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Machine learning approaches 
that use clinical, laboratory, 
and electrocardiogram data 
enhance the prediction 
of obstructive coronary artery 
disease
Hyun‑Gyu Lee 1, Sang‑Don Park 2, Jang‑Whan Bae 3, SungJoon Moon 4, Chai Young Jung 5, 
Mi‑Sook Kim 6, Tae‑Hun Kim 7 & Won Kyung Lee 8*

Pretest probability (PTP) for assessing obstructive coronary artery disease (ObCAD) was updated 
to reduce overestimation. However, standard laboratory findings and electrocardiogram (ECG) raw 
data as first‑line tests have not been evaluated for integration into the PTP estimation. Therefore, 
this study developed an ensemble model by adopting machine learning (ML) and deep learning (DL) 
algorithms with clinical, laboratory, and ECG data for the assessment of ObCAD. Data were extracted 
from the electronic medical records of patients with suspected ObCAD who underwent coronary 
angiography. With the ML algorithm, 27 clinical and laboratory data were included to identify ObCAD, 
whereas ECG waveform data were utilized with the DL algorithm. The ensemble method combined the 
clinical‑laboratory and ECG models. We included 7907 patients between 2008 and 2020. The clinical 
and laboratory model showed an area under the curve (AUC) of 0.747; the ECG model had an AUC of 
0.685. The ensemble model demonstrated the highest AUC of 0.767. The sensitivity, specificity, and F1 
score of the ensemble model ObCAD were 0.761, 0.625, and 0.696, respectively. It demonstrated good 
performance and superior prediction over traditional PTP models. This may facilitate personalized 
decisions for ObCAD assessment and reduce PTP overestimation.

Overestimation of patients with obstructive coronary artery disease (ObCAD) should be  improved1,2. Less 
than 10% of patients undergoing diagnostic evaluation have ObCAD; the current testing patterns result in up 
to 50–60% normal coronary angiography (CAG) according to the 2021 American Heart Association (AHA) 
 guidelines1. Contemporary pretest probability (PTP), which is based on sex, age, and nature of symptoms, still 
has a low specificity for identifying patients with ObCAD. The Diamond and Forrester (DF) PTP was updated 
to define low-risk patients not requiring additional diagnostic  testing2,3. After PTP estimation, the clinical likeli-
hood can be estimated with the following first-line tests and history of the underlying disease as risk factors for 
ObCAD: standard laboratory biochemical tests, resting electrocardiogram (ECG), chest radiography, resting 
echocardiography in selected patients, and if available, coronary artery computed tomography (CT) scan. Those 
with intermediate likelihood undergo anatomic or functional non-invasive tests based on clinical likelihood, 
patient characteristics, preference, availability, and local  expertise2. Posttest probability is estimated with test 
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results and clinical likelihood. Therefore, the optimal estimation of clinical likelihood could act as a gatekeeper 
to defer a series of diagnostic tests in patients with stable chest pain when the diagnostic yield is low.

Clinical models incorporating ObCAD risk factors, resting ECG changes, and if available, the coronary 
calcification score can improve the identification of patients with ObCAD compared to  PTP2,4–7. According to 
the 2019 European Society of Cardiology guidelines, risk factors for ObCAD such as diabetes, hypertension, 
dyslipidemia, and smoking could be modifiers of  PTP2. In particular, the coronary calcium score from coronary 
artery CT scans was incorporated into the PTP estimate in the 2021 AHA guidelines, despite the incapacity of 
non-calcified atherosclerotic lesions and weak predictors of  ObCAD1. However, risk factors, standard labora-
tory biochemical tests, and resting ECG raw data, which are first-line tests have not been evaluated in terms of 
their contribution to clinical likelihood; therefore, clinical models incorporating these factors have not been 
established, although they should  be4. This may be due to difficulties in the quantification of ECG waveforms 
and the modeling of correlated data with different characteristics.

This study aimed to develop a clinical model with risk factors and laboratory and ECG waveform data using 
machine learning (ML) and deep learning (DL) algorithms. Moreover, the performance of this clinical model 
was evaluated for the assessment of patients with suspected ObCAD.

Methods
Data sources and study population. This study was a retrospective observational study of consecutive 
patients who underwent CAG for suspected ObCAD at the Inha University Hospital, which is a tertiary and 
university teaching hospital with Regional Cardiocerebrovascular Centers (RCCVCs), established by the Min-
istry of Health and Welfare in the Incheon district in South Korea. It was approved by the Institutional Review 
Board of Inha University Hospital (No: 2022-03-012; 14-Mar-2022). The need for informed consent was waived 
due to the retrospective nature of the study and the use of deidentified data. All procedures were conducted in 
accordance with the ethical standards of the institutional and/or national research committee and with the 1964 
Helsinki declaration and its later amendments or comparable ethical standards.

Patients were eligible if they underwent CAG for suspected ObCAD between October 27, 2008, and August 
21, 2020. Those < 18 years, diagnosed with acute myocardial infarction (AMI), or who underwent coronary 
artery bypass grafting were excluded. AMI was defined using diagnostic codes, procedure codes for insurance 
claim, and CAG report.

Data generation. CAG reports and clinical data were extracted from electronic medical records (EMR) 
and ECG waveform data were extracted from the MUSE data management system (GE Healthcare, USA). The 
participants were classified into ObCAD and non-ObCAD groups based on CAG results. ObCAD was defined 
as stenosis with ≥ 50% luminal narrowing of any major vessel on CAG, and non-ObCAD as < 50% narrowing. 
ObCAD was defined to identify patients whose CAG showed clinically significant stenosis of ≥ 50% and those 
who could have benefited from further diagnostic  tests5,8,9.

After extracting the clinical data, the investigators reviewed the literature and reduced dimensionality by 
selecting relevant features and three derived ratios as risk  factors4,5,8–16. After eliminating features with > 30% 
missing values, the final dataset consisted of 27 features: age; sex; body mass index (BMI); systolic blood pressure 
(SBP); diastolic blood pressure (DBP); history of hypertension, diabetes mellitus, dyslipidemia, and smoking; 
laboratory findings [white blood cell count, platelet count, hemoglobin, total cholesterol, triglyceride, HDL-
cholesterol, LDL-cholesterol, eGFR by CKD-EPI, blood urea nitrogen (BUN), creatinine, glucose, hemoglobin 
A1c (HbA1c), aspartate transaminase (AST), alanine transaminase (ALT), and high sensitivity C-reactive protein 
(hs-CRP) levels]; and three ratios (ratio 1, 2, and 3)4.

Supplementary Table 1 lists the selected and excluded features of the current study with data structure. Some 
clinical features were excluded owing to the high missing proportion of data among the clinical features suggested 
to be related to the prediction of or mortality from  ObCAD4,5,8–16. Additionally, the ECG data used in this study 
were not ECG features interpreted by cardiologist, but ECG waveform (signal) data.

The digital, standard 10-s, 12-lead ECG data was acquired in the supine position at a sampling rate of 500 Hz 
using a GE-Marquette machine (Marquette, WI, USA). The ECG was selected in a window of interest; the index 
date and time were defined as the date and time when CAG started, and the window of interest was defined as 
the 7 days before the index date. If the patients had multiple ECG waveforms in the window, the most recent 
ECG waveform was selected. Patients were excluded if they did not have an ECG waveform within the window 
of interest.

For the comparison of data distribution between the ObCAD and non-ObCAD groups, 31 ECG patterns and 
8 quantitative ECG measurements in the machine-provided interpretation were extracted and summarized for 
each  group17. The eight ECG measurements were QRS duration, QT, QTc, PR interval, ventricular rate, and the 
P-, Q-, and T-wave axes. The ECG patterns were classified using the structured statements of machine-provided 
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ECG interpretation based on the standard key phrases in the MUSE data management system. The 8 ECG 
measurements and 31 patterns are listed in Supplementary Table 2. The ECG patterns and measurement, which 
were provided by GE machine, were used for the group comparison, but they were not included in the model.

In this study, we proposed a DL model adopting 1D ResNet for ECG raw data, and an ensemble method to 
combine the ECG DL model and a clinical model. In order to facilitate comparison with our proposed model, 
a predictive model using ECG measurements and GE-provided interpretations was constructed and compared 
with the proposed ECG DL model. Furthermore, the proposed ensemble model, combining ECG DL model and 
clinical models was compared with the ensemble model comprising the clinical model and the predictive model 
using ECG measurements and GE-provided interpretations.

Model framework and computing environment. The framework of this study is illustrated in Fig. 1. 
The developed clinical ML model is an ensemble of LR, LightGBM, and XGBoost using soft-voting, which yields 
the highest predictive performance for clinical data. Subsequently, the final ensemble model was constructed 
using soft-voting of the clinical ML and ECG DL models on a ResNet-based 1D-CNN network, which produced 
the highest performance. The details of each model were provided in the clinical, the ECG and ensemble model 
development. All the experiments were performed on a computer with GeForce RTX 3090 Ti, i9-12900 K CPU, 
64 GB of memory, Python 3.7, and Tensorflow 2.7.

Clinical model development. The clinical data distribution was evaluated and following pre-processing 
techniques were applied: correction and removal of inconsistent values, missing value handling, feature encod-
ing, and standardization. After outliers were defined using data distribution and clinical information, they were 
replaced with missing values for each feature in the clinical dataset. Normalization using Gaussian Rank was 
applied for logistic regression (LR), support vector machine (SVM), LightGBM, and DL. Additionally, a sensitiv-
ity analysis was performed using imputation techniques and the log transformation of the features.

After preprocessing the dataset, five ML algorithms were applied to predict ObCAD based on the clinical 
features: LR, random forest (RF), SVM, LightGBM, and XGBoost. These five algorithms were selected for the 
clinical model because they include techniques to suppress overfitting and they are suitable for structured large-
scale data and capable of improving predictive power. Specifically, XGBoost, LightGBM, and RF are commonly 
used models that could prevent overfitting and increase the generalization of the model by adjusting maximum 
depths and learning rates, and they were known to have high predictive  power18–20. SVM is the ML algorithm that 
could solve nonlinear problems using various kernel techniques and maximize the margin to prevent  overfitting21. 
Additionally, logistic regression is a linear model that allows for easy interpretation of model coefficients and has 
low computational complexity, making it suitable for large  datasets22. To this end, we performed 20 iterations 
of randomized searches on the key hyperparameters of each clinical model. Among the 20 randomly selected 
hyperparameters, we fine-tuned the key hyperparameters for each clinical model to the value that achieved the 
highest AUC in the validation set.

The optimal combination of clinical classifiers that maximized the F1 score was chosen as the selected ensem-
ble output for the clinical ML classifiers (LR, XGBoost, and LightGBM). Initially, we compared the performance 

Figure 1.  Model framework.
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of LR, RF, SVM, LightGBM, and XGBoost models, selecting LightGBM with the highest F1 score. Subsequently, 
the remaining four algorithms were added to the LightGBM model to create two-component ensemble models for 
comparison. Among these, the ensemble model consisting of LR with LightGBM was chosen. We then repeated 
the process by adding the remaining three algorithms to the two-component ensemble model, resulting in a 
three-component ensemble model. However, we terminated the forward selection method when adding another 
algorithm to the three-component model, as all four-component ensemble models showed inferior performance 
compared to the three-component model (Supplementary Fig. 1). For the ensemble model of three clinical clas-
sifiers, the soft voting method was used to enhance prediction performance. To this end, the soft voting method 
utilizes the average probability of the classifier output.

The SHAP (SHapley Additive exPlanation) values of the clinical features were calculated in the ensemble 
model to estimate feature  importance23. The value is used to determine feature importance by calculating how 
much each feature contributes to predicting the target value. SHAP value can be calculated for each sample and 
is computed by creating combinations of multiple features and determining the average change in the outcome 
based on the presence or absence of a specific feature. To calculate feature importance, the absolute SHAP values 
for each feature are averaged across all samples. Furthermore, permutation feature importance was also applied 
the clinical ensemble model.

ECG and ensemble model development. A residual neural network (ResNet)-based one-dimensional 
convolutional neural network (1D-CNN) was constructed to model the ECG waveforms after preprocessing 
the ECG signal data. For the ECG model, the best hyperparameters achieving the highest F1-score were found 
by grid search in the validation set. The proposed model based on ResNet was selected because it was superior 
to four other models adopting machine learning (ML) and DL algorithms [LR, RF, long short term memory 
(LSTM), and transformer] (Supplementary Table 3).

For the ensemble model of ECG and clinical classifiers, the soft voting method was used to enhance predic-
tion performance. We applied a soft-voting technique in the ensemble model, which combines the predicted 
probabilities from the clinical ML model and the ECG DL model by taking the average probability to make the 
final decision for any given sample; the ECG DL output was modeled with the ensemble results from the three 
clinical ML classifiers, giving equal weight to the DL and the ML classifier combination.

Model evaluation. The clinical, ECG, and final ensemble models were cross-validated using stratified ten-
fold to estimate the average predictive performance. The dataset was divided into 10 folds with 90% of training 
set and 10% of test set. The validation set was randomly selected from the train set and the dataset was divided 
into train, validation, and test sets with an 8:1:1 ratio. The ML and DL models were built using the train set and 
the validation set was used to optimize the hyperparameters of the models. The test dataset from the remain-
ing 10% of patients, which was not used in the training or validation, was used to evaluate the performance of 
the ML and DL algorithms. The performances of the ML and DL model were compared to that of the ensemble 
model using a DeLong Test by comparing the AUCs under two correlated ROC curves: a widely used non-para-
metric method in a seminal paper developed by DeLong et al. to compare areas under correlated ROC curves by 
using the theory on generalized U-statistics to generate an estimated covariance  matrix24.

The performance measures (AUC, sensitivity, specificity, precision, recall, and F1 score) was estimated with a 
diagnostic threshold. The threshold was selected by grid search for optimal sensitivity–specificity balance in the 
validation set. Given the outcome of the classification as true negative (TN), false negative (FN), true positive 
(TP), and false positive (FP), the performance measures were defined as follows:

The performance of the final model was compared with that of other traditional models from previous stud-
ies. Three recent models for PTP, the coronary artery disease consortium 1/2 score (CAD1/2) and the pooled 
cohort equations (PCE), were applied to the current dataset and their performance was compared to that of the 
ensemble  model3,25,26. These models were fine-tuned to the dataset using random search and a threshold was 
chosen using the receiver operating characteristic (ROC) curve. CAD1 and CAD2 were modified to exclude the 
classification of chest pain (typical, atypical, and other) because text extraction from the EMR was not available. 
The AUC of the ensemble model was compared with those of the traditional PTP models using a DeLong Test: 
CAD1, CAD2 and  PCE24. Additionally, we reviewed the medical records and classified chest pain into typical, 
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atypical, and other in order to compare the final model with original CAD1 and CAD2. The performance of the 
ensemble model was also compared with those of the original CAD1 and CAD2.

Univariate descriptive statistics were used to compare the characteristics of the ObCAD and non-ObCAD 
groups. The chi-square test was used to compare the characteristics of categorical variables between the groups. 
Student’s t- and Mann–Whitney U- tests were used to compare the characteristics of parametric and nonpara-
metric continuous variables between the two groups, respectively.

The proposed framework was implemented using Keras (version 2.0; François Chollet) and TensorFlow 
(Google; Mountain View, CA, USA). LR, RF, and SVM were provided by the scikit-learn library. In the descrip-
tive statistics, a two-tailed p-value of < 0.05 was considered statistically significant.

Ethics statement. This study was approved by the Institutional Review Board of Inha University Hospital 
(No: 2022–03-012; 14-Mar-2022). The need for informed consent was waived due to the retrospective nature of 
the study and the use of deidentified data by the Institutional Review Board of Inha University Hospital.

Results
Among 15,211 CAGs, 988 were eliminated as they were duplicates, and 14,080 were included with matched ECG 
waveforms were utilized with the DL algorithm. data (Fig. 2). Those who were diagnosed with AMI or underwent 
coronary artery bypass graft surgery were excluded. After excluding those with poor-quality ECG waveforms , 
those without ECG waveforms in the time window, or ECG waveforms recorded for ≥ 10 s, 9,535 CAGs remained. 
A single recent CAG per patient was selected if the patient underwent multiple CAGs during the study period, 
and 564 CAGs were excluded because no biochemical laboratory testing was conducted during the window of 
interest. Finally, 7,907 CAGs were retained for the analysis.

Those with stenosis ≥ 50% were more likely to be older than those with stenosis < 50% (Table 1). The propor-
tion of men was higher in the ObCAD group than in the non-ObCAD group. The ObCAD group had a higher 
prevalence of diabetes mellitus or hypertension than the non-obCAD group, and were more likely to be current 
or past smokers. Laboratory findings with significant differences between the ObCAD and non-ObCAD groups 
were selected, that included all except AST and ALT.

The ECG measurements and interpretations provided by the standard 12-lead ECG machine for each group 
are listed in Table 2. The QRS duration, QT, QTc interval, and PR interval were longer in the ObCAD group than 
in the non-ObCAD group. The ECG pattern was ‘normal’ in 31.1% of the non-ObCAD group and 20.7% of the 
ObCAD group. Findings suggestive of ischemia were seen in 14.9% of the patients with ObCAD and only in 
11.1% of the patients in the non-ObCAD group. Moreover, using the traditional interpretation, the prevalences 
of right bundle branch block, left ventricular hypertrophy, first-degree atrioventricular block, and findings sug-
gestive of prior infarction were significantly different between those with and without ObCAD.

Table 3 lists the performance of the ECG, clinical, and ensemble models for the assessment of ObCAD. 
The AUC of the ensemble clinical model was significantly higher than that of the ECG and clinical models 

Figure 2.  Flowchart of the data used in the study. CAG  coronary angiography, ECG electrocardiogram, AMI 
acute myocardial infarction, CABG coronary artery bypass graft surgery, ObCAD obstructive coronary artery 
disease.
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(p-value < 0.05 for both comparisons). The AUC, sensitivity, specificity, precision, and negative predictive value 
of the ensemble model for ObCAD screening were 0.767, 0.761, 0.625, 0.642 and 0.749, respectively, in the test 
set. The F1 score in the ensemble model was 0.696, which was higher than the 0.617 and 0.691 scores in the ECG 
and clinical models, respectively. Figure 3 presents the ROC curves of the ECG, clinical, and ensemble models.

Figure 4 and Supplementary Table 4 show the comparison of the ROC curve of the ensemble model with 
those of the modified CAD1, CAD2, and PCE models after using the datasets in them. The AUC of the ensem-
ble model was 0.767, which was higher than that of modified CAD1, CAD2, and PCE (0.668, 0.693, and 0.693, 
respectively); each comparison was statistically significant with p-value < 0.05. Similarly, the ensemble model 
outperformed both the original CAD1 and CAD2 significantly after reviewing and classifying chest pain (Sup-
plementary Table 5). The original CAD1 achieved an AUC of 0.633 and an F1 score of 0.601, while the original 
CAD2 achieved an AUC of 0.693 and an F1 score of 0.630. The ensemble model showed significantly higher 
AUC than the original CAD1 and CAD2 (p-value < 0.05 for both comparisons).

Our proposed models were compared with corresponding predictive models using ECG measurements and 
GE-provided interpretations (Supplementary Table 6). The proposed ECG model with 1D ResNet was superior 
to the predictive model utilizing ECG measurements and GE-provided interpretations. The ML model using 
LR achieved an F1 score of 0.566 and an AUC of 0.621, while the DL model achieved an F1 score of 0.617 and 
an AUC of 0.685. Additionally, the proposed ensemble model, combining ECG DL clinical and clinical models, 

Table 1.  Characteristics of the study population and clinical data distribution. Values are presented as means 
(standard deviations) or medians (interquartile ranges) for continuous variables and proportions (%) for 
categorical variables. LDL low density lipoprotein, HDL high density lipoprotein, eGFR estimated glomerular 
filtration rate, CKD-EPI chronic kidney disease epidemiology collaboration, HbA1c hemoglobin A1c, AST 
aspartate aminotransferase, ALT alanine transaminase, hsCRP high sensitivity C-reactive protein. Ratio 1: 
monocyte/HDL cholesterol, ratio 2: lymphocyte/monocyte, ratio 3: log(triglyceride/HDL-cholesterol).

Total (N = 7907) Non-ObCAD (N = 4204) ObCAD (N = 3703) p-value

Demographic characteristics

 Age, years 63.6 (12.5) 60.9 (12.9) 66.7 (11.4)  < 0.01

 Male 4847 (61.3) 2304 (54.8) 2544 (68.7)  < 0.01

Medical history and social history

 Diabetes mellitus 2420 (30.6) 933 (22.2) 1485 (40.1)  < 0.01

 Hypertension 4515 (57.1) 2144 (51.0) 2370 (64.0)  < 0.01

 Dyslipidemia 1083 (13.7) 584 (13.9) 500 (13.5) 0.66

Smoking  < 0.01

 Nonsmoker 5005 (63.3) 2804 (66.7) 2207 (59.6)

 Past smoker 981 (12.4) 446 (10.6) 533 (14.4)

 Current smoker 1921 (24.3) 954 (22.7) 967 (26.1)

Physical measurements

 Systolic blood pressure, mmHg 137.7 (21.6) 136.5 (21.4) 138.9 (21.8) 0.03

 Diastolic blood pressure, mmHg 81.4 (13.5) 82.0 (13.5) 80.7 (13.5)  < 0.01

 Body mass index, kg/m2 24.8 (3.6) 24.9 (3.7) 24.6 (3.6)  < 0.01

Laboratory findings

 White blood cell count, ×  109/L 6.5 (5.3–8.1) 6.3 (5.2–7.8) 6.8 (5.6–8.5)  < 0.01

 Hemoglobin, g/dL 13.5 (2.0) 13.7 (1.9) 13.3 (2.1)  < 0.01

 Platelet count, ×  109/L 227.7 (65.3) 230.6 (63.3) 224.1(67.4)  < 0.01

 Total cholesterol, mg/dL 163 (136–192) 170 (143–196) 156 (128–187)  < 0.01

 Triglyceride, mg/dL 115 (83–166) 112 (80–164) 120 (86–169)  < 0.01

 LDL cholesterol, mg/dL 99 (75–127) 104 (81–130) 93 (70–122)  < 0.01

 HDL cholesterol, mg/dL 45 (38–55) 48 (39–58) 43 (36–41)  < 0.01

 BUN, mg/dL 15.4 (12.3–19.7) 14.8 (12.0–18.6) 16.1 (12.8–21.2)  < 0.01

 Creatinine, mg/dL 0.9 (0.8–1.1) 0.9 (0.7–1.0) 1.0 (0.8–1.2)  < 0.01

 eGFR by CKD-EPI, mL/min/1.73  m2 86 (69–97) 90 (74–99) 82 (61–93)  < 0.01

 Glucose, mg/dL 110 (97–138) 107 (96–129) 116 (100–150)  < 0.01

 HbA1c, % 5.9 (5.6–6.6) 5.8 (5.5–6.3) 6.1 (5.7–7.0)  < 0.01

 AST, IU/L 23 (19–31) 23 (19–31) 23 (19–31) 0.33

 ALT, IU/L 21 (15–31) 21 (16–31) 21 (15–31) 0.13

 Ratio 1 0.8 (0.5–1.1) 0.8 (0.5–1.0) 1.0 (0.7–1.2)  < 0.01

 Ratio 2 4.9 (3.5–6.4) 5.2 (3.8–6.8) 4.5 (3.3–6.0)  < 0.01

 Ratio 3 0.9 (0.5–1.4) 0.9 (0.4–1.3) 1.0 (0.6–1.5)  < 0.01

 hsCRP, mg/dL 0.1 (0.1–0.6) 0.1 (0.1–0.5) 0.2 (0.1–0.7)  < 0.01
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Table 2.  Characteristics of electrocardiogram data distribution. Values are presented as median (interquartile 
range) for continuous variables and proportion (%) for categorical variables.

Total (N = 7907) Non-ObCAD (N = 4204) ObCAD (N = 3703) p-value

Measurement of electrocardiographic features

 QRS duration, ms 92 (86–102) 92 (86–102) 94 (86–104)  < 0.01

 QT, ms 400 (376–426) 400 (376–424) 402 (378–428)  < 0.01

 QTc, ms 435 (415–460) 434 (414–458) 437 (416–462)  < 0.01

 PR interval, ms 164 (150–182) 164 (148–180) 166 (150–182)  < 0.01

 Ventricular rate, bpm 71 (62–82) 71 (63–82) 41 (62–82) 0.50

 P axis, ˚ 52 (35–63) 52 (35–64) 52 (36–63) 0.55

 R axis, ˚ 31 (4–58) 35 (8–60) 27 (-1–55)  < 0.01

 T axis, ˚ 47 (25–69) 44 (24–63) 51 (26–78)  < 0.01

Machine-provided interpretation

 Normal 26.3% 31.1% 20.7%  < 0.01

 Left bundle branch block 1.7% 1.9% 1.4% 0.08

 Incomplete left bundle branch block 0.3% 0.33% 0.24% 0.46

 Right bundle branch block 4.6% 4.1% 5.2% 0.02

 Incomplete right bundle branch block 1.6% 1.2% 2.0% 0.01

 Complete heart block 0.1% 0.17% 0.08% 0.35

 Atrial fibrillation 6.1% 6.9% 5.2%  < 0.01

 Atrial flutter 0.4% 0.5% 0.4% 0.48

 Acute myocardial infarction 3.2% 2.3% 4.2%  < 0.01

 Left ventricular hypertrophy 10.2% 9.0% 11.5%  < 0.01

 Premature ventricular contractions 3.7% 3.7% 3.8% 0.69

 Premature atrial contractions 2.4% 2.3% 2.4% 0.77

 First-degree atrioventricular block 5.3% 4.6% 6.2%  < 0.01

 Second-degree atrioventricular block 0.1% 0.12% 0.08% 0.73

 Fascicular block 1.6% 1.6% 1.6% 0.86

 Sinus bradycardia 16.3% 15.4% 17.3% 0.02

 Other bradycardia 0.2% 0.17% 0.22% 0.61

 Sinus tachycardia 5.1% 4.9% 5.3% 0.49

 Ventricular tachycardia 0.04% 0.00% 0.08% 0.10

 Supraventricular tachycardia 0.05% 0.02% 0.08% 0.35

 Prolonged QT 7.4% 7.6% 7.2% 0.42

 Pacemaker 0.1% 0.10% 0.08% 0.99

 Ischemia 12.9% 11.1% 14.9%  < 0.01

 Low QRS voltage 1.8% 1.5% 2.1% 0.06

 Intraventricular block 0.7% 0.6% 0.8% 0.20

 Prior infarct 14.4% 8.8% 20.7%  < 0.01

 Nonspecific T-wave abnormality 8.1% 8.3% 7.8% 0.40

 Nonspecific ST abnormality 4.3% 3.6% 5.0%  < 0.01

 Left axis deviation 6.0% 5.3% 6.9%  < 0.01

 Right axis deviation 0.3% 0.3% 0.2% 0.13

 Early repolarization 1.5% 2.0% 1.0%  < 0.01

Table 3.  Performance of the clinical, ECG, and ensemble prediction models. AUROC area under the receiver 
operating characteristic curve.

ECG model Clinical model Ensemble model

AUROC 0.685 (0.675–0.695) 0.747 (0.739–0.755) 0.767 (0.758–0.776)

Sensitivity 0.636 (0.586–0.686) 0.774 (0.761–0.787) 0.761 (0.738–0.784)

Specificity 0.629 (0.573–0.686) 0.591 (0.578–0.604) 0.625 (0.600–0.651)

Precision 0.607 (0.584–0.630) 0.624 (0.617–0.633) 0.642 (0.628–0.657)

Negative predictive value 0.665 (0.653–0.677) 0.748 (0.737–0.759) 0.749 (0.734–0.765)

F1 Score 0.617 (0.599–0.634) 0.691 (0.683–0.699) 0.696 (0.683–0.709)
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outperformed the corresponding ensemble model comprising the clinical model and the predictive model using 
ECG measurements and GE-provided interpretations (p-value < 0.05).

The SHAP values of the ensemble model are shown in Fig. 5. To visualize the importance of features in an 
ensemble model composed of heterogeneous data, such as clinical data and ECG signals, we measured the 
SHAP values using the clinical data and the ObCAD probability of the ECG DL model. In the ensemble model, 
ECG emerged as the most influential variable, followed by the top 10 clinical characteristics with the greatest 
contribution to the prediction model: sex, age, ratio 3, diabetes, hemoglobin, SBP, white blood cell count, BMI, 
LDL-cholesterol, and ratio 2. The analysis of SHAP values revealed that male sex, advanced age, high ratio 3, 
diabetes, low hemoglobin levels, elevated SBP, leukocytosis, obesity, and low ratio 2 were associated with ObCAD. 
Furthermore, Supplementary Fig. 2 presents the permutation feature importance of the clinical ensemble model. 
The top 10 clinical features were found to be age, sex, ratio 3, BMI, triglyceride, hemoglobin, white blood cell 
count, diabetes, LDL-cholesterol, and total cholesterol. Notably, age, sex, and ratio 3 consistently emerged as 
the top three features in both the SHAP and permutation feature importance analyses. Furthermore, the other 
common features among the two methods were BMI, hemoglobin, white blood cell count, diabetes, and LDL-
cholesterol. However, the permutation method identified additional features, triglyceride and total cholesterol 
as influential features, while the SHAP analysis highlighted ratio 2 and SBP.

Figure 3.  ROC curves for the electrocardiogram, clinical and ensemble prediction models using the test 
dataset. ECG electrocardiogram, ROC receiver operating characteristic.

Figure 4.  ROC curves for the ensemble prediction model with modified traditional models. ROC receiver 
operating characteristic, CAD1 coronary artery disease consortium 1 score, CAD2 coronary artery disease 
consortium 2 score, PCE pooled cohort equation.
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Discussion
We developed a DL- and ML-based ensemble model that includes clinical, laboratory, and ECG waveform data 
for the assessment of ObCAD. This model utilized the information from the first-line tests (clinical and ECG 
data) with DL and ML algorithms, and enhanced the performance by combining this information in an ensemble 
model. The ensemble model was superior to the traditional risk estimations and could be integrated into clinical 
practice. Additionally, it may contribute to reducing unnecessary anatomic or functional diagnostic tests for the 
assessment of ObCAD if the performance of the ensemble model should be innovatively enhanced in the future.

This study aimed to build the predictive model using the first-line tests (basic clinical, laboratory and ECG 
data) to improve the estimation of clinical likelihood before anatomic and functional tests, and tried to enhance 
objectivity using ECG waveforms. Previous research used treadmill test and myocardial Single Photon Emis-
sion Computed Tomography (SPECT) as predictors in the  models27,28. Therefore, those models could not be 
applied with first-line tests, and the functional tests are less fast and less affordable. Moreover, raw ECG data 
as the first-line tests, have been little evaluated in predictive models that employ DL algorithms for assessing 
ObCAD. Most of previous studies utilized the ECG features from human interpretation in a few open databases 
according to a recent review study: the Heart Disease dataset in UC Irvine Machine Learning  Repository29, the 
St. Petersburg INCART 12-lead Arrhythmia Database in  PhysioNet30, and the Fantasia database in  PhysioNet29. 
In the review study, out of eight research studies, only six studies utilized ECG waveforms with ML algorithms 
for CAD detection, with a particular focus on longer ECG signals like 15-min ECG or 24-h Holter monitoring, 
as opposed to the standard 12-lead ECG used in routine  practice31–34. Therefore, previous studies could not be 
adopted into clinical practice and the ECG data themselves could not be utilized without human interpretation.

Previous studies have suggested that laboratory-based models are superior to  PTP4,5. In particular, a recent 
study demonstrated that a laboratory-based model of eight variables, including age, sex, type of chest pain, 

Figure 5.  SHAP plot for ECG and the clinical features. LDL low density lipoprotein, HDL high density 
lipoprotein, HbA1c hemoglobin A1c, hsCRP high sensitivity C-reactive protein. Ratio 1: monocyte/HDL 
cholesterol, ratio 2: lymphocyte/monocyte, ratio 3: log(triglyceride/HDL-cholesterol).
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hypertension, type 2 diabetes mellitus, smoking, LDL-C, and creatinine, showed a higher AUC than the DF, 
CAD1/2, and Duke clinical scores  did5. Furthermore, a predictive model consisting of laboratory, clinical, and 
ECG characteristics with good performance was developed for predicting the SYNTAX score of CAG  result4; 
family history of ObCAD, past history of peripheral vascular disease, ST-T changes in ECG and selected standard 
laboratory tests were included. The model’s F1 score was 0.71 and could differentiate between zero and non-zero 
SYNTAX scores.

Diverse sources of information and a plethora of methodologies can enhance personalized decisions for 
risk assessment of  ObCAD4. A recent study reviewed the literature on the risk stratification score for predict-
ing long-term cumulative mortality of ObCAD and suggested that the future of mortality prediction should be 
developed by combining clinical risk predictors and cardiovascular imaging, which has the highest predictive 
 accuracy10. Similarly, combining four different risk scores showed a better reclassification index relative to each 
score: The Global Registry for Acute Coronary Events; SYNTAX; residual SYNTAX; and the age, creatinine, and 
ejection fraction  score13. To enhance predictive performance, data-driven analytical solutions, such as ML or DL 
algorithms, have been increasingly applied to diverse datasets with computational power. In the current study, 
the ensemble ML and DL classifiers, including clinical, laboratory, and ECG data, were superior to traditional 
risk estimation models. In this study, our model achieved higher performance by utilizing physical measure-
ment, ECG data and more clinical variables compared to the traditional PTP (CAD1, CAD2, and PCE) that only 
included sex, age, past medical history in common, and total-cholesterol, and HDL-cholesterol additionally. 
Moreover, to improve the performance of our proposed model, we used the ensemble method from various 
algorithms in addition to the LR used in the comparison models; the ensemble method was designed to leverage 
diversity in data or algorithms to improve performance. Therefore, this model may achieve higher performance 
relative to the conventional PTP by using various data and algorithms in the clinical model and the ECG model.

Although the ensemble model was superior to the traditional risk stratification, the ECG, clinical and ensem-
ble model showed modest performances to assess ObCAD and it require further improvement for practical use. 
In our previous study, the ECG model demonstrated fair performance in suggesting the probability of ObCAD, 
whereas it showed excellent performance in detecting  AMI35. It may be because ObCAD is the progressive nar-
rowing of coronary arteries with no ECG characteristics or subtle, while AMI is related to myocardial necrosis 
and more obvious ECG change due to acute obstruction of coronary artery. Similarly, AMI results in high level 
of cardiac enzyme at admission or increase by time, which could make the clinical model have higher dis-
crimination. Other researchers demonstrated that the ECG model showed completely different AUC between 
two subgroups of diagnosis: 0.973 in AMI and 0.566 in  ObCAD36. Therefore, the ECG and clinical models for 
assessing ObCAD have to deal with more complex and daunting task compared to those for diagnosing AMI; if 
these models are enhanced in sophisticated and innovative ways, the ensemble model may help clinicians make 
better discrimination and decision for initial assessment of ObCAD.

According to the SHAP values, male sex and advanced age were the most predictive clinical features in the ML 
model. Sex and age, which is the determinant of ObCAD prevalence, is also the component of the DF PTP and all 
other PTP models: CAD1, CAD2, and PCE models. They were followed by ratio 3 called the atherogenic index 
of plasma (AIP). In the other ML model for the estimation of PTP, hypercholesterolemia and HDL-cholesterol 
followed age and  sex37. In contrast, our findings showed that AIP contributed more than each component of 
the ratio (triglyceride and HDL-cholesterol) and history of dyslipidemia. However, direct comparison was not 
available because they included only total, HDL-cholesterol and LDL-cholesterol as predictors in their model. 
We included three composite markers in the model proposed as novel marker of ObCAD. Ratio 1 consisted of 
monocyte and HDL-cholesterol ratio which involve inflammation and atherosclerotic plaque  formation38. Mono-
cyte is known to play fundamental roles in inflammation and the activation of monocyte is an important initial 
step in the development of ObCAD, while HDL-cholesterol could prevent inflammation by directly acting on 
 monocyte38. Thus, monocyte to HDL-cholesterol ratio is suggested as a novel marker to assess the inflammation 
in atherosclerosis. Thus, previous research suggested that high monocyte to HDL-cholesterol ratio is associated 
with high SYNTAX score in stable ObCAD, and the CAD severity and cardiovascular mortality in acute coro-
nary  syndrome39,40. Similarly, low lymphocyte to monocyte ratio (ratio 2) has been found to be a novel systemic 
inflammatory marker and may provide additive information in the assessment of cardiovascular risk, although 
it remains inconclusive due to insufficient number of previous  studies41–43. In this study, the SHAP plot revealed 
an association between ObCAD and low ratio 2 along with high white blood cell count (WBC), both of which are 
indicators of inflammation. Lastly, the logarithm of triglyceride to HDL-cholesterol (ratio 3) is associated with the 
burden of  atherosclerosis44. High triglyceride and low HDL-cholesterol is known as atherogenic dyslipidemia and 
is correlated with the metabolic syndrome, insulin resistance, and atherosclerotic cardiovascular disease  risk14.

This study included a contemporary population with suspected ObCAD and who received CAG. Therefore, 
there is little risk of misclassification and the study is based on the real world ECG waveform data. Furthermore, 
the current model could help to reduce unnecessary diagnostic tests in the current practice. However, this study 
has some limitations. The performance of the ensemble model should be further enhanced for practical use in the 
future because the performance of the model was modest. Furthermore, it included only those who underwent 
CAG and not all patients with suspected ObCAD because the patient’s CAG data were extracted from the EMR. 
Therefore, in the future, the model should be re-evaluated in all patients with suspected ObCAD for validation 
and generalization. Finally, unstable angina was not excluded along with AMI and the inclusion criteria was 
angina pectoris because the data were extracted from the EMR. In the EMR, diagnosis of angina pectoris and 
ObCAD could not differentiate between stable and unstable angina.
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Conclusion
A predictive model with laboratory, clinical, and ECG data was developed and internally validated. It demon-
strated good performance which was superior to that of the traditional PTPs. With further enhancement, this 
predictive model may facilitate the selection of patients who would benefit most from further diagnostic assess-
ment for ObCAD. However, its clinical utility should be further validated externally by use in the clinical field.
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The data that support the findings of this study are available from Inha University Hospital but restrictions apply 
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University Hospital.
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