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Efficiency comparison 
between tracking and optimally 
fixed flat solar collectors
Amir Aghamohammadi 1* & M. Ebrahim Foulaadvand 2

We investigate the optimal orientation for a fixed flat plate solar collector using the clear sky model. 
The ground reflection component of irradiation that hits the collector’s surface is ignored due to 
its relatively small magnitude when compared to the direct beam and sky diffusive components. 
Analytical calculations demonstrate that regardless of the collector’s latitude, the most effective 
azimuthal angle, γ ∗ , is 0, which generally corresponds to a North–South direction. However, the 
optimal tilt angle, β∗ , is dependent on both the Day of  Year (DoY) and the collector’s local latitude. 
For latitudes typical of mid-altitude climate zones, we can calculate the optimal tilt angle and the 
maximum energy that the collector can harvest during each DoY. We compare the maximum daily 
received energy—which is the sum of the direct beam and sky diffusive energies—associated with 
this optimal orientation to their corresponding values when the flat plate tracks the Sun. The relative 
increase in total energy due to Sun tracking depends critically on the DoY, with a minimum value of 
about 17% in early winter and a maximum value of 40% over a large interval.

Devices such as solar collectors, panels, and concentrators are designed to harvest energy from the Sun’s 
 radiation1–7. Maximizing their performance and efficiency is crucial, and the most effective way to achieve this 
is by orienting the collector along the Sun’s beam, known as the Direction Normal Irradiance (DNI). However, 
this requires a tracking system, as the Sun’s apparent position in the sky changes throughout the day. While 
tracking systems can significantly improve efficiency, they can also be expensive and require additional energy 
for  operation8. Moreover, their operation and maintenance are also costly. To reduce these costs, it is desirable 
to place solar collectors at a fixed but optimal orientation and periodically adjust this orientation as needed. 
However, finding the optimal orientation is not an easy task and depends on several extrinsic factors, including 
climatological and meteorological  conditions9,10. Typically, the optimal orientation of a solar collector is deter-
mined empirically on a daily, monthly, quarterly, or annual basis. There are some factors which may affect the 
amount of received irradiation by a solar collector. The received irradiation may depend on the geometry and 
the shape of solar collector. Moreover, it depends on the latitude of the location, the day of the year, and also 
the climate. As a result, determining the optimal orientation can be a complex and location-dependent process. 
Many solar collectors have a flat surface, such as flat plate collectors and PV panels, while others have a concave 
curvature, such as solar dishes or parabolic troughs. However, in the case of curved collectors, the effective surface 
area that is exposed to the Sun (aperture) is flat. The orientation of a flat-aperture collector can be specified by 
two angles of tilt, β , and azimuth, γ . In recent years several research groups have been perusing the optimization 
of solar collector orientation for different locations around the world. Different techniques, including genetic 
algorithms and simulated annealing, have been  used11–38. For a detailed review  see39. Most articles that address the 
problem of optimal orientation for flat surface collectors have done so on a local and non-universal geographic 
scale. As a rule of thumb, it is suggested that in the Northern (Southern) hemisphere, the optimal orientation is 
south (north)-facing, and that the optimal annual tilt angle should be the same as the local latitude. However, 
other papers have proposed a wider range for the optimal tilt  angle11,15,16. Unfortunately, many of these inves-
tigations suffer from a lack of a comprehensive and rigorous mathematical approach. In this paper, we aim to 
address the problem of optimizing fixed-orientation solar collectors using a rigorous mathematical framework. 
It may seem intuitive that the collector’s optimal orientation is perpendicular to the direction of the sun’s rays 
at solar noon, as sunlight shines almost directly overhead during that time. However, as we will see, consider-
ing the contribution of direct irradiation energy throughout the day, including radiation in the early morning 
and afternoon, the optimal tilt angle deviates from this conjecture. As we will see, it crucially depends both on 
the latitude and the day of the year. The total solar irradiation received on the ground consists of three main 
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components: direct beam, sky diffusive, and ground reflection. While the contribution of ground reflection is 
negligible, the contribution of sky diffusive radiation is significant. In this study, we focus on the direct beam and 
sky diffusive components, and ignore the ground reflection. Specifically, we calculate the energy contributions 
due to the direct beam and sky diffusive radiation separately, with the latter being investigated using an isotropic 
approximation. In this paper we do not consider the impact of irradiation incidence angle on the characteristics 
of solar energy conversion. As an example, the efficiency of solar PV panels are affected by the angle at which the 
solar rays hit the  panel40–42 or in solar concentrators, diffusive irradiation cannot be harvested. This important 
and challenging problem requires further investigation. Moreover technology-dependent efficiency could be 
interesting for future considerations. Here, our primary focus is on the overall received irradiation energy of a 
flat collector rather than delving into energy conversion and panel efficiency details. This paper is organized as 
follows: in “Some astronomy” section, some mathematical astronomy prerequisites are presented; in “Formula-
tion and methodology: optimal orientation of a flat plate receiver” section, we discuss the optimal orientation 
of a flat solar collector and provide an analytical solution for the optimal angles; in “Comparison with a tracking 
flat plate” section, we compare the total energy harvested by a fixed flat plate and a tracking one, and present our 
findings; “Comparison to existing results in the literature” section is dedicated to comparing our results with 
similar existing findings in the literature. And finally we conclude the paper with some final remarks.

Some astronomy
To describe the Sun-Earth geometry, one needs a system of coordinates. There are two main pictures: heliocen-
tric and geocentric. In the heliocentric picture, the Sun (at the origin) is placed at one of the foci of an ellipse 
with a small eccentricity around 0.0167. The Earth orbits around the Sun in an elliptical path on a plane called 
the ecliptic. The plane perpendicular to the Earth axis (which connects the North pole to the South one at the 
Earth’s center) is the Earth equatorial plane. It is inclined to the ecliptic plane by an obliquity angle 23.45◦ . In the 
geocentric system of coordinates, the Earth is at the origin. There are two choices for the x − y plane: equatorial 
and horizontal which will be briefly explained.

Horizontal picture. In the horizontal perspective, the system of coordinates is established with the observer 
as the origin, the observer’s horizon as the fundamental x − y plane, and the z-axis along the zenith, i.e., the 
observer’s overhead direction towards the sky. The Sun’s angular position is described by two angles of elevation, 
or altitude, αs , and azimuth γs . Figure 1 provides an illustration. The zenith angle, θz , and the solar altitude angle, 
αs , are complementary. So, θz = π

2 − αs . This angle represents the direct beam irradiation angle. The unit vector 
σ specifies the line connecting the observer to the Sun, while the unit vector ν specifies the North pole direction, 
i.e., the line connecting the Earth’s center to its North pole.

Equatorial picture. In the equatorial perspective, the origin is placed at the Earth’s center. In this picture 
the fundamental plane is the equatorial plane that passes through the terrestrial equator. The Sun’s angular posi-
tion is specified by two angles: declination, δ , and hour angle, ω . The angle between the equatorial plane and the 
line connecting the Sun to the origin (Earth) is the declination angle, shown by δ . Alternatively, the declination 
angle, δ , is the Sun’s altitude with respect to the equatorial plane. To specify the hour angle, ω , we first need to 
define a local meridian. Earth is at the origin of the Celestial sphere. The local celestial meridian is the circle on 
the celestial sphere. It is perpendicular to both the horizontal plane and the equatorial plane. The zenith, nadir, 
North Celestial Pole, and South Celestial Pole are located on the celestial meridian. The hour angle, ω , is defined 
as follows: first, project the line connecting the origin to the Sun onto the equatorial plane. The hour angle ω is 
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Figure 1.  Sun’s angular position is given by two angles elevation αs and azimuth γs with the observer’s horizon 
as the fundamental ( x − y ) plane.
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the angle between these two lines: the Sun projection on the equatorial plane and the line connecting the origin 
and the intersection point of the local meridian with the equatorial plane. Figure 2 provides an illustration.

Angles γs and αs are related to the declination angle δ , hour angle ω and latitude −π
2 < ϕ < +π

2  according 
to the following trigonometric formulas:

where we have used of u = es sin ϕ + k cosϕ . Here es and ew are unit vectors toward South and West. Using the 
above relations and ν = −es cosϕ + k sin ϕ , one arrives at:

Now, let’s turn to the objective of finding the optimal static orientation of solar collectors to harvest the maximum 
amount of solar irradiation.

Formulation and methodology: optimal orientation of a flat plate receiver
It’s clear that the maximum amount of energy can be received on the collector’s aperture if it tracks the Sun’s 
movement, but as we have noted, such a tracking mechanism can be expensive. When we refer to the optimal 
configuration of a solar collector, we are talking about specifying the collector’s fixed orientation, which includes 
the two angles of tilt and azimuth. The objective is to determine the orientation that maximizes the total amount 
of irradiation that impinges on the collector’s surface during a given time period. The time period that is spent 
to measure the irradiation time may vary from a single day to a month, a season or even a year depending on 
our desired application. For the purpose of determining the optimal orientation for a solar collector, we will 
consider the shortest period, which is one day. With daily data for the optimal orientation, the procedure for 
longer periods can be easily extrapolated. For our purposes, we will focus on the simplest collector geometry, 
which is a flat plate collector with a unit area. The flat plate collector is located at a local latitude of ϕ , and its 
orientation is determined by the direction of its unit normal vector, n . In the spherical coordinates system of an 
observer, where the x − y plane is the local horizontal plane and the k direction is aligned with the zenith, this 
unit normal vector can be specified by two angles: the tilt angle, β , and the azimuthal angle, γ . The unit vector 
can be decomposed as follows:

(1)σ =ν sin δ + ew cos δ sinω + u cos δ cosω,

(2)σ =k sin αs + es cosαs cos γs + ew cosαs sin γs ,

(3)σ · k = cos θz = sin αs = cosϕ cos δ cosω + sin ϕ sin δ,

(4)
σ · es = es · ν sin δ + es · u cos δ cosω = cosαs cos γs,

= − sin δ cosϕ + sin ϕ cos δ cosω = cosαs cos γs

(5)σ · ew = cos δ sinω = cosαs sin γs,
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Figure 2.  Equatorial geocentric system of coordinates: Sun angular position is characterised by two angles 
declination δ and hour ω.
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Please refer to Fig. 3 for an illustration of the flat plate collector’s orientation. Note that the azimuthal angle γ is 
measured positively from the South towards the West.

If we take −
π

2
≤ β ≤

π

2
 , then positive (negative) values for β indicate that the panel is oriented towards the 

South (North). The unit vector n can be expanded in terms of ν and the two other perpendicular unit vectors of 
the equatorial plane in a similar manner. The incidence angle θ is defined as the angle between the normal to the 
plate, n , and the direction of the Sun, which is the line connecting the observer to the Sun, denoted by σ . In the 
equatorial plane n can be decomposed as:

The angle between n and ν is denoted by η , while the angle between the projection of n onto the equatorial plane 
and the unit vector u within that plane is denoted by ζ . Please refer to Fig. 4 for an illustration of these angles.

By utilizing Eqs. (1), (2), (6), and (7), we arrive at

Equations (8) and (9) provide cos θ in terms of the Sun’s positional angles ( δ and ω ) in the geocentric equatorial 
system of coordinates, the observer’s latitude ϕ , and the flat plate’s orientation angles, β and γ , or equivalently, 

(6)n = k cosβ + es sin β cos γ + ew sin β sin γ .

(7)n = ν cos η + u sin η cos ζ + ew sin η sin ζ .

(8)
cos θ = σ · n

cos θ = sin δ sin ϕ cosβ − sin δ cosϕ sin β cos γ + cos δ cosϕ cosβ cosω

+ cos δ sin ϕ sin β cos γ cosω + cos δ sin β sin γ sinω.

(9)cos θ = sin δ cos η + cos δ sin η cos(ω − ζ ).
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Figure 3.  Specification of a flat plate orientation by two angles: tilt angle, β , and azimuth angle, γ , in the local 
observer’s system of coordinates, specified by the horizon plane and the zenith.
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Figure 4.  Specification of a flat plate orientation, n , by two angles: tilt angle, η , and azimuth angle, ζ , defined 
with respect to the equatorial plane and the vector ν . The equatorial plane is indicated by a pale yellow semi-
circle.
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η and ζ . If we consider the special case of γ = 0 (or equivalently, ζ = 0 ), the calculations become simpler. The 
vector n is in the plane constructed by u and ν ( k and es ). Therefore, we can express n as follows:

Our objective is to determine the total amount of radiation energy that the flat plate receives on the nth day of 
the year, where n = 1 corresponds to the first of January in the Julian calendar. The total instantaneous irradia-
tion, G, that impinges on a surface is composed of three components: beam direct radiation, Gb , sky diffuse 
radiation, Gd , and ground diffuse reflection, Gr . The beam direct radiation, Gb , typically provides the largest 
contribution to the total irradiation. Since the ground reflection component is small compared to Gb and Gd , it 
will be neglected in this paper. To begin, we will focus on the energy, Eb , received by the flat collector due to the 
beam direct irradiation, Gb.

Contribution of beam direct radiation to received energy. The total direct irradiation energy during 
a day (from sunrise to sunset) received on a flat plate of unit area is:

where the variables tr and ts represent the local times of sunrise and sunset, respectively. Gbn is the magnitude of 
the direct normal beam, and Gbn = Gbn(−σ ) represents the direct normal beam vector. It should be noted that 
tr and ts are functions of n and ϕ , but for brevity, we do not explicitly write them. The variable � is the Heaviside 
step function, which ensures that the surface receives irradiation when the following condition holds

To evaluate the integral in Eq. (12), we need to specify the dependence of the Sun’s geocentric coordinate angles 
δ and ω on the day of the year (DoY) and local time. The declination angle has a weak dependence on local time, 
so we neglect it in this paper unless stated otherwise. The dependence of the declination angle δ (in radians) on 
the day of the year (n) is given  by43,44:

In contrast to the declination angle, the hour angle ω is solely a function of time, specifically the hour of the 
day (HoD). We use solar time, which is based on the apparent angular motion of the Sun across the sky. Since 
the Earth rotates by 15◦ per hour around its axis, the relationship between solar time and hour angle in terms of 
degrees (radians) per second can be expressed as:

Defining ω = 0 at solar noon ( h = 12 : 00 h ) the hour angle ω can be determined for any solar time hour. The 
last step would be to calculate the local times tr and ts (for a given DoY, n, and latitude ϕ ) in terms of solar time 
tsol . For this purpose, let us first write the equation relating local time (standard time) tstd and solar time tsol:

with EoT (Equation of Time):

d =
2π(n− 1)

365
44, Lloc is the local longitude, and Lr = (LCT− GMT)× 12.5◦/hour is the reference longitude. 

LCT is the local civil time and GMT is Greenwich Mean Time. For example, Tehran civil time is GMT+3.5 hours 
hence for Tehran we have: Lr = 3.5× 15◦ = 52.5◦ . Principally we change the integral variable from standard 
time t into solar time tsol in Eq. (12). However, we need a second change of variable from solar time tsol to hour 
angle variable ω in the integrand. It turns out:

where ωr is the Sun’s hour angle at sunrise and ωs is the Sun’s hour angle at sunset. These are obtained from (3) 
by setting αs = 0 . This equation ( cosω = − tan ϕ tan δ ) has two solutions ωr and ωs = −ωr correspondingly. 
The hour angle dependence of the direct normal beam, Gbn(n,ω) , makes the integral difficult to evaluate. In the 

(10)n =ν cos η + u sin η,

(11)=k cosβ + es sin β .

(12)Eb(n,ϕ) =

ts
∫

tr

dt Gbn(n, t) cos θ �[cos θ ].

(13)Gbn · (−n) = Gbn σ · n = Gbn cos θ > 0.

(14)δ =
23.45◦π

180
sin

(

2π(284+ n)

365

)

.

(15)� =
�ω

�t
=

15◦

h
=

1◦

4min
=

0.0041◦

sec
= 7.15× 10−5 rad/s.

(16)tsol = (Lr − Lloc)

(

4
min

1◦

)

+ EoT + tstd.

(17)
EoT = 180 ·

4

π
[0.000075+ 0.001868 cos(d)− 0.032077 sin(d)

−0.014615 cos(2d)− 0.0409 sin(2d)]min,

(18)Eb(n,ϕ) =
1

�

ωs
∫

ωr

Gbn(n,ω) cos θ(n,ω)�[cos θ(n,ω)]dω.
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following subsection, we will briefly review this dependence. The solar energy that reaches the Earth is the elec-
tromagnetic energy emitted by the Sun which to a good extent can be approximated to be a black body with 
surface temperature 5777 K . As the light travels a long distance between the Sun and Earth (average distance 
1.496× 1011 m ) this flux of energy can be assumed to reach the outer region of the Earth’s atmosphere in the 
form of a plane wave. This radiative flux, the energy per unit time received on a surface of unit area perpendicular 
to the propagation direction, is named solar constant and is denoted by Gsc . It can be easily verified that the solar 
constant has a value Gsc = 1367

W

m2
1,45 at the mean Sun-Earth distance. Due to the Earth’s orbit eccentricity 

around the Sun, the solar irradiation outside the Earth’s atmosphere (extraterrestrial irradiation) Gon has a 
dependence on DoY. It can be approximated in the following way:

In the subscript of Gon , note that “o′′ refers to “outside” and “n′′ refers to “normal”. Due to extinction processes 
such as Rayleigh or Mie scattering, or absorption, the amount of irradiance that reaches the Earth’s surface is 
less than the amount outside of the atmosphere. Taking into account all of these attenuation effects, the amount 
of irradiance at ground level, denoted by Gbn , can be approximated using the following formula:

Here, τb represents the effective atmospheric transmission coefficient of the direct beam. Various models, each 
with their own set of assumptions and parameters, have been proposed to estimated the amount of τb . Each 
model has its own advantages and limitations. In this work our focus is on a clear sky condition where there is 
no cloud in the sky and the atmosphere over the studied location is free of pollutants. Under this assumption, a 
wide range of clear sky models exists in the literature. For simplicity, we assume a clear sky model proposed  in46, 
in which the sky is cloudless, clear (visible up to 23 km), and pollution-free. According to Hottel’s model, the 
effective atmospheric optical transmission coefficient τb is:

The constants a0, a1 and k are altitude and climate type dependent. See chapter two  of1 for further details. Replac-
ing cos θz = sin αs from Eq. (3) into Eqs. (21), (20) and finally into Eq. (18), we arrive at:

The integral given by Eq. (22) must be numerically evaluated. The variable of integration, the hour angle ω , var-
ies from the hour angle at sunrise, ωr , to the hour angle at sunset, ωs . Note that the hour angle ω is measured in 
radians. We will compute the integral using the Simpson’s rule. To proceed, we should specify the integral limits 
ωr and ωs . For this purpose, we take the city Tehran with latitude ϕ = 35.69◦N and n = 81 i.e.; 21 March (Nowruz 
or vernal equinox in not a leap year). It turns out: δ(81) = 23.45◦ sin(360◦) = 0 and Gon(81) = 1375 W

m2 . The 
sunrise and sunset hour angles are the roots of the equation:

Assuming a negative angle, we have ωr = −ωs = −90◦ . To evaluate the integrals, we need to specify the numeri-
cal values of the transmission coefficient parameters a0 , a1 , and k. These values depend on the climate type, and 
are given  by1:

where

Here, A represents the observer’s altitude in kilometers, and the correction factors r0 , r1 , and rk are dependent 
on the climate. For Tehran, which is a mid-altitude city with an altitude of A = 1.2 km , the climate-dependent 
correction factors are r0 = 0.97 , r1 = 0.99 , and rk = 1.02 . Taking these factors into account, the transmission 
coefficient parameters become:

(19)Gon(n) = Gsc

(

1+ 0.033 cos

(

2πn

365

))

.

(20)Gbn(n,ω) = Gon(n)τb.

(21)τb = a0 + a1 exp

(

−
k

cos θz

)

.

(22)

Eb(n,ϕ) =
Gon(n)

�

ωs
∫

ωr

cos θ(n,ω)�[cos θ(n,ω)]

×

[

a0 + a1 exp

(

−
k

cos θz

)]

dω.

(23)ωs = cos−1(− tan δ(81) tan ϕ) = cos−1(0) = 90◦

(24)a0 = r0a
∗
0; a1 = r1a

∗
1; k = rkk

∗.

(25)a∗0 = 0.4237− 0.00821(6− A)2,

(26)a∗1 = 0.5055+ 0.00595(6.5− A)2,

(27)k∗ = 0.2711+ 0.01858(2.5− A)2.

(28)a0 = 0.228; a1 = 0.666; k = 0.308.
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Figure 5 shows the beam irradiation Eb on a surface with unit area as a function of the tilt angle β , for various 
plane azimuthal angles γ , in Tehran on the day of Nowruz.

As shown in Fig. 5 for δ = 0 (corresponding to the day n = 81 ), the beam irradiation energy received by a flat 
plate is maximized at the optimal angles γ ∗ = 0 and β∗ = ϕ . Let us prove this analytically. To obtain the beam 
irradiation energy received by a flat plate with arbitrary orientation β and γ (or η and ζ ), one needs to evaluate 
the integral:

Note that sin η > 0 and it is independent of ω . First, let us approximate the effective atmospheric optical trans-
mission coefficient τb to be a constant. Then we should maximize the following integral

Here we have used Eq. (9). The Sun’s path is symmetric with respect to the plane normal to the equatorial plane 
passing through the zenith. Due to this symmetry, it is evident that ζ = 0 corresponds to the extremum value of 
the received energy, and hence J(ζ ) is maximized. For any positive solution of ζ that leads to an optimal value 
for E, there should exist a negative solution as well. To complete the proof, let us show this directly. We may take 
0 ≤ ζ ≤ π

2  without any loss of generality. The same argument applies if we take −π
2 ≤ ζ ≤ 0.

Note that we have used the identity: x�(x) = 1
2 (x + |x|) together with the change of variable ω − ζ = u . Maxi-

mizing the integral (30), we get:

(29)Ib =

ωs
∫

ωr

cos θ(n,ω)�[cos θ(n,ω)] τb dω.

(30)Ib(η, ζ ) = τb

π/2
∫

−π/2

cos θ(n,ω)�[cos θ(n,ω)]dω =: sin η J(ζ ).

(31)

J(ζ ) = τb

π/2
∫

−π/2

cos(ω − ζ )�[cos(ω − ζ )dω

=
τb

2

π/2−ζ
∫

−π/2−ζ

[cos(u)+ | cos(u)|] du

=
τb

2

−π/2
∫

−π/2−ζ

[cos(u)+ | cos(u)|] du +
τb

2

π/2−ζ
∫

−π/2

[cos(u)+ | cos(u)|] du

= τb

π/2−ζ
∫

−π/2

cos(u) du = τb (cos ζ + 1).
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Figure 5.  Direct beam irradiation energy Eb (MJ) received on n = 81 DoY by a flat plate of unit area versus its 
tilt angle β for various values of azimuth angle γ . The plate is located at Tehran with latitude ϕ = 35.69◦N.
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The first equation gives η∗ = π
2  , and the second one leads to ζ ∗ = 0 . These are equivalent to γ ∗ = 0 and β∗ = ϕ . 

It is easily verified that ∂
2I

∂η∂ζ

∣

∣

η∗ ,ζ ∗
< 0 which proves that η∗ = π

2  and ζ ∗ = 0 is a true maximum. Note that J(ζ ) 
can be written as:

where f (ω, ζ ) = cos(ω − ζ )�[cos(ω − ζ ) . Then dJ(ζ )dζ

∣

∣

ζ=0
= 0 gives

Here

which is an odd function with respect to ω . In the realistic case where τb is not constant, I(η, ζ ) transforms to 
Ĩ(η, ζ ) , where τb is a part of integrand. It turns out: Ĩ(η, ζ ) = sin η J̃(ζ ) where

Maximizing with respect to η still yields η∗ = π
2  . One has

The integrand in the right-hand-side of (38) is the multiplication of two functions; an even function with respect 
to ω , τb(ϕ,ω) , and an odd function with respect to ω . Then the integral vanishes. Therefore, ζ ∗ = 0 and η∗ =

π

2
 

(or equivalently γ ∗ = 0 and β∗ = ϕ ) maximizes the received energy by the flat plate. For a general day of the 
year (DoY) represented by n, it can be shown, by a symmetry argument, that γ ∗ = 0 remains the optimal azimuth 
angle, but β∗ depends crucially on n. Figure 6 shows the dependence of Eb on β for different values of n.

Figure 7 shows the daily beam direct irradiation energy (in MJ) received by a flat plate of unit area as a 
function of its tilt angle β for all days of the year n = 1, · · · , 365 . Each graph in (7) represents the daily beam 
irradiation energy versus β for a specific day of the year. The daily received energy, takes its maximum value at 
a day-dependent tilt angle β∗(n) . Figure 8 shows the maximum beam irradiation energy (MJ) received by a flat 
plate of unit area located at Tehran with latitude ϕ = 35.69◦N , the plate’s azimuth angle is set to zero. Figure 9 
shows the optimal tilt angle β∗ versus DoY, n.

Although we have presented data for a specific location (Tehran, Iran) in the Northern hemisphere, the 
qualitative behavior of the results remains the same for other locations with similar climate types.

Sky diffuse contribution. Now we investigate the contribution of the sky diffusive irradiation component 
Ed to the energy received by a tilted flat collector. There are different models that describe the directionality of 
diffusive irradiation. Here, we adopt the simpler assumption that the sky diffusive part of the solar irradiation is 
isotropic. The unit vector er , which represents the direction of the received diffusive radiation, can be specified 
by two angles: the polar angle ϑ and the azimuth angle φ in the local observer’s spherical system of coordinates. 
We have:

See Fig. 10 for illustration. As the symmetry argument still holds true in this case, we set γ ∗ = 0 . Having the 
unit vector n in Eq. (6) we find:

(32)
∂I

∂η
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∣
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(39)er = k sinϑ sin φ + es sinϑ cosφ − ew cosϑ .
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Figure 6.  Beam direct irradiation energy (MJ) received by a flat plate of unit area on n-th DoY versus its tilt 
angle β for various values of δ . The plate is located at Tehran with latitude ϕ = 35.69◦N . The plate’s azimuth 
angle is set to γ = 0.

Figure 7.  Daily beam direct irradiation energy (MJ) received by a flat plate of unit area as a function of its tilt 
angle β (in radians). The lower (upper) curve corresponds to day of the year n = 354 ( n = 171 ), representing the 
winter solstice and summer solstice, respectively. The plate is located in Tehran, Iran, with latitude ϕ = 35.69◦N , 
and its azimuth angle is set to γ = 0.
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Figure 8.  Maximum beam irradiation energy (MJ) received by an optimally oriented flat plate of unit area 
versus DoY, n. The plate is located at Tehran with latitude ϕ = 35.69◦N and its azimuth angle is set to γ = 0 . On 
the day n = 171 the plate receives its annual maximal daily energy which is about 27.7 MJ.
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The contribution Ed of the sky diffusive component to the received irradiated energy turns out to be

where Gd(n,ω) is the sky diffusive irradiation on a horizontal surface of unit area and S is the angular integration 
region satisfying er · n ≥ 0 . It turns out,

Diffuse irradiation appears to be isotropic as there is no preferred direction when we look at the sky. Many mod-
els have been proposed to study the contribution of diffuse irradiation. Interested readers may find a review on 
many of them  in47. Here we adopt the version of the clear sky model proposed by Liu and Jordan  in48. According 
to their model the instantaneous sky isotropic diffusive irradiation Gd on a horizontal surface with unit area is 
given as follows:

where τd = 0.271− 0.294τb is the atmospheric transmission coefficient of the diffusive irradiation. The instan-
taneous total diffuse irradiation on a tilted surface of unit area is given by:

(40)er · n = sinϑ sin(β + φ).

(41)Ed(n,ω) =

∫

S

Gd(n,ω)

π
(d�) er · n =

Gd(n,ω)

π
I,

(42)
I =

π−β
∫

0

d ϕ sin(β + ϕ)

π
∫

0

d ϑ sinϑ sinϑ ,

=
π

2
(1+ cosβ).

(43)Gd(n,ω) = Gon(n)τd(n,ω) cos θz ,

Figure 9.  The optimum tilt angle β∗ (degrees) versus DoY, n. The plate is located at Tehran with latitude 
ϕ = 35.69◦N . The plate’s azimuth angle is set to γ = 0.
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Figure 10.  Incidence of sky diffusive radiation along the differential solid angle directed at −er specified by two 
angles polar ϑ and azimuth ϕ in the local observer’s spherical system of coordinates.
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The daily energy received by a tilted flat plate due to the sky diffusive irradiation becomes:

Substituting GdT (n,ω) from (44), the integral in (45) becomes:

This integral can be numerically evaluated for a given tilt angle β and DoY. Our code is able to find the optimal 
value β∗ for the total received energy Etot = Eb + Ed . Figure 11 shows the maximal daily total energy Etot and 
beam component Eb impinged on a flat plate with unit area. As it is seen the diffusive irradiation enhances the 
total received energy Etot = Eb + Ed.

Figure 12 shows the daily optimum tilt angle β∗ both for the direct Eb and the total Etot energies versus n. As 
you see, the optimal values are very close to each other.

Comparison with a tracking flat plate
It is highly desirable to determine the amount of radiation energy that a flat collector would receive if it tracks 
the Sun. As the plate tracks the beam of the Sun, it maximizes its solar exposure by orienting perpendicularly 
to the beam. To answer this question, the received energy is divided into two parts: direct beam and diffuse sky 
radiation. Evaluating the contribution of direct beam energy is relatively straightforward. From a mathematical 
perspective, it is necessary to maintain the incidence angle θ at zero, which means that the unit normal vector n 
is always along the solar vector σ throughout the day. By equating Eqs. (1) and (6), we obtain β = π

2 − αs = θz 
and γ = γs . For example, for an observer at the equator ( ϕ = 0 ) and on n = 81 , where δ = 0 , we have according 

(44)GdT (n,ω) =
1+ cosβ

2
Gd(n,ω) =

1+ cosβ

2
Gon(n)τd cos θz .

(45)Ed(n,ϕ) =
1

�

ωs
∫

ωr

GdT(n,ω) dω.

(46)Ed(n,ϕ) =
1+ cosβ

2

Gon(n)

�

ωs
∫

ωr

τd cos θz dω.

Figure 11.  Daily maximum total irradiated energy Etot and beam irradiated energy Eb (MJ) received by a flat 
plate of unit area versus n. The plate is located at Tehran with latitude ϕ = 35.69◦N . The plate’s azimuth angle is 
set to the optimal value γ ∗ = 0.

Figure 12.  Plot of the optimum daily tilt angle β∗ versus n for both Eb and Etot . The plate is located at Tehran 
with latitude ϕ = 35.69◦N . The plate’s azimuth angle is set to γ = 0.
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to (3) β = ω . The total amount of direct beam energy Etrcb  a tracking flat plate receiver can gain in the nth DoY 
can be obtained by setting θ = 0 (cos θ = 1) in integral (22). It turns out:

The integral in (47) can numerically be computed. Next, the sky diffusive contribution is investigated. For a track-
ing plate, we can consider it as a fixed plate with an instantaneous tilt angle β with cosβ = k · n = k · σ = sin αs . 
Replacing cosβ with sin αs in Eq. (44) the instantaneous sky diffusive irradiation of a tracking flat plate becomes:

The sky diffusive contribution to the daily received energy of a tracking plate can be obtained via the following 
integration:

Here, we have used the relationship sin αs = cos θz . Figure 13 shows the daily dependence of the sky diffuse 
irradiance Ed , beam irradiance Eb , and the total received energy Etot for a flat plate tracker of unit area located 
in Tehran, Iran, with a latitude of ϕ = 35.69◦N.

As expected, a tracking plate is able to capture more solar energy than a fixed plate with optimal orientation. 
Figure 14 illustrates the daily variation in the total energy received by both fixed and tracking plates, as well as 
the percentage increase in energy due to the tracking.

As you can see, the relative amount of the total energy increase percentage due to the Sun tracking critically 
depends on DoY. The minimum value of the relative energy increase percentage is about 17% in early winter. It 
raises around 40% in a relatively large interval starting around mid-May.

Comparison to existing results in the literature
Most of the existing results are obtained for particular locations with different weather conditions. As far as we 
know, no similar results have been found for the city of Tehran. While some investigations have been conducted 
for cities in south of Iran near the Persian Gulf, none of them have taken clear sky conditions into account. The 
only papers that have taken the clear sky assumption into account  are14, which investigated the city of Assiut in 
Egypt with latitude ϕ = 27.82◦N ,  and21, which calculated the optimal tilt angles for representative days of each 
month at various latitudes on a daily basis. The qualitative dependence of both the daily-averaged optimal tilt 
angle and the maximal received energy at the daily optimal angle on the day of the year in Tehran and Assiut are 
similar to each other. This can be seen by comparing Figs. 11 and 12 with Fig. 3 of  reference14. Furthermore, our 
results for the optimal tilt angle are in good agreement with those presented  in21 for the latitude ϕ = 35◦N , which 
is relatively close to the latitude of Tehran. To shed more light on the problem, we compared our findings with 
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Figure 13.  Dependence of separate sky diffusive Ed , beam Eb and total Etot on n for a tracker flat plate of unit 
area. The plate is located at Tehran, Iran with latitude ϕ = 35.69◦N.
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existing investigations that have taken into account weather conditions. Most of these papers have reported 
monthly averages at specific locations. To account for weather conditions, including cloudiness and pollutants, 
a clearness index K  is typically introduced. This index represents the ratio of the monthly-averaged total energy 
received by a horizontal surface (direct, diffusive, and ground reflection) to the energy that a horizontal surface 
would receive outside of the atmosphere. It is defined as K = H

Ho
 , where H  is the monthly-averaged received 

energy and Ho is the monthly average daily energy received outside the atmosphere. The monthly averaged total 
radiation energy received by a tilted surface of unit area on Earth is given by HT = RH  , where R < 1 is a coef-
ficient that can be estimated by considering the beam, diffuse, and reflected components of the radiation inci-
dence on the tilted surface individually. Assuming that the diffuse and reflected radiation are isotropic, Liu and 
 Jordan48 proposed that R can be expressed as:

Here, Hd  is the average diffusive daily energy that a horizontal surface of unit area receives, ρg is the ground 
albedo reflection coefficient, and β is the surface tilt angle. Once Rb and Hd  are specified, the monthly average 
total energy that a tilted surface receives can be calculated. There are various models available for determining 
Hd  . Usually, people express Hd  as a polynomial of the clearness index K  . Readers can refer  to27  and47 for various 
models of Hd  and the exact expression of Rb . The studies that are closest to the latitude of Tehran were conducted 
 in49,50, which investigated eight cities in Turkey. Among them, Adana with a latitude of ϕ = 36.59◦N  has the 
closest latitude to Tehran. For example, on March 16, the optimal tilt angles in Tehran (clear sky assumption) and 
Adana (realistic weather condition) are 33◦ and 36◦ , respectively. Qualitatively speaking, the daily dependence 
of the optimal tilt angle is similar in both cities, despite the fact that the total energy is larger in Tehran than in 
Adana. In another study conducted for higher latitudes in the Northern hemisphere, the optimal tilt angle for 
Nottingham, England was found to be around 50◦ in mid-March.  In21, the optimal tilt angle for a latitude of 35◦ 
was found to be 38◦ in mid-March. Another study conducted for Abu Dhabi, which has a latitude lower than 
Tehran, gives the average optimal tilt angle for March at 25◦ . Naively speaking, the optimal tilt angle tends to 
decrease with decreasing latitude.

Summary and conclusion
To summarize, we have analytically calculated the optimal tilt and azimuth angles for a fixed flat-type collector 
at a given latitude. The contribution of the ground-reflected solar radiation is neglected. We have separately 
evaluated the maximal energy received by a flat plate of unit area associated with the direct beam and sky diffuse 
components of irradiation. In a geocentric system of coordinates, it has been analytically shown that the optimal 
azimuthal angle of a collector is γ ∗ = 0 , based on the Sun’s symmetrical motion with respect to the equatorial 
plane. However, the optimal tilt angle β∗ crucially depends on the day of the year (n) and the local latitude. 
Analytical analysis has been performed for a mid-altitude climate location in Tehran, Iran. The maximal daily 
received energies, namely direct beam and sky diffuse, associated with this optimal orientation are compared to 
their corresponding values when the flat plate tracks the Sun. The relative amount of the total energy increase 
due to Sun tracking drastically depends on the day of the year. In early winter, the increase percentage is mini-
mum and around 17% . In a relatively large interval starting from mid-May, the increase percentage is large, up 
to 40% . Although our results are associated with a particular location (Tehran) with a mid-altitude climate, 
the qualitative behavior for other latitudes remains the same. We have not found such a detailed comparison 
elsewhere in the literature.
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Figure 14.  Daily dependence of the total energies, fix and tracking (left), and the relative energy increase 
percentage amount due to the tracking (right). The plate is located at Tehran, Iran with latitude ϕ = 35.69◦N.
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