). In a previous study, a mouse model demonstrated that asynchronous cell division 
during the early cleavage stage affects embryonic compaction and cell lineage formation through the aberrant 
nuclear translocation of yes-associated protein 1, resulting in a reduced cell number with ICM and an increased 
risk of abortion38. However, a large body of evidence has indicated that the morphokinetic profiles of FL and 
LB embryos are indistinguishable39. McQueen et al. used TL imaging to compare the morphokinetics between 
euploid embryos resulting in clinical FL, biochemical FL, and LB in patients undergoing IVF. Similar to our 
findings, they reported that the embryonic morphokinetic parameters cannot predict FL in PGT-A cycles40.

In the present study, using uniform time point assessments along with TL monitoring, we discovered sub-
stantial differences in the blastocyst morphological components between the D5 and D6 implanted blastocyst 
groups. In contrast to the developmental kinetics, positive correlations between the probability of LB and ICM 
or TE grading were observed in successfully implanted embryos (Table 7). Shi et al. reported considerably dif-
ferent FL rates between blastocysts classified by TE grading (grade A vs. grade B vs. grade C, 15.3% vs. 11.8% vs. 
9.8%) in young IVF patients who received embryos without PGT-A and had a positive intrauterine pregnancy34. 
Moreover, in accordance with the findings of the present study, several reports have indicated that the grade of 
ICM or TE morphology in euploid embryos with FL is inferior to that in embryos with LB, indicating that blas-
tocyst morphology is a critical biomarker associated with FL in euploid transfer cycles40,41. Recent reports have 
revealed better clinical outcomes in blastocysts with equal morphological quality on D5 than on D6, regardless 
of the PGT-A status22,23,29. The refined evaluation of blastocyst morphology based on TL monitoring at a uniform 
time point in the present study also demonstrated that blastocysts with a favorable morphology had a higher LB 
rate than that of blastocysts with a poor morphology. However, the clinical outcomes were similar between D5 
and D6 blastocysts with an indistinguishable quality of morphology.

The primary limitation of the present single-center study was its retrospective nature. The absence of rand-
omization may have resulted in selection bias, and 14 of the 304 enrolled patients had undergone multiple cycles 
of ET. Therefore, in this study, we analyzed repeated measurements by introducing the GEE model, which can 
be used to address the problem of potential correlations within the same subjects and is a marginal model that 
is widely adopted for longitudinal data. Although no major confounding variables related to LB were detected 
in the data set, a multivariate logistic regression model was used to confirm the correlation between LB and the 
dysmorphisms, development speed, and morphology of blastocysts by adjusting the candidate variables (i.e., 
AMH, serum estradiol levels, oocyte sources, and ploidy status; Table 1).

Despite the promising clinical improvement offered by PGT-A, FL may still occur in patients who undergo 
successful IVF. Even if patients experience RPL, research has indicated that embryonic quality may play an 
essential role in postimplantation development, indicating the necessity of extensive exploration of the embryonic 
factors that can predict FL in PGT-A cycles. In conclusion, using TL monitoring, we discover that D6 blastocysts 
are of a lower quality, which may affect the LB rate of implanted embryos, than that of D5 blastocysts. We also 
demonstrate that intrinsic embryonic factors are more likely to be the morphology of ICM and TE rather than 
dysmorphisms or morphokinetics.

Data availability
The datasets generated and/or analysed during the current study are available in the NCBI SRA repository 
(PRJNA937335, https://​www.​ncbi.​nlm.​nih.​gov/​sra). The reviewer link: https://​datav​iew.​ncbi.​nlm.​nih.​gov/​object/​
PRJNA​937335?​revie​wer=​vi5um​rj0t9​mqb2u​nrdti​17q7rd.
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