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Expression quantitative trait methylation (eQTM) analysis identifies DNA CpG sites at which
methylation is associated with gene expression. The present study describes an eQTM resource of
CpG-transcript pairs derived from whole blood DNA methylation and RNA sequencing gene expression
datain 2115 Framingham Heart Study participants. We identified 70,047 significant cis CpG-transcript
pairs at p<1E-7 where the top most significant eGenes (i.e., gene transcripts associated with a CpG)
were enriched in biological pathways related to cell signaling, and for 1208 clinical traits (enrichment
false discovery rate [FDR] < 0.05). We also identified 246,667 significant trans CpG-transcript pairs

at p<1E-14 where the top most significant eGenes were enriched in biological pathways related to
activation of the immune response, and for 1191 clinical traits (enrichment FDR < 0.05). Independent
and external replication of the top 1000 significant cis and trans CpG-transcript pairs was completed
in the Women'’s Health Initiative and Jackson Heart Study cohorts. Using significant cis CpG-transcript
pairs, we identified significant mediation of the association between CpG sites and cardiometabolic
traits through gene expression and identified shared genetic regulation between CpGs and transcripts
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associated with cardiometabolic traits. In conclusion, we developed a robust and powerful resource
of whole blood eQTM CpG-transcript pairs that can help inform future functional studies that seek to
understand the molecular basis of disease.

DNA methylation is an epigenetic modification characterized by the transfer of a methyl group onto DNA
cytosine-phosphate-guanine (CpG) sites that can regulate gene expression. The extent of DNA methylation at
specific CpG sites is associated with phenotypic variation in numerous traits including cardiovascular disease-
related traits' such as body mass index (BMI)?, blood lipids®, glycemic traits*, blood pressure®, and inflamma-
tory biomarkers®. Expression quantitative trait methylation (eQTM) analysis identifies CpG sites that display
methylation-related associations with expression of nearby (cis) or remote (trans) genes. While prior eQTM
studies using commercial arrays for gene expression profiling have revealed associations between DNA meth-
ylation and gene expression that are linked to clinical disease, many of these studies are limited by small sample
size and focus on specific disease phenotypes'”~.

To generate a resource of eQTM CpG-transcript pairs, we use array-based DNA methylation data and RNA
sequencing (RNA-seq) gene expression data in over 2000 Framingham Heart Study (FHS) participants to pre-
cisely examine the association between whole blood DNA methylation and gene expression. We posit that
leveraging RNA-seq will increase the power, precision, and relevance of our eQTM analyses beyond what was
possible with previous array-based gene expression studies”’. Use of RNA-seq gene expression data also provides
an opportunity to interrogate DNA methylation in relation to long non-coding RNAs (IncRNAs) and explore
their possible contributions to clinical disease!"'%.

The primary aims of this study were to test the associations of DNA methylation with genome-wide gene
expression and to create a resource of whole blood eQTM CpG-transcript pairs to facilitate new insights into dis-
ease pathways and processes. As proof of principle, we evaluated the associations of eQTM CpG-transcript pairs
with cardiovascular traits and provide examples of how these eQTM resources can be used in future research.

Results

An overview of the study design is presented in Fig. 1. Of 2115 FHS participants (48% women, age 54+ 15 years)
included in the eQTM analysis, 686 were from the FHS Offspring cohort and 1,429 were from the FHS Third
Generation cohort (Table 1). The average BMI was 28.0 + 5.6 kg/m?, while the average serum triglycerides con-
centration was 114 + 78 mg/dL. Average fasting blood glucose concentration was 100+ 21 mg/dL.

Gene-level eQTM results. We defined cis CpG-transcript pairs as those where the CpG site and transcrip-
tion start site were within 1 Mb of one another. We identified 70,047 significant cis CpG-transcript pairs (33,385
unique CpGs; 8534 unique eGenes) at p < 1E-7; the top 10,000 most significant cis CpG transcript pairs are pre-
sented in Supplemental Table 1. The majority (49,280; 70%) of the significant cis CpG-transcript pairs involved
transcripts of protein-coding genes, while seven percent (4971) were annotated to IncRNAs. The 8534 unique
eGenes corresponded to 6693 unique lead CpGs, i.e. the CpG site that is most significantly associated with that
eGene in an eQTM CpG-transcript pair. DNA methylation of the lead CpG site was associated with increased cis
expression of 2909 (34%) eGenes, and with decreased cis expression of 5625 (66%) eGenes.

We additionally defined trans CpG-transcript pairs as those where the CpG site and transcription start
site were > 1 Mb from one another, and we identified 246,667 significant trans CpG-transcript pairs (12,637
unique CpGs, 4300 unique eGenes) at p < 1E—14; the top 10,000 most significant trans CpG-transcript pairs are
presented in Supplemental Table 2. The majority (210,944; 86%) of the significant trans CpG-transcript pairs
involved transcripts of protein-coding genes, and 11,271 (5%) involved expression of IncRNAs. The 4300 unique
eGenes identified corresponded with 1139 lead CpGs. DNA methylation of the lead CpG site was associated with
increased trans expression of 1566 (36%) eGenes, and with decreased trans expression of 2734 (64%) eGenes.
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Figure 1. Overview of study design.
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Total sample (n=2115) | Offspring (n=686) | Third generation (n=1429)
Age, years 54+15 66+8 45+8
Sex, n(%) female 1,010 (48%) 323 (47%) 687 (48%)
BMI, kg/m2 28.0+5.6 28.4£5.6 27.8+5.6
Waist circumference, inches 38.6+5.9 39.7+5.8 38.0£5.9
Current smoking, n (%) 151 (7%) 32 (5%) 119 (8%)
Alcohol intake, g/day 10+15 7+14 11+15
Systolic blood pressure, mmHg 120+ 16 128+16 11614
Diastolic blood pressure, nmHg 74+10 74+10 74+ 10
Fasting blood glucose, mg/dL [mmol/L] 100+21 [5.53+1.17] 106+20 [5.9+1.1] 97+22 [5.4+1.2]
Diabetes, n (%) 86 (4%) 41 (6%) 45 (3%)
LDL cholesterol, mg/dL 102+31 107 +31 104+30
HDL cholesterol, mg/dL 60+18 58+19 60+17
Total cholesterol, mg/dL 185436 188+36 186+35
Serum triglycerides, mg/dL 114+78 119+70 113£83
White blood cell count, predicted 6.0+1.6 6.1+1.2 6.0+1.5
Platelet count, predicted 241+56 252+36 246.8+51.1
Neutrophil percent predicted 59.5+7.8 59.3+7.3 58.7+7.5
Lymphocyte percent predicted 27.8+7.1 27.6+7.0 28.8+6.7
Monocyte percent predicted 8.8+2.1 9.2+1.8 8.7+2.0
Eosinophils percent predicted 3.1+1.8 3.1+16 3.0+1.7
Basophils percent predicted 0.75+0.37 0.78+0.21 0.81+0.36

Table 1. Characteristics of FHS participants.

A QQ plot comparing observed to expected p-values across all cis and trans CpG-transcript pairs is presented
in Supplemental Fig. 1, showing an abundance of significant results and no genomic inflation (inflation A =0.998).

Gene-level eQTM internal validation. To conduct internal validation, we divided our total sample into
two equal-sized subsets: the first included all participants who had DNA methylation assayed by the 450 K plat-
form (discovery n=1045), and the second included participants who had DNA methylation assayed by the EPIC
platform (validation n=1070). This internal validation analysis identified 40,148 significant cis CpG-transcript
pairs in the discovery 450 K samples at p < 1E-7. Of these, 79% (31,840 CpG-transcript pairs) were significant in
the validation EPIC platform at a Bonferroni-corrected p-value <0.05/40,148. We also identified 241,323 trans
CpG-transcript pairs in the discovery sample at p < 1E-14, and of these, 31% (74,405 CpG-transcript pairs) were
significant in the validation EPIC platform at a Bonferroni-corrected p-value<0.05/241,323.

Replication of CpG-transcript pairs. A recent eQTM analysis of nasal epithelial cells by Kim et al.! iden-
tified 16,867 significant CpG-transcript pairs using the [llumina HumanMethylation450K methylation data and
RNA-seq gene expression data. We mapped 8481 CpG sites and 3331 gene transcripts to those included in our
eQTM analyses, which corresponded to 15,158 CpG-transcript pairs that we subsequently compared with our
significant cis and trans eQTM results. Of these, 1192 of 2703 (44%) cis CpG-transcript pairs replicated in our
study at p < 1E-7 with matching effect directionality. In contrast, only 41 of 6,165 (0.67%) trans CpG-transcript
pairs identified in Kim et al. replicated in our study at p < 1E-14 with matching effect directionality.

For the most significant cis and trans CpG-transcript pairs, we identified the top 1000 most significant unique
eGenes and their lead CpG. We evaluated these pairs for replication in two independent external cohorts: a
cohort of 1248 participants with European ancestry (EA), African ancestry (AA), and Hispanic ancestry (HA)
from the Women’s Health Initiative (WHI), and a cohort of 521 Black participants from the Jackson Heart Study
(JHS). Replication results for cis CpG-transcript pairs in both cohorts are presented in Supplemental Table 3,
while replication results for trans CpG-transcript pairs in both cohorts are presented in Supplemental Table 4.

In the WHI, all but one of the 1000 cis CpG-transcript pairs from discovery in FHS replicated at a nominally
significant p-value of 0.05 with matching effect directionality, while 997 replicated at p < 1IE-7 with matching
effect directionality. Furthermore, 973 of 1000 trans CpG-transcript pairs from FHS discovery replicated at a
nominally significant p-value of 0.05 with matching effect directionality, while 926 trans CpG-transcript pairs
replicated at p < 1E-14 with matching effect directionality.

In the JHS, 697 of 820 (85%) cis CpG-transcript pairs from FHS discovery replicated at a nominally significant
p-value of 0.05 with matching effect directionality, while 455 (55%) replicated at p < 1IE-7 with matching effect
directionality. Furthermore, 722 of 880 (82%) trans CpG-transcript pairs from FHS discovery replicated at a
nominally significant p-value of 0.05 with matching effect directionality, while 228 (26%) replicated at p < 1E-14
with matching effect directionality.
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Gene ontology. We evaluated gene ontology terms to identify specific biological and cellular pathways
that were enriched among the top 1000 unique cis and trans eGenes'>'*. The top 1000 unique cis eGenes were
enriched in 33 pathways related to cell signaling and adhesion at a false discovery rate (FDR) <0.05 (Supplemen-
tal Table 5). The top 1000 unique trans eGenes were enriched in 582 pathways related to the activation of the
immune response (Supplemental Table 6).

GWAS enrichment. We examined the overlap of the significant eQTM CpG-transcript pairs with gene-
trait associations in the National Human Genome Research Institute (NHGRI)-European Bioinformatics Insti-
tute (EBI) GWAS catalog®®. Using lead eQTL genetic variants for eQTM transcripts in enrichment analysis, the
cis eGenes were enriched for genes associated with 1208 traits in the GWAS catalog at an enrichment FDR <0.05
(Supplemental Table 7). The trans eGenes were enriched for genes associated with 1191 traits in the GWAS
catalog at an enrichment FDR<0.05 (Supplemental Table 8).

Genomic feature enrichment. We evaluated enrichment of the CpG sites included in significant CpG-
transcript pairs for 17 specific genomic features, including CpG islands, shores, bodies, and differentially meth-
ylated regions (DMRs). Significant cis CpG-transcript pairs were significantly enriched for 15 of 17 genomic fea-
tures at an enrichment FDR <0.05 (Supplemental Table 9), with the top most significant features being upstream
CpG shores, CpG islands, downstream CpG shores, DNase hypersensitivity sites (DHS), and gene bodies. Sig-
nificant trans CpG-transcript pairs were significantly enriched for 13 of 17 genomic features at an enrichment
FDR <0.05 (Supplemental Table 10), with the top most significant features being CpG islands, DHS, gene bodies,
regions within 200 bases upstream of the transcription start site (TSS), and enhancers.

eQTM CpG-transcript associations. To illustrate the association between DNA methylation at specific
CpG sites and gene expression, we identified the top five most significant cis CpG-transcript pairs and the top
five most significant trans CpG-transcript pairs and plotted the associations for each pair (Supplemental Figs. 2
through 11). In general, these figures show a negative association between DNA methylation and gene expres-
sion; the only CpG-transcript pair to show a positive association is the trans relationship between methylation
at cg13704117 (KIAA1267) and expression of ENSG00000214425.7 (LRRC37A4P) (Supplemental Fig. 11). The
CpG-transcript associations in Supplemental Figs. 6, 6, and 8 exhibit bimodal distributions that were not attrib-
utable to any nearby SNPs (i.e., within 100 bp) in conditional analysis. rs115687047, located near cg04071440, did
not contribute to the bimodality of its cis association with ENSG00000204644.9 (ZFP57) shown in Supplemental
Fig. 4 (p=0.15). rs72989301, located near cg17901463 (GSTM1), was significantly associated with expression of
ENSG00000134184.12 (GSTM1) (p=1.2E-26), but a significant cis association between the CpG and transcript
remained (p < 1E-308) as shown in Supplemental Fig. 6. Finally, the SNPs rs1619178 and rs3113782 are located
near ¢g20262684 and have a linkage disequlibrium of 1; they did not contribute to the bimodality of its trans
association with ENSG00000185304.15 (RGPD2) shown in Supplemental Fig. 8 (p=0.75).

eQTM CpG-transcript pairs in mediation analysis of cardiometabolic traits. To illustrate the
application of the eQTM resource we generated, we provide examples from the associations of significant cis
CpG-transcript pairs with three cardiometabolic traits: serum triglycerides, fasting blood glucose, and body
mass index (BMI). Specifically, we first evaluated the mediated effect of DNA methylation on the clinical phe-
notype through the expression of the linked eGene. To identify candidate CpG-transcript pairs to include in
mediation analysis, we identified (1) the overlap of significant cis CpG sites with published CpG-trait associa-
tions from the MRC Integrative Epidemiology Unit (IEU) EWAS catalog (http://www.ewascatalog.org/)'¢, and
(2) significant results from de novo transcriptome-wide association studies (TWAS) of RNA-seq gene expres-
sion data and log-transformed serum triglycerides, fasting blood glucose, and BMI in the FHS. The strategy
of aligning trait-associated CpGs with corresponding trait-associated transcripts identified 14 CpG-transcript
pairs associated with serum triglycerides, 36 associated with fasting glucose, and 153 associated with BMI. These
pairs and their corresponding traits were then tested for the following mediation effects: (1) the total effect of
DNA methylation on the cardiometabolic trait, (2) the direct effect of DNA methylation on the cardiometabolic
trait independent of gene transcript expression, and (3) the mediated effect of DNA methylation on the cardio-
metabolic trait through gene transcript expression. Results are summarized in Supplemental Table 11. As an
example, Fig. 2 illustrates significant mediation of the effects of DNA methylation at the CpG site cg11024682
on serum triglycerides, fasting blood glucose, and BMI via expression of the SREBFI gene. The proportion of
the association between DNA methylation and the three cardiometabolic traits mediated by SREBFI expression
ranged from 0.16 to 0.36.

Gene transcript expression mediated the effect of DNA methylation on serum triglycerides (log-transformed)
for ten of the 14 CpG-transcript pairs. Significant mediation of DNA methylation on gene expression was
observed for the expression of RNASET2, SREBF1, ABCG1, and TOMIL2 at p<0.05.

Gene transcript expression significantly mediated the effect of DNA methylation on fasting blood glucose
for 24 of the 36 CpG-transcript pairs, of which six had direct and mediated effects in opposite directions (e.g., a
negative direct effect and a positive mediated effect). The greatest proportions of the CpG-fasting glucose asso-
ciations mediated by gene expression (p <2E-16 for all) were observed for the expression of KLRFI (proportion
mediated=0.87), TRAPPC2B (proportion mediated =0.82), NKIRAS2 (proportion mediated=0.74), and RRP12
(proportion mediated =0.52).

Finally, gene transcript expression significantly mediated the effect of DNA methylation on BMI for 117
of the 153 CpG-transcript pairs, of which 55 had direct and mediated effects in opposite directions. For the
CpG-transcript pairs where the direct and mediated effects were in the same direction, the greatest proportions
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cg11024682 0.33 (p<0.001) Serum triglycerides
SREBF1I (log(mg/dL))
-0.62 (p<0.001) ENSG00000072310.16 -0.16 (p<0.001)
SREBFI
cgl1024682 0.55 (p<0.001) | Fasting glucose
SREBFI (mmol/L)
-0.62 (p<0.001) ENSG00000072310.16 -0.50 (p<0.001)
SREBF1
cg11024682 3.47 (p<0.001) BMI
SREBFI (kg/m?)
-0.62 (p<0.001) ENSG00000072310.16 -1.05 (p<0.001)
SREBF1

Figure 2. Pathways showing cis mediated effects of DNA methylation at cg11024682 on serum triglycerides,
fasting blood glucose, and BMI through the expression of SREBFI. The effects of DNA methylation at the

CpG site cg11024682 on all three cardiometabolic traits of interest are mediated through cis effects on SREBF1I
expression. Coeflicients presented in the figure represent the change in gene expression associated with a 10%
increase in DNA methylation; the change in serum triglycerides (log(mg/dL)), fasting blood glucose (mmol/L),
or BMI (kg/m?) associated with a 10% increase in DNA methylation; or the change in serum triglycerides
(log(mg/dL)), fasting blood glucose (mmol/L), or BMI (kg/m?) associated with a 1-unit increase in gene
expression.

of the CpG-BMI associations mediated by gene expression (p <2E-16 for all) were observed for the expres-
sion of TSPYLI (proportion mediated =0.98), PLD3 (proportion mediated = 0.94), and FAS (proportion medi-
ated =0.80). Additionally, two CpG-transcript pairs showed significant mediation of the CpG-BMI association
through expression of IncRNA genes BX284668.5 and LINC00996.

eQTM CpG-transcript pairs in colocalization analysis of cardiometabolic traits. We conducted a
Bayesian colocalization analysis to evaluate whether the cis-CpG-transcript eQTM pairs associated with serum
log triglycerides, fasting blood glucose, and BMI were regulated by shared genetic variants. The MRC IEU EWAS
catalog was used to identify CpG sites associated with each of the clinical phenotypes of interest, and three
sources of data were used for colocalization analysis (Fig. 3). Among significant serum triglycerides-associated
CpG sites identified in the MRC IEU EWAS catalog, 15 overlapped with CpGs from significant cis CpG-tran-
script pairs where the CpG and gene transcript also shared at least one SNP (i.e., the eQTL variant for the tran-
script matched the mQTL variant for its paired CpG). Colocalization results for the 15 cis eQTM CpG-transcript
pairs, which included 12 unique CpG sites associated with 4876 significant cis-mQTL variants and 11 unique
gene transcripts associated with 6,327 significant cis-eQTL variants, are presented in Supplemental Table 12.
The probability of colocalization H4>80% was observed between the CpG and transcript SNPs for ten eQTM
CpG-transcript pairs. The SNP rs7215055 was associated with serum triglycerides'” and was also associated
with methylation of CpG cg11024682 and expression of gene ATPAF2 (probability of colocalization H4 =100%).

Among significant fasting glucose-associated CpG sites identified in the MRC IEU EWAS catalog, 138 over-
lapped with CpGs from significant cis-CpG-transcript pairs where the CpG and gene transcript also shared at
least one SNP. Colocalization results for the 138 cis-eQTM CpG-transcript pairs, which included 109 unique
CpG sites associated with 38,758 significant cis-mQTL variants and 172 unique gene transcripts associated with
100,546 significant cis-eQTL variants, are presented in Supplemental Table 13. Probability of colocalization >80%
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Figure 3. Overview of approach to combining eQTM results with other data sources for clinical and
translational applications.

was observed between the CpG and transcript SNPs for 51 eQTM CpG-transcript pairs. There was no overlap
of SNPs identified in a GWAS of fasting glucose'® with both mQTL and eQTL variants for CpG-transcript pairs,
thus further colocalization analyses were not carried out for this trait.

Finally, among significant BMI-associated CpG sites identified in the MRC IEU EWAS catalog, 207 overlapped
with CpGs from significant cis CpG-transcript pairs where the CpG and gene transcript also shared at least one
SNP. Colocalization results for the 207 cis-eQTM CpG-transcript pairs, which included 134 unique CpG sites
associated with 82,823 significant cis-mQTL variants and 182 unique gene transcripts associated with 232,511
significant cis-eQTL variants, are presented in Supplemental Table 14. Probability of colocalization > 80% was
observed between the CpG and transcript for 67 eQTM CpG-transcript pairs. The SNPs rs3817334, rs10838738,
and rs1064608, which were associated with BMI", were also mQTL genetic variants associated with the CpG
cg17580616 and eQTL genetic variants associated with the gene ACP2 (probability of colocalization H4=100%).

Discussion

Our study of DNA methylation in relation to gene expression in 2115 FHS participants identified over 70,000
significant cis CpG-transcript pairs and over 246,000 significant trans CpG-transcript pairs. We generated a
comprehensive database of whole blood cis and trans eQTM CpG-transcript pairs that can be used to investigate
disease mechanisms, pathways, and processes. We previously evaluated eQTM CpG-transcript pairs in the FHS
using the Illumina 450 K DNA methylation array in conjunction with array-based gene expression data’. The
present study expands on this prior work by incorporating more extensive DNA methylation profiling (Illumina
EPIC DNA methylation array) and RNA-seq expression, resulting in a powerful resource for capturing associa-
tions between DNA methylation and gene expression. Not only did we identify four times as many cis-eQTM
CpG-transcript pairs (70,047 vs. 16,416) and 24% more trans-pairs (246,667 vs. 198,960) than we previously
identified using array-based gene expression data’, but we also provide eQTM CpG-transcript pairs for the
expression of IncRNAs.

DNA methylation can alter the regulation of gene transcription in multiple ways, such as aiding in the recruit-
ment of proteins involved in increasing gene expression or inhibiting transcription factor binding to a specific
DNA sequence. At promoter sites, DNA methylation generally precludes transcription directly by blocking the
binding of transcriptional activators or indirectly by recruiting methyl-binding proteins and co-repressor com-
plexes. In this study, we used eQTM analysis to identify numerous CpG sites that, when methylated, are associated
with cis and trans eGene expression. Associations between SNPs and DNA methylation (i.e., mQTL associations)
may contribute to bimodal distributions in eQTM CpG-transcript associations, many of which were not attribut-
able to any nearby SNPs (i.e., there was no evidence of SNP-on-CpG effects® contributing to bimodality). Indeed,
conditional analyses of nearby SNPs on select associations showed that the CpG-transcript associations are still
highly significant. Furthermore, to showcase the potential clinical utility of our findings, we evaluated the role
of our eQTM resource when applied to the analysis of three cardiometabolic risk factors—serum triglycerides,
fasting blood glucose, and BMI—in mediation and colocalization analyses. We illustrate specific examples of
how the eQTM resource can be used to suggest molecular mechanisms linking DNA methylation to clinical
phenotypes: Mediation analyses identified putative pathways by which DNA methylation is associated with
clinical traits in EWAS, and colocalization analysis suggested shared genetic regulation of CpGs, transcripts, and
clinical traits. For example, the results of our mediation analysis showed that expression of the genes ABCGI and
SREBFI mediates the association between DNA methylation and all three clinical traits.

While the eQTM resource we created is robust and highly replicable, several limitations must be noted.
First, FHS is an observational study consisting of participants of predominantly European ancestry; however,
we provide evidence of substantial independent external replication of these results, including among individu-
als with African ancestry from the JHS. Second, while the use of DNA methylation and gene expression data
derived from whole blood samples makes our methods more accessible and more easily replicated in other study
cohorts, evaluation of CpG-transcript pairs in other tissues may be more relevant to specific disease processes.
Additionally, these analyses do not account for linkage disequilibrium and other factors that may correlate
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proximal CpGs with one another. Finally, this study does not examine the effect of environmental factors on
these associations; lifestyle factors such as cigarette smoking are known to affect DNA methylation and gene
expression”?'~%, Future eQTM research may incorporate environmental data to better understand the epigenetic
effects of environmental exposures.

Conclusions

We created a powerful eQTM resource that leverage DNA methylation and RNA-seq data to characterize asso-
ciations of DNA methylation with gene expression. We provide proof of concept that eQTM resources can be
leveraged to explore molecular mechanisms of disease.

Methods

Cohort description. DNA methylation and RNA-seq data were collected from 2115 participants in the FHS
Offspring (n=686) and Third Generation (n=1429) cohorts. Peripheral whole blood samples were collected in
the fasting state at the ninth examination cycle from FHS Offspring participants (2011-2014)* and at the second
examination cycle (2006-2009)* from FHS Third Generation participants. All study protocols were approved
by the Boston Medical Center Institutional Review Board and performed in accordance with the Declaration of
Helsinki and relevant regulations, and all study participants provided their written informed consent.

DNA methylation data collection. Buffy coats were isolated from whole blood samples and prepared
with bisulfite conversion for the DNA methylation assays. Samples from 1045 FHS Third Generation partici-
pants were assayed for DNA methylation using the Infinium HumanMethylation450 BeadChip (Illumina Inc.,
San Diego, CA). Samples from the remaining 384 FHS Third Generation participants and all FHS Offspring
participants were assayed for DNA methylation using the Infinijum MethylationEPIC BeadChip (Illumina Inc.,
San Diego, CA). Methylation probes on autosomal chromosomes were analyzed while probes containing poly-
morphic SNPs were excluded.

DNA methylation data pre-processing. DNA methylation data were pooled across both the Human-
Methylation450 and the MethylationEPIC platforms, which shared 452,568 CpG loci. In addition to the data
captured at these loci, samples assayed by the HumanMethylation450 platform had methylation data for 32,945
additional CpG sites, while those assayed by the MethylationEPIC platform had methylation data for 413,524
additional CpG sites.

Quality control (QC) and normalization were performed on the DNA methylation P values using the “dasen”
function in the R wateRmelon package (version 1.16.0)%. Normalized { values were then residualized after
accounting for batch effects, row effects, column effects, and four PCs constructed from the normalized p val-
ues. These residualized B values were subsequently winsorized at the mean + 3 * standard deviation (SD) of the
distribution for each probe.

Ten principal components (PCs) representing technical confounders were identified from the winsorized
residuals. These ten PCs and the winsorized  values representing the proportion of methylation per CpG locus
were subsequently used in statistical analyses.

RNA-seq data collection. Whole blood samples were collected in PAXgene tubes (PreAnalytiX, Hombre-
chtikon, Switzerland). Isolation of total RNA was performed according to standard protocols (Asuragen, Inc.,
Austin, TX) using the PAXgene Blood RNA System Kit as described previously?”?® RNA-seq was performed in
accordance with TOPMed protocols (University of Washington Northwest Genomics Center), and the mRNA-
seq library was generated using the Illumina TruSeq (Illumina Inc., San Diego, CA). Stranded mRNA kit and
sequencing was performed using the Illumina NovaSeq system (Illumina Inc., San Diego, CA). Gene expression
was evaluated using RNA SeQC version 2.3.3* and transcript expression was evaluated using RSEM version
1.3.1°%.

RNA-seq data pre-processing. Gene expression data were normalized using the trimmed mean of
M-values (TMM) approach in the R edgeR package’®'. A log2 transformation was applied to the TMM-nor-
malized values after addition of 1 unit to avoid taking log of zero. This normalized gene expression value was
residualized to account for batch effects, RNA concentration, and RNA integrity number.

Statistical methods: eQTM analysis. We identified PCs from the residualized DNA methylation and
gene expression data and performed an extensive search of the number of PCs to optimize the cross-validated
replication of the CpG-transcript pairs. This study identified ten PCs for the DNA methylation data (percent of
variation 53.7%) and five PCs for the gene expression data (percent of variation 51.6%).

We then calculated the association between gene-level CpG sites and gene transcripts to identify significant
eQTM CpG-transcript pairs. For each CpG-transcript pair, residualized gene expression was modeled as the
outcome with residualized DNA methylation { values as the primary explanatory variable. These models were
adjusted for age, sex, white blood cell count, blood cell fraction®, platelet count, five gene expression PCs, and
ten DNA methylation PCs. Each CpG-transcript pair association was calculated individually according to this
model, which was repeated for each pair using Graphical Processing Units (GPUs) to accelerate computation.
Cis gene-level CpG-transcript pairs were defined as those where the CpG site and the eGene (i.e., the gene tran-
script associated with the CpG) were within 1 Mb kb of one another and were deemed statistically significant at
a Bonferroni-corrected p-value of 1E-7%. Trans pairs were defined as those where the CpG site and the eGene
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were more than 1 Mb apart. While an estimated Bonferroni p-value cutoft of 1IE-7/50,000 gene transcripts was
calculated, we deemed trans pairs as statistically significant at a stricter p-value of 1E-14 to reduce noise and
false positives based on an examination of the genomic positions of CpG sites and gene transcripts. This p-value
threshold optimized the tradeoff between the replication rate and the number of significant pairs. Results were
annotated to the Illumina CpG reference database** and to GENCODE 30.

Replication of CpG-transcript pairs. In this study, we evaluated replication of the CpG-transcript eQTM
pairs identified in two ways. First, we evaluated the overlap of significant cis and trans CpG-transcript pairs with
arecent eQTM study that identified 16,867 significant CpG-transcript pairs in nasal epithelial cells (FDR <0.01).
Second, we identified the top 1000 most significant lead CpG sites and their associated eGenes and tested those
eQTM pairs for statistical significance in two external and independent study cohorts: the Women’s Health
Initiative (WHI) and the Jackson Heart Study (JHS). Both study cohorts completed analyses using DNA meth-
ylation data from the Infinium MethylationEPIC Beadchip (Illumina Inc., San Diego, CA) array processed
in TOPMed. Background correction and normalization was done using the normal-exponential out-of-band
(NOOB) method in the R minfi package®*. Additionally, both study cohorts used estimated count gene expres-
sion data from RNA-SeQC? from the TOPMed RNA-seq processing pipeline.

Replication cohort: WHI.  The WHI is a large prospective study of 161,808 postmenopausal women who
enrolled into one of two study components between 1993 and 1998: the clinical trial of hormone therapy, cal-
cium/vitamin D supplementation, and/or dietary modification, and the observational study. The present study
included DNA methylation and RNA-seq data from 1248 WHI participants (818 with European ancestry, 338
with African ancestry, and 92 with Hispanic ancestry) who completed the Long Life Study follow-up examina-
tion between March 2012 and May 2013. All participants provided their written informed consent. Data clean-
ing was completed by self-reported race and ethnicity and the eQTM models were adjusted for age at sample
collection, race/ethnicity, directly measured CBC counts, 10 expression PCs, and 15 methylation PCs.

Replication cohort: JHS. The JHS is a population-based cohort study of cardiovascular risk factors and
disease in 5306 African Americans. The present replication study included DNA methylation and RNA-seq data
from 521 JHS participants. All participants provided written informed consent to use of genetic data.

Whole blood samples from the JHS baseline examination were assayed for DNA methylation using the EPIC
array as previously described®”. The COMBat method?® was used to correct the normalized DNA methylation
B values for batch effects.

RNA-seq data from peripheral blood mononuclear cells (PBMCs; average read depth of 50M, University of
Washington Northwest Genomics Center (NWGC)) were selected based on expression thresholds of 0.1 tran-
scripts per million (TPM) and 6 expected read counts from RSEM version 1.3.1*" in at least 20% of samples. Gene
expression values were inverse normal transformed across samples and probabilistic estimation of expression
residuals (PEER) was used to generate 10 factors. Gene expression data was subsequently adjusted using age,
sex, the top 10 JHS genotype PCs, and the 10 PEER factors.

After QC, 820 of the top 1000 cis CpG-transcript pairs evaluated for replication were available in this cohort;
similarly, 880 of the top 1000 trans CpG-transcript pairs evaluated for replication were available in this cohort.
eQTM analysis was completed for these pairs that passed QC after adjustment for the fixed effects of age, sex,
and CBC, and for family ID as a random effect.

Gene ontology. Entrez gene IDs for the eGenes were included in gene ontology analyses, and we used the
function “goana” in the R package limma™® to identify biological, cellular, and molecular pathways enriched in
the eGenes. Statistically significant pathways were identified at a false FDR<0.05.

GWAS enrichment of clinical phenotypes associated with CpG-transcript pairs. The GWAS
catalog included associations of 243,587 unique SNPs with 2960 unique clinical traits at p<5E—8; SNPs were
mapped to the gene(s) in which they were located. We compiled a list of unique gene transcripts that were part
of statistically significant CpG-transcript pairs, as well as the associations of those genes with clinical phenotypes
in the GWAS catalog. We subsequently used a one-sided Fisher’s exact test to evaluate enrichment for each gene
with each of the 2960 GWAS traits.

Applications of eQTM resource: mediation analysis. Mediation analysis was performed using the
function “mediate” in the R package mediation (version 4.5.0)* to obtain total, direct, and mediated effects. This
analysis provided the proportion of the total effect of the DNA methylation on the clinical phenotype mediated
through gene expression. Results were divided by a factor of ten to obtain the effects associated with a 10%
increase in DNA methylation of a CpG.

RNA-seq gene expression data for TWAS were residualized after adjustment for technical covariates and
pedigree. All TWAS were then adjusted for age, sex, smoking status, alcohol use, white blood cell count, and
predicted blood cell fraction®. The TWAS of serum log triglycerides was additionally adjusted for BMI and use
of lipid medications, and the TWAS of fasting glucose was additionally adjusted for BMI and diabetes status.
Diabetes status was defined as a fasting glucose concentration > 126 mg/dL or use of diabetes medications.

Applications of eQTM resource: colocalization analysis. For the CpG-transcript pairs evaluated
in colocalization analysis, we used FHS cis mQTL and cis expression quantitative trait loci (eQTL) results to
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identify overlapping single nucleotide polymorphisms (SNPs) associated with the CpG and gene transcript,
respectively. We then evaluated the overlap of cis-SNPs associated with CpG sites (mQTL) and cis-SNPs associ-
ated with gene transcripts (eQTL) with SNPs associated with serum log triglycerides”’, fasting blood glucose'?,
and BMI" in published genome-wide association studies (GWAS). We used the R package coloc (version 5.1.0)*!
to quantify the probabilities (probability of colocalization H4) that a single genetic variant was associated with
both DNA methylation and gene expression (i.e., colocalization of the mQTL and eQTL SNPs) and that a single
genetic variant was associated with both DNA methylation and the clinical trait of interest (i.e., colocalization of
the mQTL and GWAS SNPs).

Data availability

The FHS DNA methylation and RNA-seq datasets analyzed in the current study are available at the database of
Genotypes and Phenotypes (dbGaP) repository phs000007.v32.p13 (https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs000007.v30.p11). JHS data are available on dbGaP at phs000286 (phenotype
data) and phs000964 (TOPMed data). WHI data are available on dbGaP at phs001237.
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