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Time derivatives via interconnected 
waveguides
Ross Glyn MacDonald 1,2, Alex Yakovlev 2 & Victor Pacheco‑Peña 1*

Electromagnetic wave-based analogue computing has become an interesting computing paradigm 
demonstrating the potential for high-throughput, low power, and parallel operations. In this work, we 
propose a technique for the calculation of derivatives of temporal signals by exploiting transmission 
line techniques. We consider multiple interconnected waveguides (with some of them being closed-
ended stubs) forming junctions. The transmission coefficient of the proposed structure is then tailored 
by controlling the length and number of stubs at the junction, such that the differentiation operation 
is applied directly onto the envelope of an incident signal sinusoidally modulated in the time domain. 
The physics behind the proposed structure is explained in detail and a full theoretical description of 
this operation is presented, demonstrating how this technique can be used to calculate higher order 
or even fractional temporal derivatives. We envision that these results may enable the development 
of further time domain wave-based analogue processors by exploiting waveguide junctions, opening 
new opportunities for wave-based single operators and systems.

In recent years there has emerged a need for new computing paradigms mainly inspired by an increasing dif-
ficulty in maintaining the historical rate of computational speedup described by Moore’s law1,2. In this context, 
analogue computing exploiting electromagnetic (EM) signals is an example of such promising paradigms. This is 
due to their potential for high-speed computing (EM waves propagating at the speed of light within the material 
where the waves travel) and inherent parallelism associated with EM computing techniques3–5 (where a single 
structure may be designed to calculate multiple computing processes by exploiting, for instance, different incident 
polarization, frequency, or angle of the incident signal6–9). A remarkable example of analogue computing, and 
probably one of the founding works in the field, was the Differential Analyzer first reported by Hartree in 193510. 
Such a device was capable of finding the solutions of differential equations through the rotation of differential 
gears, producing a continuous output solution (i.e., a mechanical computing device). In the context of EM waves, 
analogue processors are designed to adapt this principle to, instead, compute the solution to equations by apply-
ing a mathematical operator directly onto an EM wavefront in either space or time domains11.

In this realm, different examples of EM wave-based computing structures have been recently reported such as 
optical networks able to perform computing operations such as matrix inversion12–15, transverse electromagnetic 
(TEM) pulse switching with waveguide networks16–19 and analogue computing with dielectric multilayers11,20. 
Furthermore, the introduction of metamaterials21,22, artificial media which can exhibit exceptional control over 
waves in space and time23–31, has led to the concept of “computational metamaterials” first introduced in 2014 
by Silva et al.11. Since then, remarkable examples of metamaterials for computing have been proposed and 
demonstrated to perform operations such as differentiation and convolution7,32–37, as well as computing the 
solutions of more complex operations such as ordinary differential equations and integral equations6,34,38. In 
analogue computing for signal processing, the calculation of derivatives is an especially important task as it 
enables edge detection, an important first step in any image/signal recognition task32. Different EM wave-based 
analogue processors have been reported performing first order differentiation, in both space and time domains, 
with examples including structures designed by tailoring the permittivity distribution or reflection/transmission 
spectra of a metamaterial block/metasurface9,32–34,38,39. In practice, this often requires the fine tuning of several 
design parameters, such as the lengths of dielectric layers in a multilayer structure or the permittivity of a pixel 
in a 2D grid9,11,20. To achieve this goal, various design techniques have been recently applied and demonstrated 
such as fiber gratings40,41, Mach–Zehnder interferometers42, advanced optimization and inverse design43,44 and 
also machine learning approaches20,45,46.

Inspired by the importance of derivatives for computing (and in particular for analogue computing using 
EM waves) in this work we propose and study a simple device capable of calculating temporal derivatives. The 
structure is carefully engineered by exploiting interconnected parallel plate waveguides and stubs as transmission 
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lines (TLs). The physics behind the proposed design is presented in detail and the structure is evaluated both 
theoretically and numerically using the commercial software CST Studio Suite®, demonstrating an excellent 
agreement between them. As it will be shown, the proposed EM wave-based structure for the calculation of 
temporal derivatives can be adjusted and optimized by simply modulating one of its parameters (such as the 
length of the stub waveguides) and can be engineered to work either in transmission or reflection mode, ena-
bling full flexibility in its design. As examples, the proposed structure is implemented to calculate the temporal 
derivative of different input signals such as sinusoidally modulated Gaussian signals (modulation frequency of 
8 GHz) and even arbitrary temporal functions. These findings may lead to the development of other waveguide 
network-based analogue signal processors capable of performing mathematical and computational operations 
in the time domain. We envision that such devices may see applications in computing scenarios where opera-
tions are applied to large or continuous data sets, such as audio and image recognition with the latter working 
at frequencies from acoustics, microwaves up to the optical regime.

Results
Theoretical approach.  To begin with, let us first discuss the key aspects involving the operation of an ana-
logue differentiator, as illustrated in Fig. 1A. Here, a hypothetical processor (grey block) performs the differentia-
tion operation onto the envelope of an incident signal (applied from the left) and returns its solution at its output 
(right-hand side). As is known, differentiation on a time domain signal g(t) is represented in the frequency 
domain as a multiplication between the spectrum of the input signal G

(

f
)

= F
{

g(t)
}

 (with F  representing the 
Fourier transform, and f  as the frequency in Hz) by a factor 2π if 20,32, representing the transfer function of the 
differentiator. In this manuscript, all the calculated functions for G(f ) from a temporal signal g(t) are normalized 
to be bounded in the range 0–1; i.e., Gnorm

(

f
)

= G(f )/max[G(f )] (this is due to the implementation of passive 
materials in our designs). Now, for signals modulated by a carrier frequency f0 , the factor 2π if  (transfer func-
tion) is simply shifted to 2π i(f − f0)

47, as observed in the set of Fig. 1A. From this, it is clear that if one wants 
a hypothetical structure to be able to perform temporal differentiation, its transfer function should be able to 
emulate 2π i(f − f0) . Importantly, the ideal transfer function of a differentiator [ 2π i(f − f0) ] can produce values 
larger than one. Again, as we make use of all-passive materials, the magnitude of the transfer function should be 
bounded between 0 and 147. To account for this, the ideal transfer function 2π i(f − f0) is also normalized to be 
bounded within 0–1 such that the output signal in the frequency domain from the designed structures will have 
the same range of values as the normalized ideal/theoretical derivative, only differing from the true values by a 
normalization factor11,20,38. With this normalization, a hypothetical device will operate as a first order differen-
tiator if its transfer function resembles a linear and symmetric V-shaped dip centered around f0 (as described 
above and shown in Fig. 1A).

Now, to design a structure that can emulate the V-shape of the required transfer function in the frequency 
domain, one can exploit TL techniques (such as filter design) to tailor the transfer function at will. Based on 
this, in this work we exploit a set of parallel plate stubs connected to a pair (input and output) of waveguides at 
a central waveguide junction as schematically shown in Fig. 1B. As in our previous works16,18,19 we consider two 
types of waveguide junction with parallel plate waveguides connected in either series or parallel configuration. 
The full details of the splitting and superposition of signals at these junctions can be found in16,18,19, here we 
present the basic concepts for completeness. When the characteristic impedance of each waveguide is the same 
and the cross-section of the junction is small compared to the incident wavelength48, the splitting of the incident 
signal after passing the junction will be described by the following scattering matrices:

where γ = 2/N is the transmission coefficient of the junction, N the number of connected waveguides, I and J 
are the identity and all-ones matrices, respectively. In this manuscript, we will focus on using parallel junctions, 
however, the same approach could also be exploited using interconnected waveguides in a series configuration 
(as this discussed in the supplementary materials section S2).

As shown in Fig. 1B, we make use of an input (left) and output waveguide (right) interconnecting a network 
of stubs. With this configuration, the incident signal coming from the left waveguide will split after passing the 
junction, creating signals traveling towards all the interconnected waveguides. The purpose of the stub wave-
guides is then to feed these “copies” (scattered signals traveling through them) back into the junction with a 
small temporal delay (compared to the temporal duration of the incident signal, as it will be discussed below) 
which can be controlled by the length of the stub waveguides ( �t = 2L

√
εrµr/c , with εr and μr as the relative 

permittivity and permeability of the waveguide filling material, and c is the speed of light in vacuum), as expected. 
Here, vacuum is used as the filling materials (εr = μr = 1).

We initially consider a pair of closed stubs (terminated with perfect electric conductor, PEC) connected to 
the input and output waveguide at a parallel junction, such that there is a total of four waveguides connected at 
the junction. From Eq. 1a, the scattering matrix of this junction is given by −I+ ( 1/2)J , with γ = 2/4 i.e. N = 4 . 
Based on these values, when an incident signal arrives at the junction from the input (left) waveguide, it will split 
into four signals of equal magnitude (one traveling along each of the waveguides) which will propagate away 
from the junction. Specifically, if an incident signal xin(t) has an amplitude of xin , from Eq. 1a, a portion of this 
signal, with an amplitude xin/2 will be transmitted to the output waveguide, a copy (also with amplitude xin/2 ) 
will be transferred to each of the stubs, and a reflected signal with amplitude −xin/2 will be excited along the 
input waveguide; we call this process as the “first split”. Now, when the signals traveling within the stubs arrive 
at the metallic terminated ends, they will be reflected with inverted polarity due to the PEC boundary47. These 

(1a)AParallel = −I + γ J

(1b)ASeries = I − γ J
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reflected signals will travel within the stubs and will arrive back at the junction (after a time delay �t due to the 
travel time within the stubs, as described above) where they once again will split into four signals as described 
by Eq. 1a (we call this as the “second split”). The superposition of all signals after the second interaction (second 
split) at the waveguide junction will cancel the signals towards the metallic-ended stubs16,17,19,47 and will leave 
only two signals propagating away from the junction (one along the input and one along the output waveguides, 
respectively) both with an amplitude of −xin/2 , being delayed by a factor �t , as explained above. In other words, 
the signals traveling towards the input and output waveguides after being reflected from the stubs are scattered 
at the junction and are defined as −xin(t −�t)/2 . Interestingly, as the incident signal xin(t) is still being applied 
from the input (left waveguide), when the second split occurs xin(t) will also split and create again four waves 
after passing the junction (similar to the first split as described above). Hence, as the process of splitting repeats, 

Figure 1.   Analogue differentiator in the time domain. (A) Block diagram of an analogue differentiator 
performing first order differentiator onto the wavefront of an incident temporal signal. (B) Schematic 
representation of a temporal differentiator designed using three closed-ended stubs connected to input and 
output waveguides. The waveguides are parallel plates and are connected in a parallel configuration. (C) 
Magnitude (left) and phase (right) of the transmission coefficient corresponding to the transfer function of a 
temporal differentiator using different number of stubs (from 1 to 5) being connected to an input and output 
waveguide. Here we consider that all the waveguides have dimensions h = w = 0.0267�0. (D) Schematic 
representation of the configurations studied in panel (C) considering different number of closed-ended stubs 
connected to the waveguide junction. (E,F) Time domain numerical results of the differentiator presented in (B) 
using three waveguides (length Ls = 0.5237�0) connected stubs when excited using an unmodulated (top panel 
in E) and modulated (8 GHz, top panel in F) Gaussian respectively. The numerical results of the output signals 
are shown at the bottom panels of (E,F) (blue lines) along with the theoretical values of the time derivative of the 
envelope of the incident signal (dashed red line).
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two new signals will travel along the input/output waveguides away from the junction due to the split of xin(t) 
(with an amplitude of  −xin/2 and xin/2 , respectively) which will then interact with the delayed signals created 
at the second split [coming from the metallic-ended stubs −xin(t −�t)/2)]. Therefore, one can apply again the 
principle of superposition to show that the signals traveling along the output [ yout(t) , right] and input [ yin(t) , 
left] waveguides, respectively, are the summation of all the signals produced due to the split of the new xin(t) and 
those delayed signals created by the second split, mathematically described as follows:

Interestingly, Eq. 2a indeed resembles the well-known first order finite difference equation49:

where it is clear how the output equation [ yout(t) ] from Eq. 2a is similar to Eq. 3, only differing by a constant. 
Due to this, note that for small values of �t (such that the variation in the envelope within a temporal range 
�t around t  may be approximated by a first order Taylor series49), the observed output signal will conform to 
the shape of the first derivative in the time domain. Moreover, as the transfer function (frequency domain) of 
the differentiator operation from Eq. 3 has a linear V-shape (as explained before), the transfer function of the 
waveguide network from Eq. 2a will also have a linear V-shape near the frequency of modulation of the incident 
signal. Importantly, note how the description above has been focused on the “amplitude” of the signals. However, 
this technique is general and can indeed be applied to incident modulated signals (as it will be shown below). 
In this case, however, a key factor is the time delay variable �t as it needs to be engineered such that it should 
ensure that the signals scattered by the junction after the second split, are 180◦ out of phase (i.e., −xin(t −�t)/2 , 
as explained above) with the signal transferred to the output waveguide due to the split (new first split) of the 
new incoming, i.e., [xin(t)/2] (as described by Eq. 2a). For instance, for parallel plates waveguides filled with air, 
this condition is fulfilled when the length Ls of the closed (metallic-ended) stub is Ls = Lclosed = �0/2 (with �0 
as the wavelength of the modulation frequency of the incident signal). Note that this could also be done using 
open-ended waveguides where the condition will be fulfilled when Ls = Lopen = �0/4

47,50.

Multiple‑interconnected waveguides.  In the previous section, we considered four interconnected 
waveguides (one input, one output and two stubs). It is also possible to tune the required V-shaped transfer 
function to meet the needs of specific tasks, such as to control the bandwidth of the differentiation operator 
being emulated by the network of waveguides. To this end, the transfer function (for instance the transmission/
reflection coefficient) of a junction of N waveguides can be parameterized by M = N − 2 stubs connected at the 
junction considering the length of each individual stub, Lsj , with j representing the stub numbers (from one to 
M ) and Ŵj,±1 the reflection coefficient of the individual stubs (again j meaning the stub number, and ±1 denoting 
a closed-, −1 , or an open-, +1 , ended stub, respectively)47. A full mathematical derivation of the transmission 
and reflection coefficients for an arbitrary combination of parameters can be found in the supplementary materi-
als section S1. In the simplified case where all stubs are identical ( Lsj = Ls ,Ŵj,±1 = Ŵ ) the transfer function can 
be written as

Using Eq. 4, the transfer function (magnitude and phase of the transmission coefficient in our case) for one 
to five identical closed stubs of length �0/2 is presented in Fig. 1C along with the schematic representations in 
Fig. 1D for completeness. As it is shown, the magnitude of the transfer function for all the designs is approxi-
mately linear (V-shape) near the normalized frequency f /f0 , a required feature if one wants to emulate a differ-
entiation operator as detailed in the previous section. This performance can also be confirmed by looking at the 
phase discontinuity51 from the right panel of Fig. 1C which occurs at f /f0 . Now, as shown in Fig. 1C, by varying 
the number of connected stubs at the junction, the spectral width of the linear region around f0 was maximized 
when three stubs are implemented.

To further evaluate the proposed differentiator using TL techniques, we carried out numerical studies using 
the time domain solver of the commercial software CST Studio Suite® where full-wave simulations were per-
formed of the structure shown in Fig. 1B (i.e., three interconnected closed stubs as the best results of the transfer 
function from Fig. 1C). Further details of the simulation setup can be found in the methods section below. We 
consider a Gaussian input signal, both unmodulated and modulated at 8 GHz, as shown in the top panels from 
Fig. 1E,F, respectively. In both cases, the standard deviation of the Gaussian signal in the time domain was σ = 
0.50 ns. The numerical results were compared with the analytically calculated derivative of the envelope of the 
incident signal (Gaussian un/modulated function) and the results are shown in the bottom panels from Fig. 1E,F. 
As observed, an excellent agreement between the analytical and numerical results is obtained, demonstrating 
how, as the designed network of waveguides emulates the transfer function of the differentiator operator in the 
frequency domain for a derivative in the time domain (V-shape transfer function), it can be used to calculate the 
temporal derivative of the envelope of incident temporal signals. As detailed above, here we focus our efforts on 

(2a)yout(t) =
1

2
[xin(t)− xin(t −�t)]

(2b)yin(t) = −
1

2
[xin(t)+ xin(t −�t)]

(3)
dx

dt
= lim

a→0

x(t)− x(t − a)

a

(4)T
(

f ,M, Ls ,Ŵ
)

=
2

M + 2

(

1+
2MŴei4π fLs

M + 2− [M − 2]Ŵei4π fLs
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closed stubs, examples of open stubs, series junctions and combinations of them are shown in the supplementary 
materials section S2 for completeness.

Differences between real and ideal scattering.  The transfer functions shown in Fig. 1 were calculated 
using TL theory by assuming the perfect splitting of the incident signals at the waveguide junction48,52. This 
perfect splitting, as shown in Eq. 1, also considers that the cross-section of all the waveguides is infinitely small 
or small enough to enable the neglection of fringing fields appearing at the junction. A schematic representation 
of this perfect splitting behavior is presented in Fig. 2A where an incident signal is equally scattered between all 
connected waveguides following Eq. 1a. However, as mentioned above, this is an approximation which is only 
valid for small cross-sections compared to the size of the incident wavelength48. Hence, it is important to study 
the impact of non-ideal scattering on differentiator performance.

Here, two main sources of non-ideal performance can be identified: The first arises from the finite cross-
sectional area of the waveguides, which leads to a non-zero junction size. Qualitatively, this enables incident 
signals to take a shortened path through the junction to the adjacent waveguides, when compared to the ideal 
splitting model (which considers an ideal zero junction size). This concept is demonstrated in the left panel of 
Fig. 2B where an incident signal from the left waveguide may travel the reduced red path instead of the ideal 
green path considered in the theoretical calculations. This performance will translate into a reduction of the 
effective length of the waveguide stub connected to the junction, resulting in a shift of the transfer function of 
the device as seen in the leftmost panel of Fig. 2C. In this panel, the magnitude of the transmission coefficient 
is shown considering a design with two stubs using the theoretical calculations from Eq. 4 (red dashed line) 
and the numerical simulations using three-dimensional waveguides with w = h = a = 1 mm ( 0.0267�0 ). Here 
the parameter a will then be used as a scaling parameter that accounts for a change of the cross section of the 
waveguides. The frequency shift, represented by the ratio between the numerical and theoretical frequency 
where the transmission coefficient is almost zero ( f0 ), as a function of the dimension a of the waveguides is 
shown in the second panel of the same Fig. 2C, confirming that in the limit when a << �0 the frequency shift of 
the minimum of the numerically calculated spectrum ( fmin ) is negligible (with respect to the frequency of the 
theoretical minimum f0 i.e. fmin ≈ f0 ). However, one can compensate the effect of the non-zero junction size 
by increasing the length of the stubs. To do this, the chosen increase of length must match the total reduction 
in path length produced by the non-zero junction size, as described above. This is demonstrated in the third 
panel of Fig. 2C where the shift in the frequency at which the minimum in the transmission coefficient occurred 
|�f | = |(fmin,num − fmin,theo)| (with fmin,num and fmin,theo being the frequency at which the transmission coefficient 
minimum occurred in the numerical simulation and theoretical calculations, respectively) is presented for a 
range of target frequencies and added lengths �L (normalized with respect to the scaling parameter a , �L/a ). 
In this study, the target frequency refers to the frequency at which the theoretical minimum of the V-shape of 
the transfer function appears, assuming perfect splitting and no added length to the stubs; in other words, the 
target frequency is the modulation frequency of the incident signal f0 ). The white dashed line shown in this 
panel represents the amount of normalized added length which minimizes the frequency shift. For instance, 
the frequency shift in the differentiator with an f0 = 8 GHz target frequency and two stubs with dimensions 
as those of the example from Fig. 2C, leftmost panel ( a = w = h = 0.0267�0 ) was minimized by a stub length 
increase of �L = 0.0227�0 . The transmission coefficient of this structure after adding the length �L  is shown in 
the rightmost panel of Fig. 2C where it is observed how the numerical simulations with the realistic waveguide 
are now in good agreement with the theoretical calculations using the TL technique.

The second reason for non-ideal splitting is due to the effective spatial asymmetry between the stubs connected 
at the waveguide junction. For instance, apart from junction size, the reduced path through the junction will also 
vary with the angle at which the waveguide is connected to the junction, as is schematically shown in the right 
panel of Fig. 2B. As observed, when multiple stubs are connected to a single junction, asymmetry between the 
angles of the connected stubs may produce different path lengths through the junction to the individual con-
nected stubs. This will produce a phase mismatch between the signals reflected into the junction from the differ-
ent stubs. The effect of this onto the transfer function of the device (transmission coefficient in our case) can be 
studied by looking at the results shown in the leftmost panel of Fig. 2D where the magnitude of the transmission 
coefficient is shown as the angle between two stubs connected at a 4-waveguide junction (as in Fig. 2B) is varied 
from θ = 0◦ (ideal scenario) to θ = 25◦ or θ = 45◦ , as examples. Here we consider a design with  a = w = h = 1 
mm ( 0.0267�0 ) waveguides and stubs with a length Ls of 0.5237�0 (for �0 = 37.5 mm, again for a frequency f0 
of 8 GHz) measured from the center of the waveguide junction to the metallic-terminated end of the stubs. As 
it can be seen, as θ is increased, the linear V-shaped transmission coefficient is distorted due to the phase mis-
match between signals from the two stubs. To quantify this distortion, we calculated the root mean squared error 
(RMSE) between the numerical results of the transmission coefficient for various stub angles (ranging from −60◦ 
to 60◦ with a step of 5◦ ) and an ideal linear V-shaped transfer function centered at f0 (Tideal = C|f − f0|) where 
Tideal is the transmission coefficient of the ideal function and C is its corresponding scaling constant after it has 
been normalized to be bound between 0 and 1 within the desired frequency range. The calculated RMSE values 
are shown in the second panel of Fig. 2D. From these results, the distortion induced by the phase mismatch due 
to the different angles of the stubs is symmetrical around 0° with distortion increasing when increasing θ , as 
expected. From a path length perspective, this symmetry can be understood by considering the first and second 
split of the signal at the junction: when the first split takes place, the incident signal will observe a rotated stub 
with an angle of 90◦ + θ (angle between the input and stub waveguides). For the second split (after the signal 
have been reflected by the metallic end of the stub) the signal traveling towards the junction will see an angle of 
90◦ − θ (between the stub and output/input waveguides). Due to this, the distortion in the transmission coef-
ficient will be symmetrical around θ = 0◦ as the combined path difference of the first and second split will be 
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Figure 2.   Effects of imperfect scattering on the performance of the temporal differentiator. (A) schematic 
of perfect splitting (in the limit a << �0 ) emulated by the radiation of a dipole. (B) Non-perfect splitting 
associated with the non-zero size of the junction cross-section (left) and the potential angular asymmetry of 
the junctions (right). (C,D) numerical results showing the impact of the cases shown in (B) respectively. We 
consider a temporal differentiator designed with two PEC terminated stubs and waveguides cross-section size 
w = h = a = 0.0267�0 ( �0 as the wavelength in free-space at frequency of 8 GHz). (C) (left panel) Numerical 
(black) and theoretical (red) magnitudes of the transmission coefficient for a two-stub differentiator with 
Ls = 0.5�0 . These results show the effect of non-zero junction size on the ideal perfect splitting. (Second panel) 
Calculated frequency shift between the numerical and theorical minima of the transmission coefficient (black) 
along the amplitude of the numerical minimum as a function of the junction scaling parameter a . (Third panel) 
Magnitude of the frequency shift (between the numerical and theoretical minima) as a function of the target 
frequency and the added length �L normalized with respect to the scaling parameter a ( �L/a ) of the junction. 
(Right panel) Repetition of the simulation presented in the left panel but now with �L = 0.85a = 0.0227�0 . (D) 
(left panel) numerical results (black, green and blue) showing the magnitude of the transmission coefficient 
when the angle of between two stubs is 0◦, 25◦ and 45◦ , respectively, considering stubs with Ls = 0.5237�0 . The 
theoretical values (dashed red) for Ls = 0.5�0 (i.e. no added length as the theoretical transmission coefficient 
does not vary with angle between the stubs) are also plotted. (D) (second panel) RMSE between the numerical 
and normalized ideal (linear V shaped) transmission coefficients for structures with angles between stubs 
ranging from −60◦ to 60◦ . (D) (third panel) magnitude of the transmission coefficient for an angle between 
stubs of 25◦ as presented in the left panel when the length of the rotated stub is increased from 0.2 to 0.6 mm. 
The spectrum of the theoretical/ideal case (dashed red) is shown for completeness. (D) (right panel) the 
calculated additional length of the stub required to minimize the RMSE between the numerical and ideal 
transmission coefficients for stub angles ranging from −60◦ to 60◦.
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the same for positive and negative angles (only changing the order in which the path differences are observed). 
This distortion (here measured using the RMSE as discussed above and shown in Fig. 2C) in the transmission 
coefficient can also be overcome by increasing the length of the rotated stub to compensate for the reduction in 
its path length. An example is shown in the third panel of Fig. 2D where it is observed how the numerical results 
of the transmission coefficient for a pair of a = w = h = 1 mm ( 0.0267�0 ) stubs with one of them being rotated 
with an 20◦ angle difference is affected by the added length. With this in mind, a compensation length is added 
to the end of the rotated stub until the calculated distortion is minimized. For the 25◦ case, this occurred using 
an extra length of �L = 0.6 mm (0.0160�0) with a target frequency of 8 GHz. For completeness, the required  �L 
to minimize the distortion of the transmission coefficient as a function of the rotation angle of one of the stubs is 
shown in the fourth panel of Fig. 2D. As observed, no �L was required in the range from −15◦ to 15◦ , meaning 
that experimental/fabrication errors will be negligible as long as the rotation angle of the fabricated waveguide 
stub does not exceed these values.

First order temporal differentiator: transmission and reflection operation modes.  To further 
study the performance of the proposed structures for temporal differentiation, full-wave numerical simulations 
were carried out using the time-domain solver of the commercial software CST Studio Suite®. A full description 
of the simulation setup is presented in the method section. A first order temporal differentiator was modeled 
using two identical closed-ended stubs with the same parameters as those used in Fig. 2D, with all the wave-
guides having a cross-section with dimensions w = h = 1 mm ( 0.0267�0, with again �0 as the wavelength in free 
space at 8 GHz) and being filled with vacuum ( εr = 1,µr = 1 ). In this section, the performance of the differ-
entiator is evaluated working in both transmission and reflection configurations. From TL theory, it is expected 
that the transmission and reflection coefficients of the designed 4-waveguide structure will be complementary 
(provided that losses are negligible47). Based on this, while the V-shaped spectrum of the transmission/reflection 
coefficient will have their minimum at different frequencies, the width of the linear spectral region in the trans-
mission and reflection coefficient will be the same (see insets of Fig. 3A,C, respectively). As in the right-most 
panel of Fig. 2C, the length of the two stubs were chosen to be Ls = 19.637 mm ( 0.5237�0 ), in order to produce 
a V-shaped dip of the transfer function at 8 GHz or 4 GHz when working in transmission or reflection mode, 
respectively (see Fig. 3A,C, respectively). From this design, it will be expected that when an incident temporal 
signal is applied from the input waveguide with a modulation frequency of 8 GHz, the differentiated signal in the 
time domain will be observed at the output waveguide while the temporal differentiated signal will appear at the 
incident waveguide (reflected signal) when the modulated frequency is 4 GHz (see the corresponding transfer 
function of each transmission/reflection configurations as insets in Fig. 3A,C).

To verify this, the numerical results of an incident temporal signal having a Gaussian envelope ( σ = 0.5 ns 
with a maximum voltage of 1 V) modulated at 8 GHz and 4 GHz are shown in Fig. 3A–D (see incident signal on 
the left panel from Fig. 3B,D). To excite the structure, a waveguide port is used on the input waveguide (called 
port 1 ) and the results in transmission mode are recorded using a second port at the end of the output waveguide 
(port 2 ). With this configuration, the recorded time domain voltage at port 2 is shown in the middle panel of 
Fig. 3B (blue line) along with the theoretically calculated temporal derivative of the envelope of the incident signal 
(dashed-red line). Finally, the frequency spectra for both numerical and theoretical results are also shown in the 
right panel of the same Fig. 3B. As observed an excellent agreement is obtained in both the time and frequency 
domain. For completeness, the numerical results of the space–time propagation of the incident signal is shown 
in Fig. 3A (calculated at x = y = 0 along the z-axis) corroborating how the transmitted signal corresponds to the 
temporal derivative of the incident signal. Similarly, the results of the structure working in reflection are shown 
in Fig. 3C,D where the incident and reflected signals in the time domain are shown on the left and middle panels 
of Fig. 3D along with the spectral content of the reflected signal in right panel of the same figure. By comparing 
the numerical and theoretical results in reflection mode, one can notice an excellent agreement between them. 
However, note how the spectrum of the numerical results (green line from the right panel from Fig. 3D) is not 
symmetric with higher frequencies having smaller amplitudes. As discussed in the previous section and shown 
in Fig. 2C, due to the non-zero value of the waveguide cross-sections, the length of the stubs should be tuned 
so that the perfect splitting at the junction happens at the required target frequency. Following this approach, 
the structure studied in Fig. 3 is tuned to operate at 8 GHz in transmission (with an added length of the stubs 
of 0.0237�0 ). Hence, it is expected to obtain a slight deviation of frequency for the theoretical minimum of the 
V-shape of the reflection coefficient as it occurs at a different frequency (theoretically at 4 GHz). In the case 
shown in Fig. 3C,D, the central frequency of the reflection coefficient in the simulation is 3.904 GHz, which is 
slightly deviated from 4 GHz, as expected, producing an asymmetric reflection coefficient as shown in Fig. 3D. 
The space–time diagram is shown in Fig. 3C when working in reflection, demonstrating how the reflected signal 
still corresponds to the temporal derivative.

For completeness and to demonstrate that the designed structure can work with different incident signals, an 
arbitrary incident signal was also implemented. Here, the incident signal was defined by converting the profile 
of a landmark from Newcastle Upon Tyne, the Tyne Bridge, into a time domain signal as shown in Fig. 3E. The 
resulting signal after passing through the proposed structure is shown in Fig. 3F. By comparing the numerical 
output and the theoretical derivative found via the finite difference method, it can be seen how the proposed 
temporal differentiator can successfully identify the location of the edges in the structure of the bridge (denoted 
by the peaks in the derivative) as well as calculating the value of the slope along the arc of the bridge. These results 
demonstrate how the proposed structure can be used for edge detection of temporal signals.

Temporal differentiation of mth order.  As demonstrated in the previous sections, first order differentia-
tion can be performed by an individual block emulating this operation using, in our case, interconnected TLs 
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(see Figs. 1A,B, 2,3). Higher order differentiation can be achieved by, for instance, cascading multiple first order 
differentiators together such that the first order operation is performed onto the incident wavefront multiple 
times in series. In other words, the ideal transfer function of an m th order differentiator can be found by multi-
plying the first order transfer function m times, i.e., it can be mathematically represented by defining a transfer 
function, as follows:

Interestingly, this transfer function also holds for fractional derivatives given that the order m of the derivative 
can be a non-integer value53. In the time domain, these fractional derivatives can be found by using, for instance, 
the Riemann–Liouville equation54.

where Γ is the gamma function55 (a function commonly used to extend factorials into complex numbers56), ⌈m⌉ 
denotes rounding m upwards to the next integer, t  is the variable which the function f (t) is being differentiated 

(5)Tm = [2π i(f − f0)]m

(6)
∂mf (t)

∂tm
|t>b =

1

Ŵ(⌈m⌉ −m)

d

dt⌈m⌉

∫ t

b
(t − x)⌈m⌉−m−1f (x)dx

Figure 3.   First order numerical results. Numerical results of a first order differentiator with two metallic 
terminated stubs of length 0.5237�0 made from waveguides with cross-section w = h = 0.0267�0 ( �0 = 37.5 
mm, f0 = 8 GHz). (A) Numerical results of the electric field distribution in space and time for our proposed 
first order differentiator considering an incident 8 GHz modulated Gaussian (standard deviation σ = 0.5 ns). 
These results are calculated along the propagation axis of the whole structure at x = y = 0 . (B) Time domain 
simulation results of the scenario presented in (A) calculated at the ends of the input and output waveguides 
( z = ±500 mm = 13.3�0 ). The input signal in the time domain is shown on the left panel as a black line, 
along with the numerical results of the recorded voltage (middle panel) calculated at the end of the output 
waveguide ( z = 500 mm = 13.3�0 ) and the theoretical derivative of the envelope in the time domain (blue and 
dashed red line respectively). The frequency content of the incident and output signals is shown on the right 
panel for completeness. (C,D) same as panels (A,B) considering the same structure but working in reflection 
configuration. Here, we use a 4 GHz modulated incident Gaussian signal (same standard deviation as B). The 
numerical results of the reflected signals both in the time and frequency domain are plotted as green lines in 
(D). (E) Unmodulated arbitrary input signal representing the Tyne Bridge (red line), a local landmark from 
Newcastle Upon Tyne in the United Kingdom. (F) Numerical (blue line) and theoretical (dashed red line) results 
of the output voltage as a function of time for the scenario from (E).
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with respect to, x is a substitute variable used to calculate the integral and b is the basepoint of the system which 
describes the non-locality of non-integer derivatives57.

To carry out this operation using the proposed waveguide junctions, here we present a general structure for 
m th order differentiators as schematically shown in Fig. 4A. It consists of multiple “layers” of cascaded first order 
differentiators being connected via parallel plate waveguides as TLs. The number, length and open/closed nature 
of the stubs can all be individually defined for each differentiator block, meaning that each differentiator does not 
necessarily need to be the same as its adjacent blocks. The length between each differentiator can also be defined, 
allowing for a higher degree of control over the spectrum of the transfer function of the full structure. Note that 
such control is particularly important when considering interconnected blocks of TLs as multiple reflections 

Figure 4.   Arbitrary mth order derivatives. (A) (Top panel) Schematic of the proposed approach showing 
cascaded differentiators. The number of stubs, its length ( Ls ), open/closed nature, and length of the waveguides 
used to connect two junctions of waveguides ( Lc ) may be controlled to tailor the desired transfer function. 
(Bottom panel) Block diagram of two interconnected differentiators. Inputs (red arrows) and outputs (green 
arrows) of the individual differentiators are presented along with the reflections produced between the 
two differentiation blocks (yellow arrows). (B,C) Example of a second order differentiator made from two 
interconnected junctions. (B) TL representation (left) along with the ideal/theoretical (red) and numerically 
calculated (black) magnitude of the transmission coefficient (right panel). The waveguides have a cross-section 
of w = h = 0.0267�0 and dimensions Ls1 = Ls2 = Ls3 = 0.7596�0 (C) Time domain simulation of an 8 GHz 
central frequency Gaussian (standard deviation σ = 0.46 ns) incident signal in the time domain (top-left) and 
its corresponding spectrum (bottom-left) along with the numerical (blue) and theoretical values (dashed-red) 
in the time domain (top-right) and frequency domain (bottom-right). (D,E) The same as panels (B,C) but for 
a design to perform fractional differentiator of order m = 0.717 . Here, the incident signal has a different time 
duration (standard deviation σ = 0.3536 ns) to fit its spectrum within the working frequency range of 0.25f0 . 
The stub waveguides have dimensions Ls1 = Ls3 = 0.758�0, Ls2 = 0.505�0.
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between blocks need to be considered and can be indeed tuned at will by exploiting all the different parameters 
within the full structure. In this context, as it is known in filter design, connecting layers together by a TL of 
length �0/4 will increase the “order” of the differentiator, increasing the bandwidth of the filter (an increased 
bandwidth of the minimum in the transmission coefficient in our case47,58). This can be understood as the mul-
tiplication of the transmission coefficients of the individual layers in the region around f0 . As differentiation is 
performed around a minimum in the transmission coefficient, when considering lossless TLs, the majority of 
an incident signal will be reflected by the differentiator. Based on this, when cascading multiple differentiators, 
the high reflection coefficient of each individual differentiator will produce a large standing wave between the 
layers. A distance of �0/4 is then chosen to connect the different layers (differential operators) to ensure that 
the reflections between layers will destructively interfere with one another thus not impacting the output of the 
subsequent differentiator. Hence, by using TL theory, choosing the length of the waveguide connecting differ-
entiators as an odd integer multiple of �0/4 will preserve the symmetry of the transmission coefficient around 
the modulation frequency f0 (a symmetry requirement due to the nature of Eq. 5 around f0 ). An in-depth study 
of the response of the mth order differentiator when the length of the waveguides connecting the differentiators 
is included in the supplementary materials section S3 for completeness59.

As discussed above, reflections between cascaded layers are expected to be large, hence approximations such 
as the theory of small reflections47 cannot be used. Instead, we utilize the Redheffer star product59,60 method to 
calculate the transfer functions of the cascaded structures. This method is an alternative to the commonly used 
transfer matrix method (TMM)61, which enables the symmetry of the scattering matrix to be exploited for greater 
computational efficiency. This method can be briefly explained as follows:

Consider a pair of scattering matrices S1 and S2 connected together such that the output of one matrix feeds 
into the input of the other, and vice versa (see schematic representation in the bottom panel of Fig. 4A). Math-
ematically, this can be expressed as follows:

where the S1oi and S2oi terms are the scattering coefficients of the first and second scatter (as labeled by the num-
bered superscript), respectively, o and i represent the output and input waveguides which the scattering coef-
ficient relates to, respectively. The y and x terms are the output and inputs of each scatterer, respectively. The 
numbered subscript denotes which scatterer the input corresponds to ( 1 meaning the first and 2 meaning the 
second scatterer, respectively) while the subscripts L and R represent where the output/input is taken (left and 
right of the waveguide junction, respectively). Based on this, a combined scattering matrix S3 can be written as

where the S3oi terms are the scattering coefficients of the overall structure, defined as:

In general, the S3oi terms in Eqs. 7–9 can be written as matrices representing the scattering between multiple 
ports in a network, however this is not necessary for our implementation as we consider scatterers with only two 
ports (one input, one output). As such, the calculated S3oi terms represent the transmission and reflection coef-
ficients for a signal from input i towards output o of the structure (i.e. S321 and S311 is the transmission and reflection 
coefficient of the full structure which is the result of the combination of two scattering matrices together, respec-
tively, when applying the incident signal from the left). Note that in this configuration, the effect of the connecting 
length is absorbed into one of the scatterers (e.g. S1 ) by adding a phase change to the transmission and reflection 
coefficients from the connecting waveguide (i.e. S121 → S121e

−iϕ , S122 → S122e
−2iϕ , where ϕ = ωLc

√
εrµr/c is the 

electrical length of connection), ω is the angular frequency of the signal and Lc is the length of waveguide con-
necting the two layers. Moreover, due to the reciprocal nature of our proposed differentiators (individual layer 
and overall mth order structure), it is expected that S311 = S322 and S312 = S321 , therefore only two calculations are 
necessary to combine adjacent layers. Finally, the Redheffer star product is the operation which combines the 
matrices in Eq. 7a into the matrix in Eq. 8 using the relations in Eq. 9. This can be written as62

with “ ⋆ ” representing the star product. From this, the scattering matrix of the cascaded system is found by 
repeatedly combining the scattering matrices of adjacent junctions until all junctions have been encapsulated 
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into a combined scattering matrix. The transmission and reflection coefficients are then found by taking the S321 
and S311 terms from the combined scattering matrix, respectively.

With this method we cycle through various possible designs, at each stage evaluating the quality of the dif-
ferentiator by calculating the RMSE between the calculated and ideal transfer functions. The design which best 
matched the desired transfer function was then modeled and simulated in CST Studio Suite® to evaluate its 
performance in a full-wave simulation software. To test the flexibility of this method we designed and evaluated 
two further devices. The first, shown in the left panel of Fig. 4B, was designed to perform second order differ-
entiation. This requires a quadratic transfer function resembling [2π i(f − f0)]2 as m = 2 in Eq. 5. The ideal and 
numerical transfer functions (transmission coefficient) can be found in the right panel of Fig. 4B. The working 
frequency range (here defined as the spectral range around f0 before the numerical transfer function deviates 
from the ideal spectra by 10% ) was found to be 0.4f0 . To evaluate the designed structure, a Gaussian signal in 
the time domain modulated at 8 GHz was used as the excitation signal (see Fig. 4C). The standard deviation of 
this signal is σ = 0.3536 ns, chosen such that the spectrum of the incident signal would fall within the working 
frequency range of the differentiator. The numerical results of the time domain signal calculated at the output 
of the structure is shown in Fig. 4C (blue line) along with the theoretical derivative of the envelope (red dashed 
line) corroborating how it is possible to calculate the second order derivative with the designed structure. As can 
be observed in Fig. 4C there are small variations between the calculated and ideal derivative. This is explained 
by the small mismatch between the ideal and numerical transfer functions at frequencies farther from f0 as seen 
in Fig. 3C. This is an expected result as the optimization weighed differences between the ideal and numerical 
transmission coefficient higher in the region around f0 when calculating RMSE.

For completeness, and to demonstrate that the order of the temporal derivative does not necessarily need 
to be an integer, a structure with the ability to perform the fractional derivative of order m = 0.717 (randomly 
chosen) was also designed. The design and transmission coefficient of this structure are shown in Fig. 4D. The 
working frequency range around f0 in which the transmission coefficient resembled the ideal curve for the 
corresponding order m = 0.717 was found to be approximately 0.25f0 (calculated as described above). This can 
be seen in the right panel from Fig. 4D where the numerically calculated transmission coefficient (black plot) 
agrees with the ideal transfer function (red line) within a certain frequency region around f0 but it diverges 
at larger and smaller frequencies. As before, a time domain simulation with an incident modulated ( 8 GHz) 
Gaussian ( σ = 0.4632 ns, so that its spectrum will fall within the working frequency range, f0 ± 0.25f0) was 
carried out to evaluate the performance of the fractional temporal differentiator. The numerical results of the 
calculated output voltage (blue plot) in both time and frequency domains are presented in Fig. 4E where it is 
clear how, by comparison to the theoretical value (red plot), the output signal represents the fractional temporal 
derivative of the incident temporal signal. As these results show, the envelope of the output signal in the time 
domain has two “lobes” which are asymmetrical around the central dip (i.e., the lobes have different amplitudes 
and temporal duration), compared to the first order differentiation case presented in Fig. 3.This asymmetric 
temporal signal is an expected feature of fractional derivatives with 0 < m < 1 of Gaussian signals63,64. These 
results demonstrate that the proposed structure indeed has the ability to perform fractional differentiation onto 
the incident temporal signal.

Discussion or conclusions
In summary, a method for performing analogue differentiation to the envelope of incident temporal signals 
has been proposed by exploiting the splitting and superposition of TEM waves within parallel plate waveguide 
junctions. To do this, close-ended stubs connected at such junctions were used to tailor the transmission coef-
ficient of the proposed structure to resemble the mth order differentiation operator in the frequency domain. 
A full mathematical description of the splitting and superposition of signals within these structures has been 
presented in terms of the scattering matrix approach. Different designs have been demonstrated numerically such 
as the calculation of first (m = 1) and fractional order (m = 0.717) temporal differentiation of a temporal Gauss-
ian envelope sinusoidally modulated (modulation frequency 8 GHz). Additional examples included envelopes 
of arbitrary shapes and the use of the technique in reflection and transmission mode, among other studies. A 
good agreement was found between all the presented results and their corresponding analytic calculations. We 
envision that this work may enable the development of further time domain wave-based analogue computing 
devices opening new directions for high-speed computing.

Methods
The numerical simulations shown in Figs. 1C, 2, 4B,D were performed using the frequency domain solver of the 
commercial software CST Studio Suite® while the results in Figs. 1E,F, 2, 4C,E with the time domain solver. Paral-
lel plate waveguides (top and bottom PEC boundary conditions) with a cross section ( w = h = 1 mm = 0.0267�0 , 
where �0 = 37.5 mm) where implemented, unless stated otherwise in the main text. Vacuum ( εr = 1,µr = 1 ) was 
used as both the waveguide filling material and the background medium of the simulation. Waveguide ports were 
used to excite/extract the input/output signals. These ports were placed at the ends of the input/output waveguides 
with the latter having a length of 25 mm (0.667�0) from the ports to the position of the junction. For the results 
shown in Fig. 3A,C, this separation was instead 500 mm = 13.3�0 to better observe the waves propagating in the 
spacetime diagrams. Boundary conditions were set to open (add space) in the x and y axis and to open in the z 
dimension to add background space after the structure and to avoid undesirable reflections, respectively. Gauss-
ian signals in the time domain simulations were defined following the equations G(t) = e−(t−4)2/2σ 2

sin(2π f0t) , 
where f0 is the modulation frequency, σ is the time domain standard deviation and t  is time.
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Data availability
The data supporting the findings of this study are available within the article and its supplementary materials. 
Further specific data that support the findings of this study are available from the corresponding author upon 
reasonable request.
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