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Phylogenetic inference 
from single‑cell RNA‑seq data
Xuan Liu 1,3, Jason I. Griffiths 2,3, Isaac Bishara 2, Jiayi Liu 1, Andrea H. Bild 2 & 
Jeffrey T. Chang 1*

Tumors are comprised of subpopulations of cancer cells that harbor distinct genetic profiles and 
phenotypes that evolve over time and during treatment. By reconstructing the course of cancer 
evolution, we can understand the acquisition of the malignant properties that drive tumor 
progression. Unfortunately, recovering the evolutionary relationships of individual cancer cells linked 
to their phenotypes remains a difficult challenge. To address this need, we have developed PhylinSic, 
a method that reconstructs the phylogenetic relationships among cells linked to their gene expression 
profiles from single cell RNA-sequencing (scRNA-Seq) data. This method calls nucleotide bases 
using a probabilistic smoothing approach and then estimates a phylogenetic tree using a Bayesian 
modeling algorithm. We showed that PhylinSic identified evolutionary relationships underpinning 
drug selection and metastasis and was sensitive enough to identify subclones from genetic drift. We 
found that breast cancer tumors resistant to chemotherapies harbored multiple genetic lineages that 
independently acquired high K-Ras and β-catenin, suggesting that therapeutic strategies may need 
to control multiple lineages to be durable. These results demonstrated that PhylinSic can reconstruct 
evolution and link the genotypes and phenotypes of cells across monophyletic tumors using 
scRNA-Seq.

Since it was first documented by Nowell1, the cancer cell evolution model where mutation and selective pres-
sures produce cancer cell lineages with heritable malignant traits has gained an increasing amount of support2,3. 
Cancer cell lineages with distinct genotypes, also referred to as subpopulations or subclones, could share com-
mon phenotypes4, or may exhibit different malignant properties impacting proliferation rates, drug resistance, 
or metastatic capacity. Therefore, each lineage may require different treatment strategies. To choose a targeted 
therapy, an understanding of the evolution of individual cancer cells in a tumor will help to reveal the number 
of cancer lineages that are being treated, and help uncover the traits that are under genetic selection, how they 
are acquired, and also potential targets to inhibit each lineage.

Early methods to explore tumor genetic diversity applied next generation sequencing of the DNA (genome, 
exome, or select targets) to bulk tumor samples and used the frequency of mutated reads to infer cancer 
subclones5,6. To uncover the genetic architecture of cancer cells in a tumor, single-cell barcoding strategies have 
been developed7–10. This allowed a greater resolution of evolutionary changes using single-cell DNA sequenc-
ing (scDNA-Seq)11. However, while these methods could reconstruct the evolutionary histories of cancer cells, 
they did not reveal the phenotypes of the evolving cancer cells. To study cellular phenotypes, methods have 
been developed that could infer linkages between scDNA-Seq and scRNA-Seq (single-cell RNA sequencing) 
data in samples where profiling was performed in parallel but on different cells12. Although single-cell multi-
omic protocols to sequence DNA and RNA from the same cell have been developed, this strategy has remained 
technically challenging to implement13–15.

A low-resolution approach to link cellular genotype and phenotype within a tumor was to find subclones 
from only scRNA-Seq data. A frequently used method was to predict copy number variation from gene expres-
sion measurements, and then to perform hierarchical clustering on the copy numbers16,17. Although the result-
ant dendrogram resembled a phylogeny, it did not reflect an underlying model of evolution and relied on the 
assumption that regions of upregulated gene expression reflected changes in genetic copy number and not, for 
example, transcriptional activation. Further, interpreting dendrogram branching points as evolutionary events 
in the history of the growth of the tumor required the implicit and unsupported assumption that the metric of 
distance between copy numbers reflected the time needed to acquire the copy number alterations. Thus, without 
evolutionary models of (i) a molecular clock of mutational events, (ii) nucleotide substitution probabilities, or 
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(iii) the branching process, it was difficult to interpret the history and divergence of groupings of the cancer cell 
subclones as evolutionary events.

One approach to address these deficiencies used phylogenies inferred from single nucleotide variants seen 
in the scRNA-Seq data18, but encountered difficulties due to the low coverage and high drop-out rates seen in 
scRNA-Seq data19. As a consequence, few cells were studied, cancer cells were difficult to distinguish from normal 
cells, and distinct clades of cancer cells were hard to identify. Other tools have been developed to cluster cells 
based on mutations called from their scRNA-Seq profiles into subclones20, a dendrogram structure21, or a clonal 
tree incorporating longitudinal time points22. The algorithm most similar to ours was the second method, DEN-
DRO, whose authors explicitly recommended against applying it to sequencing methods that did not profile full 
length transcripts, including 10X, currently the most common scRNA-Seq platform, due to lack of variants and 
low read coverage. Thus, strategies that could overcome the challenges from scRNA-Seq data were still needed.

One strategy to circumvent the quality issues in scRNA-Seq was to predict subclonal structure from bulk 
DNA sequencing on the same samples, and then assign cells from scRNA-Seq to those subclones, an easier task 
than generating the phylogeny de novo23–25. However, a major drawback was the requirement of bulk sequencing 
of the same samples, which was not always possible or available. Further, it did not circumvent the need to have 
accurate mutation calls in the scRNA-Seq data, which remained a challenge.

We also note that a multitude of algorithms now exist to model genetic relationships amongst cells profiled by 
single cell DNA sequencing26–34. Here, a number of approaches have been developed that could integrate errors 
from sequencing, amplification, allelic drop out, and cell doublets into the tree generation algorithm, including 
phylogenetic-aware base imputation in the BEAM method35. For a review of these strategies, see36. However, 
while largely successful in improving performance, compared to RNA, DNA-sequencing has overall broader 
coverage across the targeted regions, transcriptomes, or genomes; and was not confounded by widely varying 
levels of expression of genes that resulted in the low gene numbers and uneven coverage across genes that was 
seen in scRNA-Seq data. Coverage was also uneven within a transcript, as the sequencing in the most commonly 
used protocols, including the 10X 3′ gene expression solution, was biased toward the 3′ end, further limiting the 
profiling of the mutations. Thus, while in principle the same algorithms could be applied to mutations from the 
DNA and RNA, the source and nature of the errors differed significantly, and methods needed to be developed 
that can address the challenges seen in RNA.

To infer evolutionary relationships (phylogenies) of single cancer cells from noisy real-world scRNA-Seq 
data, we have developed a method, PhylinSic (Phylogeny in Single cells, created in a pandemic and pronounced 
“feeling sick”). It addresses the challenge of constructing an evolutionary model from low coverage scRNA-Seq 
data by calling nucleotide bases using information borrowed from genetically similar cells, and then applies a 
Bayesian phylogenetic inference algorithm, BEAST2, to model single cell evolutionary history using the imputed 
base calls37. To verify that PhylinSic accurately revealed evolutionary relationships in real biological scenarios, 
we evaluated its performance on scRNA-Seq datasets collected from a range of cell culture and patient samples 
and across different cancer types and disease stages. We evaluated PhylinSic using a data set of ER+ breast cancer 
cells where experimental evolution yielded fluorescently labeled drug-resistant and -sensitive isogenic lineages 
that could be distinguished in the scRNA sequencing data. We found the method to be robust to the inherent 
noise in scRNA-Seq data and able to reconstruct cancer cell phylogenetic relationships and uncover how phy-
logeny was reflected in cell phenotypes. We applied PhylinSic to investigate drug resistance in breast cancer and 
multiple myeloma tumors, showing its applicability across biological contexts. In all data sets, we found evidence 
of genetic evolution across disease progression, as well as evidence for convergent evolution where multiple line-
ages evolved toward a common mechanism of resistance. PhylinSic shares information between genotypically 
similar cells to robustly reconstruct phylogenetic relationships from inherently noisy scRNA-Seq data and has 
proven to be applicable to data collected from patient tumors.

Results
Modeling phylogenies from scRNA‑Seq data.  We developed an algorithm to estimate the evolution-
ary relationships among monophyletic cells (e.g., those derived from the same person) profiled with scRNA-Seq 
technologies. The algorithm had three major steps: (1) identification of variant sites, (2) inference of the nucleo-
tide bases at variant sites for each cell, using smoothing to account for scRNA-seq noise, and then (3) reconstruc-
tion of the phylogenetic history using an evolutionary model (Fig. 1A).

The algorithm first identifies sites that vary across the cells and thus might best reveal phylogenetic structure. 
To do this, we combine the reads for all the cells into a single pseudobulk sample and then called variant sites 
using a GATK pipeline (Fig. 1B). Next, for each cell, we call a genotype (either reference, alternate, or heterozy-
gous) at each of the variant sites (Fig. 1C). To account for low read depth, genotype calls are smoothed using 
information from related cells, as described in the “Methods”. We assign reference and alternate bases according 
to the base seen in the alignments, and if the genotype was heterozygous, we assign an arbitrary surrogate base. 
Finally, to estimate the phylogeny of the cells, we use BEAST2, a Bayesian phylogenetic inference algorithm 
(Fig. 1D)37.

Smoothing genotypes enables identification of resistant phenotypes.  To verify that genotype 
smoothing (from Fig. 1C) helps recover more accurate phylogenetic relationships, we used a data set where 
the CAMA-1 breast cancer cell line was experimentally evolved under 6 months of treatment with ribociclib, 
a CDK4/6 inhibitor, resulting in a ribociclib resistant cell line (GSE193278)38. A sister lineage from the same 
ancestral population evolved under untreated conditions for the same period and remained ribociclib sensitive. 
Whole exome sequencing revealed genetic differences between the resistant and parental populations, including 
nine predicted to be highly deleterious, suggesting that the resistant cells underwent genetic evolution under 
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Figure 1.   Construction of phylogeny from scRNA-Seq data. (A) Generating a phylogeny from scRNA-Seq 
alignments consists of three major steps: (1) extracting the read counts, (2) calling and smoothing the genotypes, 
and (3) reconstructing the phylogeny. (B) The read count extraction process: We start with the alignments of 
cells from a single-cell RNA-Seq experiment. To extract matrices of read counts, we identify sites of interest by 
merging the alignments in a pseudobulk sample and calling variants. Then, at each of the variant sites, in each 
individual cell, we count the number of reads with the reference and alternate alleles. (C) The genotype calling 
and smoothing processes: We start from matrices of read counts of reference and alternate alleles seen across 
sites (rows) in single cells (columns). (i) Given the number of reads, we assigned a probability of a (R)eference, 
(A)lternate, or (H)eterozygous genotype by integrating over a beta-binomial density function. (ii) To compare 
the genotypes of two cells, we sample 100 genotype profiles by drawing from their probability distributions. (iii) 
Comparing every pair of cells leads to a pairwise similarity matrix of genetic distance scores. By looking for the 
highest scores (excluding itself), we find the K nearest neighbors for each cell. (iv) With the nearest neighbors, 
we can smooth the genotype probability of a cell by averaging with the weighted ( δ ) average probabilities of its 
neighbors. We call the genotype with the highest probability score. (D) Phylogenetic reconstruction: We use 
BEAST2 to infer the phylogeny and produce a final tree using the max clade credibility method.
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drug selection39. The populations of sensitive and resistant cells were fluorescently labelled allowing them to 
be distinguished when co-cultured. Cells were grown for 14 days in both mono- and co-culture, allowing us 
to distinguish biological differences in resistant and sensitive cell genetic profiles from possible technical batch 
effects of separate culture.

We pooled scRNA-Seq data from all cells, processed the data (as described in the “Methods”), and obtained 
523 variant sites and 400 cells (200 resistant and 200 sensitive). We inferred cancer mutation profiles and phy-
logenetic trees of the cells’ evolutionary relatedness with or without application of our algorithm for smoothing 
the genotypes. Assuming that ribociclib resistance evolved due to selection for a lineage of cells that harbored 
genetic changes allowing proliferation under treatment, we expected to observe that resistant and sensitive cells 
(i) had distinct mutational profiles and (ii) occupied different evolutionary branches of the phylogeny.

When we compared the mutation profiles generated with and without genotype smoothing, we found that 
the nucleotide bases called using smoothing better distinguished the sensitive and resistant cells (Fig. 2A, the 20 
sites most significantly associated with resistance are shown). Without smoothing and imputation, 30% of the 
values in the matrix were missing, and the genotypic variation showed no association with the resistance status 
(adjusted Rand Index = 0, p = 0.44). With smoothing, the genotypes at selected variant sites were significantly 
associated with the resistance lineage (adjusted Rand Index = 0.3, p = 0.001), showing that the data captured the 
evolutionary alterations distinguishing resistant and sensitive cancer lineages.

To understand how the smoothing affected the genotype base calls, we examined each element (a specific 
site and cell in a matrix) of the read count matrices and calculated the percent that were altered by smoothing 
(Fig. 2B). Because smoothing depended on the depth of the coverage (the total number of reads), we discretized 
the elements into drop-out (0 reads, 66% of elements), low (1 read, 17% of elements), medium (2–4 reads, 13% 
of elements), and high (≥ 5 reads, 4% of elements) coverage. As expected, the genotypes from elements with 
low coverage were most likely to be altered by smoothing and were changed 63% of the time, in comparison to 
the ones with medium (34%) and high (30%) reads. The ability to call homozygous genotypes (either reference 
or alternate) improved with higher coverage. With low coverage, no heterozygous genotypes could be called 
without smoothing (since only one read was available), and ~ 60% of the homozygous genotypes were changed 
to heterozygous after smoothing. For elements with medium coverage, ~ 40% of the homozygous genotypes were 
changed; and for high coverage, ~ 10% were changed.

Finally, to determine if smoothing uncovered more sites associated with the resistance lineage, we examined 
the association of the 523 genomic sites with resistance status before and after smoothing. After smoothing, 
more sites showed genetic alterations that were associated with resistance/sensitive lineage status (Fig. 2C). These 
results indicated that smoothing enhanced the ability to identify sites linked to the evolutionary divergence of 
the resistant lineage.

Phylogenies are not confounded by technical characteristics of scRNA‑Seq.  A major challenge 
in analyzing scRNA-Seq data has been the overall low coverage and high drop-out rates19. To assess the sensitiv-
ity of phylogenetic reconstruction to these characteristics of the data, we performed simulation studies using the 
CAMA-1 data set.

First, we tested the robustness of the inference to the number of neighbors, K, used in the smoothing algo-
rithm (Fig. 3A). We generated phylogenies after varying K from two to 20 neighbors, and scored the association 
with resistance status using Pagel’s �, a measure of phylogenetic signal40. We found that λ was not dependent on 
K, indicating that the phylogeny was relatively robust to the number of neighbors in this data set.

Next, we tested how the number of selected sites impacted the phylogenies (Fig. 3B). We reconstructed cancer 
phylogenies after selecting different numbers of genomic sites (10–500) with the highest average coverage. The 
phylogenetic signal increased as the number of sites increased up to 300 sites, and then began to decrease slowly, 
potentially due to the addition of noisier data. This suggested, in principle, that more sites should be favored 
over fewer, although too many low-quality sites can be detrimental. It is known that the number of sites required 
will increase with the number of evolutionary relationships to be inferred41. It is likely that the ideal number of 
sites depends on the mutational process that is driving the evolution of the cells, and thus may vary from data 
set to data set. The convergence of the evolutionary model onto a robust phylogenetic topology across MCMC 
iterations (post burn-in) is an indicator that the number of sites used is sufficient to resolve the evolutionary 
relatedness of the cells.

We also examined how the rate of drop-out affected the phylogenetic signal by taking the unaltered count 
matrix (with 65% missing values, which we called the sparsity of the matrix), and then setting random elements 
to 0 to increase the sparsity up to 90% (Fig. 3C). This experiment revealed that the phylogenetic signal decreased 
with the addition of sparsity, rapidly dropping after 75%. No association of phylogeny with resistance status was 
seen beyond 85% data sparsity.

Another potential source of noise was the incorrect genotype calls due to random sequencing artifacts or 
limitations of the imputation algorithm. To test whether these types of errors impacted phylogenetic inference, 
we simulated additional errors by randomly changing the genotypes of up to 50% of the elements (Fig. 3D). Up 
to 20% of the genotypes could be randomized with only a moderate decrease in the phylogenetic signal, but 
performance dropped drastically with more severe noise.

Next, we tested how well the algorithm could detect low frequency subclones. For this analysis, we constructed 
data sets consisting of the sensitive CAMA-1 cells, and then spiked in different proportions of resistant cells so 
that the resistant cell frequencies ranged from 5 to 50%, while maintaining a constant total cell count (Fig. 3E). 
To accommodate small subclones, we modified the filtering criteria and removed sites if over 95%, rather than the 
default of 90%, of the cells had the same base (see “Methods”). From analysis of the phylogenies, we found that 
subclones comprising at least 20% of the cells could be clearly detected, while smaller ones were difficult to detect.
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Figure 2.   Smoothing improves the distinction of the genotype profile of the resistant and sensitive cells. (A) 
Heatmaps show the genotype profile of the resistant and sensitive cells (columns) for the 20 sites (rows) that 
are most significantly associated with resistance. The heatmaps on the left show the genotype profiles before 
smoothing, and the ones on the right show the genotype profiles after smoothing. The genotypes are called as 
either Reference (blue), Alternate (red), or Heterozygous (yellow). Missing data (drop-out) are shown in white. 
(B) (left panel) The pie chart shows the distribution of the number of reads seen in each element in the site x 
cell matrix. The fraction of elements with no reads (dropout—the site is not seen in a cell) is shown in grey, the 
ones with a single read is shown in red, 2–4 reads is green, and at least 5 reads in blue. (middle panel) The tables 
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left table), Medium (2–4 reads; middle table), and High (5+ reads; right table) coverage groups. The columns 
indicate whether the genotype was Alt(ernate), Het(erozygous), or (Ref)erence before smoothing, and the rows 
indicate the genotype after smoothing. Each cell in the table indicates the percent of elements that were changed. 
Each column adds up to 100% (after accounting for rounding artifacts). The Het column in the Low coverage 
coverage group contains N/A because we cannot call a heterozygous genotype from only 1 read without 
smoothing. (right panel) The bar plot shows the percent of elements in each coverage group that are changed. 
(C) The scatter plots show the association between the mean coverage (x-axis) of each mutation site (points) and 
the correlation of its predicted genotype with the resistance phenotype (y-axis) either before (left plot) or after 
smoothing (right). Sites associated with the resistance phenotype at p < 0.01 are shown in red.
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Finally, we tested whether the gene expression patterns affected the phylogenies. Because genotypes could only 
be assessed (without imputation) from genes that were expressed, it was possible that the expression patterns may 
have confounded the structure of the phylogenies such that the clades reflected gene expression patterns rather 
than genotypes. Previously, we reported that resistant CAMA-1 cells had altered gene expression patterns39 that 
we confirmed here (Fig. 3F). We then eliminated the genes with differential expression between the resistant 
and sensitive lineages (dropping 1948 differentially expressed genes with log fold change > 0.05 and detected 
in > 5% of cells) and confirmed by UMAP that gene expression differences were substantially reduced. We then 
generated phylogenies from both the original and altered data sets. After removing the differentially expressed 
genes, we observed a dramatic decrease in the phenotypic distinction between the resistant and sensitive cells as 
quantified by the phenotypic signal, although it is possible there remains latent differences that are not detectable 
by differential expression analysis or UMAP visualization (Fig. 3F). However, the phylogenetic signal remained 
comparable, showing that the evolutionary divergence of resistant and sensitive cells could be identified from 
mutational changes, even if there were no differences in the gene expression patterns.

To summarize these results, we found that the single cell phylogenies reconstructed from scRNA-seq data 
were relatively robust to how our algorithm was applied, but could be affected by the quality of the data. We made 
several observations that could be used to guide applications of this algorithm to other data sets. First, we found 
that the phylogenies were relatively insensitive to the number of neighbors K, at least in this data set. Second, 
more sites (≥ 300) and less sparsity (less missingness: upper limit ~ 75%) are helpful in generating phylogenies. 
The algorithm itself is relatively robust to noise, tolerating up to ~ 20% of incorrect base calls. Further, we showed 
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that the phylogenies were not confounded by the gene expression patterns. Finally, based on simulation studies, 
we saw that the algorithm could readily detect larger subclones comprising at least 20% of the cells, although 
smaller ones down to 10% were achievable. This suggests that the number of high-quality cells needed for the 
phylogeny must be 5× the expected size of the lineage of interest, after filtering.

PhylinSic can reconstruct phylogenies across a range of biological conditions.  Thus far, the 
results showed that our algorithm could recover the genetic differences underlying acquired drug resistance in 
breast cancer cells. To determine whether the method was generalizable and could recover evolutionary relation-
ships produced by other evolutionary pressures, we tested it in a range of conditions seen in five public scRNA-
Seq data sets where the subclonal structures were determined by independent data sources, including single cell 
DNA-sequencing or bulk whole genome sequencing (Table 1). Each data set contained monophyletic cells that 
could be grouped into subpopulations with distinct genetics. We reconstructed the phylogenies of cells in each 
data set and compared them against their previously established subclonal structure. Then, we measured the 
association between the phylogenies and the subclones using the phylogenetic signal.

We begin by investigating more deeply the CAMA-1 breast cancer cells from above39. In this data set, three 
samples were sequenced: one sample with resistant cells grown in monoculture, one with sensitive ones in 
monoculture, and one where the resistant and sensitive cells were co-cultured. After combining the cells from 
these three samples, we randomly selected 200 sensitive and 200 resistant cells and reconstructed their phylogeny. 
The phylogeny bifurcated into two major clades, where one was predominantly composed of resistant cells, and 
the other was mainly sensitive (phylogenetic signal � = 0.67, p = 2.8e−23) (Fig. 4A). There was no clear difference 
in the distribution of the monocultured or co-cultured cells, indicating that the phylogeny reflected genetic 
heterogeneity and was not confounded by environmental or batch sampling effects. The non-synonymous gene 
mutations used to generate this phylogeny, as well as the other ones presented in Fig. 4, are included in Table S1. 
As a baseline, we also generated this phylogeny with no genotype smoothing and observed no clear relation-
ship between resistance and phylogenetic structure, confirming our previous results that smoothing leads to an 
improved ability to recover known biology (Fig. S1).

We then tested the ability of PhylinSic to infer genetic relationships from patient tumor data. In one patient 
derived tumor data set, we studied metastatic ER+ breast cancer tumor evolution42 with cells profiled from the 
same tumor both before and after treatment with chemotherapy (Fig. 4B). From this data set, we studied the 
evolutionary relationships of cancer cells in the tumor from the patient with the clearest evidence of subclone 
architecture (patient 3). In another data set, we analyzed tumors from patients with multiple myeloma (Fig. 4C)43. 
In both cases, the distribution of the pre- and post-treatment cells were associated with the phylogeny (breast 
� = 0.73, p = 1.5e−17, melanoma � = 1.1, p = 1.1e−6), indicating a shift in the genetics of the tumors after treatment. 
For the breast cancer tumors, a minority of the pre-treatment cells (23%) shared a genetic lineage with the post-
treatment cells, indicating that some pre-treatment cells had a pre-existing resistant genotype, as we previously 
reported42. This pattern was not observed in the multiple myeloma tumors, although it was possible that too few 
cells were sequenced to detect this population.

To further characterize the evolutionary distinctness of pre- and post-treatment cells, we calculated the 
evolutionary diversity of cells across the phylogeny at each timepoint. We then assessed whether cells of each 
timepoint were phylogenetically clustered within specific branches of the evolutionary tree, using standard-effect-
size mean pairwise distance (SES MPD). Negative evolutionary distances indicated phylogenetic clustering while 
positive distances indicated phylogenetic evenness across the tree. In both breast cancer and myeloma data sets, 
post-treatment cells were more evenly distributed across the phylogeny than pre-treatment cells, indicating that 
post-treatment cells were more genetically diverse despite the effects of drug selection.

In both breast and multiple myeloma tumors, we observed distinct pre- and post-treatment clades (Fig. 4B,C). 
Interestingly, in both tumors, a small set of cells that survived after treatment genetically resembled the pre-
treatment genotype (inferred to be drug sensitive). That is, these persister cells were closely related genetically to 
the sensitive pre-treatment cells (they share a main lineage with the pre-treatment cells rather than post-treatment 
cells), but nevertheless survived after treatment (they are seen in the post-treatment sample) (Fig. 4B,C). One 
possible explanation for their resistance, despite genetic similarity to the sensitive cells, could be that the local 
tumor microenvironment provided resistance to these otherwise sensitive cells (e.g., by limiting drug penetration 

Table 1.   Gold standard data sets.

Data set Description Sequencing platform Evidence of subclone Cells Sites
Sparsity (before filter) 
(%)

Sparsity (after filter) 
(%) Reference

CAMA1 ER+/HER2− CAMA-1 
breast cancer cells 10x 3′ Whole exome 400 213,379 97 65 PMID: 37386030

N87 Gastric cancer cell line 10x 3′ scDNA-Seq 500 12,984 92 75 PMID: 32215369

ER+ BRCA​ Breast tumors, before 
and after treatment

Fluidigm
Full transcript

Whole genome, 
scRNA-Seq copy 
number

141 164,580 97 53 PMID: 29093439

MM16
Multiple myeloma 
tumors, before and after 
treatment

Fluidigm
Full transcript

Whole exome, scRNA-
Seq copy number 46 144,057 94 32 PMID: 31558476

MM34 Multiple myeloma, pri-
mary and metastasis

Fluidigm
Full transcript

Whole exome, scRNA-
Seq copy number 127 326,089 95 16 PMID: 31558476
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Figure 4.   Phylogenetic reconstruction recovers previously identified subclonal lineages across a range of cancer 
settings. We have generated phylogenies from five scRNA-Seq data sets. The evolutionary distance for each sample 
condition is shown as the circles at the right of the heatmap. The color and size of the circles represent the evolutionary 
distance and statistical significance. The yellow (Reference) and blue (Other) heatmaps show the genotypes of the 
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bottom. (B) This data set consists of tumor cells collected from ER+ breast cancer tumors before and after treatment. 
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evolving under untreated conditions. Four subclonal lineages were previously reported to coexist.
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or providing growth stimuli). Additionally, pre-treatment we observed a small population of cells in the breast 
tumor that were genetically similar to the dominant post-treatment lineage (resistant cells), indicating the exist-
ence of resistant cancer genotypes within the heterogeneous tumor prior to treatment (Fig. 4B).

In addition to evolution over time, driven by drug treatment, we examined the evolutionary changes occurring 
at spatially distinct disease sites creating heterogeneity between primary and metastatic tumors from a multiple 
myeloma patient43. We found that the cells from the two tumors were nearly completely separated into distinct 
lineages (Fig. 4D). A small number of cells within the primary tumor belonged to the lineage that dominated in 
the metastasis, but the dominant lineage of the primary tumor was completely absent of metastatic cells. This 
result suggested that a single (or small number of related) genetic lineage(s) colonized the distant location and 
produced a distinct genetic population at the distant site.

Since PhylinSic could identify genetic changes resulting from drug treatment and metastasis, both of which 
were strong selective events, we finally tested whether it could detect differences resulting from more subtle 
genetic drift. To do this, we applied it to scRNA-Seq profiles of the N87 gastric cancer cell line that was cultured 
under conditions without any specific selective pressure44. We chose this cell line because, in the published study, 
it was the most deeply characterized. There, four subclones were identified by scDNA-Seq and scRNA-Seq. In 
the PhylinSic-derived phylogeny, distinct clades could be seen for Clone 1 ( � = 1.1, p = 8.8e−28) and Clone 4 
( � = 0.68, p = 1.8e−79), while we found some disagreement in the classification of Clones 2 ( � = 0.5, p = 5.0e−30) 
and 3 ( � = 0.34, p = 1.8e−15) which were more difficult to distinguish (Fig. 4E). The mutations that we identified 
supported the PhylinSic classification although some mutations detectable by scDNA-Seq may not have been 
observable in the scRNA-Seq.

Taken together, these results demonstrated that PhylinSic could reconstruct the phylogenetic relationships, 
enabling biological insight of cells across a range of biological settings (in vitro and in vivo throughout treatment 
or across metastatic sites) and sequencing platforms.

Integrating genetic and phenotypic inference.  Having seen the ability of PhylinSic to reconstruct 
the genetic relationships across single cells from scRNA-Seq data, we next sought to link these genotypes with 
the phenotypes of the cells, as represented by gene expression profiles. To do this, scRNA-Seq mutation profiles 
were first used for phylogeny construction, then phenotype associations were assessed based on the phenotypic 
similarity of cells within genetic lineages of the phylogeny. We analyzed the breast tumor data set (represented in 
Fig. 4B) to determine how phenotypes evolved in response to drug treatment.

To determine the phenotypic traits under evolutionary selection, we measured the phylogenetic signal λ 
for the Hallmarks ssGSEA pathways45. This revealed the phenotypes that were significantly dysregulated in 
each of the 5 major breast cancer clades (Fig. 5A: clades A–E). This included pathways previously linked with 
breast cancer including Wnt/β-Catenin signaling (false discovery rate, fdr = 0.005), K-Ras (fdr = 0.001), estrogen 
response (fdr = 0.035), and mitotic spindle (fdr = 0.002) (Fig. 5A,B). Many of these pathways were upregulated 
in only one clade of the phylogeny, predicting the event that led to activation of the pathway. For instance, one 
clade composed almost entirely of pre-treatment cells (clade A in Fig. 5A) had a high estrogen response signature, 
which was low in the remaining clades of post-treatment cells (clades B–E). Since these tumor cells were initially 
ER+, this predicted that there was loss of estrogen dependency after treatment, which was driven by a genetic 
change. In contrast, β-catenin signaling, a pathway correlated with drug resistance in a number of contexts46,47, 
was activated in the post-treatment cells.

Finally, in this data set, we noticed a set of persister cells, noted above, with a sensitive genotype that were 
retained after treatment (clade B in Fig. 5A). While these cells were genotypically distinct from the other post-
treatment cells, we find here that some aspects of their phenotypes were similar (Fig. 5B). Notably, they shared 
high K-Ras and β-catenin pathway scores with the other resistant cells. However, while the other resistant cells 
had a stronger phylogenetic association with β-catenin, the persisters had a phylogenetic association with K-Ras. 
These results show that while the post-treatment cells had high activities for both pathways, the genetics underly-
ing those pathways were different across the cancer clades.

To determine whether any recognizable mutations were associated with these phenotypes, we examined the 
1000 mutation sites that were used to construct the phylogeny and measured their phylogenetic signal at each 
internal node of the phylogenetic tree (Fig. 5C). We found 228 sites that were significantly associated with the 
phylogeny (fdr < 0.01). The vast majority occurred in non-coding regions and thus were not likely to be driver 
mutations but support the reconstructed evolutionary relationships. We focused on the nine non-synonymous 
mutations and found one, GSTM3 (NM_000849, p.V224I), which had a significantly different genotype in the 
post-treatment cells and is a known β-catenin target that has been linked to chemoresistance and other pheno-
types in cancer48–50. While the phylogeny could not determine whether this was a driver mutation activating a 
β-catenin signature without follow-up functional studies, it nevertheless provided a novel model of the biology 
and revealed hypotheses to be tested.

Discussion
We have developed a method, PhylinSic, to reconstruct evolutionary relationships within tumors at the single-
cell resolution and to link genotype to phenotype using scRNA-Seq data. We demonstrated the potential that 
this has for generating biological insight. Using probabilistic approaches, we addressed the challenges inherent 
across sequencing platforms, such as low read coverage, drop-out, and biases in the gene expression patterns. 
The approach we developed to call bases could also be applied to other contexts requiring accurate base calls 
from scRNA-Seq, such as estimates of mutation burden or calling of tumor vs. normal cell types. Finally, we have 
shown that our method, PhylinSic, can reconstruct phylogenetic trees of tumor evolutionary history for a range 
of data sets, from cell lines to patient tumors, and across a range of scRNA sequencing platforms including 10X 
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Genomics and Fluidigm, covering both 3′ sequencing and full transcript protocols that vary in the depth and 
breadth of the coverage of the transcripts47.

Importantly, we found that smoothing the base calls using a kNN strategy resulted in a greater ability to gener-
ate genotypes and phylogenies that associated with known biology. Using simulation studies, we characterized 
the sensitivity of the phylogenies to each of the parameters of the algorithm. Somewhat surprisingly, we found 
that the phylogenies were relatively insensitive to the choice of K, the number of neighbors to consult when 
estimating the genomic profile of each cell. In principle, K is dependent upon the expected size of the subclones 
of interest, the genetic diversity within and between lineages, and the quality of the data. It is possible that our 
data set, which harbored two large lineages (resistant vs sensitive cells) that were likely to exhibit significant 
genetic differences due to powerful selection under drug treatment and also collected from clean samples from 
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Fig. 4B is reproduced here with new annotations. The phylogeny is split into five clades (A–E). The clades 
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pathways significantly associated with the phylogeny based on phylogenetic signal (fdr < 0.05). Each pathway is 
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cell culture (rather than patient tumors), represented a situation that was not well suited to detect the relation-
ships between K and phylogenetic structure. Therefore, we still recommend tuning K for each data set, setting 
an initial value based on the expected size of the subclones of interest.

In this study, we have validated the phylogenies reconstructed by PhylinSic in external data sets where sub-
clones were determined by bulk whole exome sequencing, bulk whole genome sequencing, scDNA-seq, and copy 
number from scRNA-Seq. We recommend that users also utilize multi-omics approaches to validate the broad 
structure of the phylogeny and the benefits of differing levels of smoothing of mutation profiles, for example 
through rough measures of phylogenetic composition obtained from bulk DNA-sequencing. When DNA data 
is unavailable, phylogenies can be compared against copy number profiles estimated from the gene expression. 
Secondly, internal validation can be done by comparing the structure of the phylogeny against the expected 
evolutionary relationships of the cells. For instance, in a tumor, we expect cancer and non-cancer cells to form 
distinct clades and verification of this can support the broad evolutionary relationships recovered. To examine 
finer resolution evolutionary relationships, we recommend assessing the consistency of the mutational changes 
observed in the unsmoothed data and their specificity to distinct cancer clades.

After developing the phylogenies, in the in-depth analysis of drug resistance (in a CDK4/6 inhibitor and 
chemotherapy setting), we saw evidence for pre-existing populations of resistant genotypes, even pre-treatment. 
Intriguingly, in both tumor drug treatment data sets, we saw two distinct lineages of cells that survived after 
treatment. This result suggested that independent resistance mechanisms may commonly evolve in distinct line-
ages, leading to multiclonal tumors. Further, the phenotypic data showed that the post-treatment breast tumor 
cells, regardless of the lineage, had activation in at least two signaling pathways: K-Ras and β-catenin. While 
all resistant lineages had increased activation of those pathways, the differing genetic backgrounds suggested 
that they acquired activation through different mechanisms. This possibility implies that inhibition of multiple 
(or all) distinct resistance mechanisms may be necessary to achieve a durable response and thus supports the 
hypothesis that cancer heterogeneity is a key driver of tumor progression.

Resolving a full single-cell phylogenetic history of tumor evolution, beyond identification of subclones, pro-
vided the genetic relatedness of each cell, quantified from evolutionary distances that reflected the underlying 
mutation rates and divergence times. This allowed principled evolutionary associations between genotype and 
phenotype that enabled us to distinguish the traits associated with evolution, and also determine whether those 
traits evolved independently through convergent evolution–a situation that may confound cancer treatment51.

However, there remain limitations in our approach that need to be addressed. First, while we have seen that 
the mutation pattern can reveal phylogenetic structure, it generally cannot identify the mutations that drive 
evolution. New lineages can potentially be created by single mutations that confer a strong selective advantage. 
Because scRNA-Seq profiling, especially a 3′ biased protocol, does not provide a comprehensive view of the 
mutations, the drivers may be missed. Next, phylogenetic models, in principle, can reveal the timings of his-
torical evolutionary events that could be related to events in the life of the patient (e.g., drug selection, time of 
metastasis, immune surveillance). However, this requires a carefully calibrated clock model that can contend 
with potential differences in the evolutionary rate across cancer cell lineages, for instance, due to differing abili-
ties to repair DNA damage. This could be addressable with a model that integrates temporal scRNA-Seq samples 
that track mutation profiles through progression and describes the mutational processes that drive the rate of 
mutational divergence of each lineage from healthy reference cells52. Indeed, our pipeline allows users to select 
from a set of tree prior models describing different assumptions of tumor population growth during treatment. 
This includes simple parametric tree priors reflecting constant population size or exponential growth and also 
highly parametric models such as the Bayesian skyline model to describe complex patterns of cancer popula-
tion growth that more often occur across treatments. This would also reveal how differing rates or processes of 
evolution among different lineages can impact the malignancy of the cells. Another complication arises from the 
fact that tumors can undergo many selective pressures as they develop, for instance, from resource limitations, 
immune surveillance, or drug treatment, that impact the population of tumor cells. Appropriate modeling of 
the evolutionary response to these events will require longitudinal samples as well as an appropriate model of 
the changes in population size53. In any case, the lens of evolution reveals not only the life history of the tumors, 
but provides an understanding of the current genetic state of the tumors, and potentially vulnerabilities in their 
evolutionary trajectory.

Methods
Generating alignments.  We started by generating a BAM file containing the aligned reads for each cell. 
For the 10X scRNA sequencing platform, we used the standard CellRanger pipeline, which generated a BAM file 
(possorted.bam) containing the alignments for all the cells in each sample. We demultiplexed this file based on 
the error-corrected, confirmed barcodes for each cell in the CB tag (ignoring the GEM well suffix) in the align-
ment lines. Low coverage cells with less than 10,000 total reads were discarded, ensuring high data quality and 
accelerating genotype calling.

Calling genotypes.  We next identified the genomic positions where nucleotide bases differed across cells. 
To do this, we combined the demultiplexed BAM files into a single pseudobulk sample comprised of monophy-
letic cells (i.e., cells from the same person). The variants from the pseudobulk sample were then called using 
the GATK RNA-Seq pipeline54,55. In short, we added read groups, split reads, recalibrated base quality scores, 
realigned indels, and applied HaplotypeCaller. We filtered for the variants that were supported by at least 20 
reads (across all cells), with at least five variant reads making up at least 5% of the total reads. This resulted in a 
list of the genomic sites that varied across the cells in the sample, which were used as candidates for subclonal 
mutations.
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Next, for each of the variant sites, we extracted the number of reference and alternate allele reads from the 
cell-specific BAM files, resulting in two parallel matrices. One contained the number of reference reads for each 
of the sites (rows) and cells (columns). The other contained the number of alternate allele reads.

To account for the noise in the nucleotide read call, we used the pair of reference and alternate read count 
matrices to model the reference and alternate allele read counts as a probabilistic distribution over the alternate 
(or variant) allele frequency. We used a beta-binomial distribution where the number of reference and alternate 
alleles were observed (i.e., the number of alternate alleles were successes in a Bernoulli trial).

where p was the variant allele frequency, α − 1 was the number of alternate reads and β − 1 was the number of 
reference reads.

Based on the distribution of alternate allele frequency, we called the genotypes for each site in every cell. We 
distinguished among three possible genotypes: homozygous for the reference allele, homozygous for the alternate 
allele, or heterozygous. While theoretically, a reference genotype should only have yielded reference reads and an 
alternate genotype should only have yielded alternate reads, in practice, technical noise led to erroneous reads. 
To account for noise in the data, we introduced a parameter θ and obtained the probability that the underlying 
genotype was homozygous reference by integrating over the probability density function from 0 to θ (homozy-
gous reference) or 1 − θ to 1 for a homozygous alternate genotype, and the remaining probability was allocated 
to the heterozygous genotype. The value of θ depended on the amount of noise in the data (which was difficult 
to measure), and we used θ = 0.3. We assigned a genotype by choosing the one with the highest probability.

Smoothing genotypes.  Due to the low read depth frequently seen in scRNA-Seq, most genotype calls 
were supported by few reads and were therefore uncertain. To improve the reliability of the calls, we adopted 
a smoothing strategy where we borrowed information from similar cells. We used a kNN approach where we 
identified cells with similar mutation profiles, and then calculated the average of their probability distributions, 
which were determined by read depth.

To find the neighbors of each cell, we used a mutation similarity score between each cell and all other cells. 
To calculate this score, we started by estimating the probability distribution over the three genotypes for each 
cell and site using the beta-binomial distribution, as described above. Then, for each cell, we sampled from the 
distribution for each site to yield a randomly simulated profile of the genotypes. To score the similarity of the 
genotype profiles between two cells, we used a Jaccard index (the percent of sites with the same genotype). The 
final similarity score between a pair of cells was the average Jaccard index over 100 samplings.

Using the pairwise similarity scores of each cell, we chose the K nearest neighbors for each cell. We smoothed 
the probabilities for each genotype by:

where pi,j,g was the probability that cell i and site j had genotype g (either reference, alternate, or heterozygous). 
Since K was the number of neighbors used for smoothing, it should be less than the size, in cells, of the smallest 
clade of interest.  δ was the fraction of probability mass to assign to the neighbors, and higher δ resulted in more 
smoothing. By default, we used K = 10 and δ = K/(K + 1).

Filtering sites.  Using the reference and alternate allele count matrices, along with the smoothed geno-
type calls, we filtered for high quality sites. In general, we first removed sites that (1) had low overall coverage 
(cells with < 10 reads), (2) had the same base in more than 90% of cells, (3) were located outside chromosomes 
1–22, and (4) were within five nucleotides of another site. Next, we smoothed the genotypes as described above. 
Finally, we kept the 1000 sites with the highest number of reads. We used more forgiving thresholds (removed 
sites where cells had less than five reads, and had the same base in more than 80% of cells) for the CAMA-1 data 
set (see below) because it had relatively poor coverage. For the breast cancer data set, we smoothed genotypes 
using five neighboring cells due to the low number of cells.

For all remaining sites, we annotated the genomic metadata (e.g. genomic region, gene affected, impact on 
protein translation, etc.) using Annovar56.

Generating and analyzing phylogenies.  We formatted the filtered genotype matrix as a FASTA file 
for phylogenetic analysis. Each cell was converted into a sequence record containing the bases at each site. At 
homozygous sites, we used the reference or alternate bases observed in the sequencing data. For heterozygous 
sites, we chose a base other than the reference or alternate arbitrarily.

To model the phylogenetic relatedness of cells, we used BEAST2 with a relaxed log-normal clock model 
(RLN), generalized time-reversible site model (GTR) and Yule tree priors. The babette R package was used to 
construct models and interface with BEAST257. We ran each Markov chain Monte Carlo (MCMC) chain for 
at least 100 million iterations and added iterations if convergence was not seen in the predicted phylogenies as 
visualized by a densitree, or by a plateau in the posterior probability of the model. We also monitored the muta-
tion probabilities and rates. We summarized the model as a maximum clade credibility (MCC) tree.

Beta(α,β) =
pα−1

(
1− p

)β−1

B(α,β)
for 0 ≤ p ≤ 1

p̂i,j,g = (1− δ)pi,j,g + δ

∑
k pk,j,g

K
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Phylogenetic and phenotypic measurements.  The heritability of cancer traits was measured by the 
phenotypic resemblance of closely related cells. To characterize the phenotype of the cancer cells, we performed 
ssGSEA (single-sample gene set enrichment analysis)45,58 to obtain signature scores of the Hallmark pathways 
from the Molecular Signatures Database45,59. The pathway scores were normalized using a zero-inflated negative 
binomial model to account for the zero inflated (dropout) and over-dispersed read count data60. For each of the 
50 Hallmark ssGSEA pathways, we used Pagel’s λ measure of phylogenetic signal to quantify the association 
between the pathway scores and the phylogenetic structure. This measure of phylogenetic heritability was calcu-
lated using the phylosig function in the Phytools R package61.

We also defined the phenotype signal as the ability to distinguish evolutionarily divergent cancer geno-
types (known resistant and sensitive lineages) based on their RNA expression profiles (without mutation profile 
information). We quantified this by performing a UMAP clustering of the transcriptomic profile of all cells and 
used the adjusted random index to measure the distinctness of the phenotype of the genotypes using the adjust-
edRandIndex function implemented in the R package GeometricMorphometricsMix.

Evolutionary diversity.  The evolutionary diversity within a group of cells was measured by their mean 
pairwise (cophenetic) distance (MPD) across the phylogeny. The difference in evolutionary diversity of multiple 
groups of cancer cells (e.g. pre- vs post-treatment samples) was measured by the standardized effect size (SES) of 
the MPD within each group of cells, and was calculated using the ses.mpd function in the R package picante62. 
This identified samples with significantly more or less evolutionary diversity than would be expected by chance 
by randomly sampling from the phylogeny using a bootstrap permutation test.

Gene expression analyses.  For the CAMA-1 validation dataset, we identified the genes that distinguished 
drug resistant and sensitive cells so that we could verify that phylogenetic reconstruction was still possible after 
removing this phylogenetic signal. The expression profiles of the CAMA-1 single cells were processed using 
Seurat63. The count matrix was normalized using the LogNormalize method and the 3000 most variable genes 
(selection.method = vst) were identified. Principal component analysis (PCA) of the variable genes provided 50 
principal components and UMAP (uniform manifold approximation and projection) further reduced the data 
into 10 dimensions. Next, the cells were clustered with SNN (shared nearest neighbors) in 10 dimensions with 
resolution = 0.5. Finally, we identified genes with log fold change > 0.05 between resistant and sensitive cells and 
are expressed in > 5% of cells. We removed these differentially expressed genes and verified by visualization in 
a UMAP plot that this lenient fold change cutoff led to the elimination of the differences in the gene expression 
profiles of the resistant and sensitive CAMA-1 cells.

Data availability
No new data sets were created for this study. The data sets analyzed are available in the Gene Expression Omnibus 
under GSE193278 (CAMA1 data set), GSE142750 (N87 data set), GSE110499 (MM16 and MM34 data sets); and 
the European Genome-phenome Archive under EGAS00001002436 (ER + BRCA data set). PhylinSic is available 
as a Snakemake pipeline on GitHub: https://​github.​com/​U54Bi​oinfo​rmati​cs/​Phyli​nSic_​Proje​ct/.
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