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A novel approach to minimal 
reservoir computing
Haochun Ma 1, Davide Prosperino 1 & Christoph Räth 2*

Reservoir computers are powerful machine learning algorithms for predicting nonlinear systems. 
Unlike traditional feedforward neural networks, they work on small training data sets, operate with 
linear optimization, and therefore require minimal computational resources. However, the traditional 
reservoir computer uses random matrices to define the underlying recurrent neural network and 
has a large number of hyperparameters that need to be optimized. Recent approaches show that 
randomness can be taken out by running regressions on a large library of linear and nonlinear 
combinations constructed from the input data and their time lags and polynomials thereof. However, 
for high-dimensional and nonlinear data, the number of these combinations explodes. Here, we 
show that a few simple changes to the traditional reservoir computer architecture further minimizing 
computational resources lead to significant and robust improvements in short- and long-term 
predictive performances compared to similar models while requiring minimal sizes of training data 
sets.

The prediction of complex dynamic systems is a key challenge across various disciplines in science, engineer-
ing, and economics1. While machine learning approaches, like generative adversarial networks, can provide 
sensible predictions2, difficulties with vast data requirements, the large number of hyperparameters, and lack of 
interpretability limit their usefulness in some scientific applications3. However, it is required to fundamentally 
understand how, when, and why the models are working to prevent the risk of misinterpreting the results if 
deeper methodological knowledge is missing4.

In the context of complex systems research, reservoir computers (RCs)5,6 have emerged for predicting the 
dynamics of chaotic systems. The core of the model is a fixed reservoir, which is usually constructed randomly7–9. 
The input data is fed into the nodes of the reservoir and solely the weights of the readout layer, which transform 
the reservoir response to output variables, are subject to optimization via linear regression. This makes the learn-
ing extremely fast and comparatively transparent. However, this approach can be hit-or-miss, and it is hardly 
possible to know a priori how the topology of the reservoir will affect the performance10–12.

Recent research has emerged on algorithms which do not require randomness. They are built around 
regressions13 on large libraries of linear and nonlinear combinations constructed from the data observations 
and their time lags, such as next generation reservoir computers (NG-RCs)14 or sparse identification of non-
linear dynamics (SINDy)15. These algorithms are built around nonlinear vector autogression (NVAR)16 and 
the mathematical fact that a powerful universal approximator can be constructed by using an RC with a linear 
activation function17,18.

The model we present in this paper is based on the same mathematical principles — but instead of getting 
rid of the traditional reservoir architecture altogether, we take an intermediate step and make only a few simple 
changes: we restructure the input weights so that all coordinate combinations are fed separately into the reser-
voir. Additionally, we remove the randomness of the reservoir by replacing it with a block-diagonal matrix of 
blocks of ones. Instead of introducing the nonlinearity in the activation function, we add higher orders of the 
reservoir states in the readout.

Using the example of synthetic, chaotic systems, and in particular the Lorenz system, we show that these alter-
ations lead to excellent short- and long-term predictions that significantly outperform traditional RC, NG-RC, 
and SINDy. While prediction performance is often evaluated visually, we use three quantitative measures: the 
largest Lyapunov exponent, the correlation dimension, and the forecast horizon. We also validate the robust-
ness of our results by using multiple attractor starting points, different training data sizes and discretizations.
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Results
In this work, we show how small changes to the traditional RC architecture can significantly improve its predic-
tion capability of chaotic systems especially for low data requirements. Therefore, similar to Gauthier et al.,14 we 
use the minimal data setup for the Lorenz system with a discretization of dt=0.025 and Ttrain=400 training data 
points.

The minimal possible architecture would be a spectral radius ρ∗=0 and block-size b=1 , for which our RC 
reduces to the case described by Gonon and Ortega.17 Here, we do not have a reservoir and directly feed the 
input data to the readout and perform a Ridge regression. While we find this parametrization to be capable of 
reasonable predictions, a few minor alterations increase the performance significantly.

The standard RC architecture used in this work has block-size b=3 , spectral radius ρ∗=0.1 , and a nonlinearity 
degree η=2 . This equals 36 variables per coordinate. The results of this setup are illustrated in Fig. 1.

In order to obtain robust results we repeat the analysis for 1000 different starting points on the attractor 
and compare the prediction performance to the other models. In Fig. 2 we see that the novel RC architecture 
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Figure 1.   Prediction on a minimal training data set of the Lorenz system. The first column shows the attractor 
(top) and the trajectories (bottom) of the 400 training data points (and the discarded transient). The second 
column shows the attractor and the trajectories of the test data. The third column shows the attractor (top) and 
the absolute prediction error (bottom) of the prediction. The dashed lines indicate the standard deviations of the 
three components of the test data.
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Figure 2.   Prediction measures (columns) of different models (rows) for 1000 different starting points on the 
Lorenz attractor ( dt=0.025 , Ttrain=400 ). For the correlation dimension and the Lyapunov exponent we calculate 
the relative error to the respective test data. The mean and standard deviation of each distribution is denoted by 
a dashed and dotted black line, respectively.
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significantly outperforms them with regards to short-term predictions with an average forecast horizon of ∼7.0 
Lyapunov times — this is ∼2.5 times more than the averages of the other models. The long-term prediction is 
also slightly better as the average relative errors of the correlation dimension and the Lyapunov exponent are 
∼3.5 · 10−4 , respectively — this is ∼9.0 and ∼39.7 times smaller than the averages of other models. The traditional 
RC has generally more widely distributed errors due to its randomness.

We verify the robustness of our novel RC to variations in discretization and length of training data. In Fig. 3 
we observe that it is quite robust and as expected, performs significantly better than comparable models espe-
cially with regards to short-term prediction. Here, we only see a decline in prediction performance for coarse 
discretizations dt>0.045 . The robustness of the long-term prediction is similar to traditional RC and SINDy. 
Interestingly, we see a decline in performance of NG-RC for larger training lengths Ttrain>700 and finer discre-
tizations dt<0.02 . Furthermore, we find out model to be reasonably robust to changes in hyperparameters and 
noise up to a signal-to-noise ratio of ∼38dB.

Furthermore, we analyze the prediction performance of our model on different chaotic systems, which have 
different nonlinear behavior. We choose the models so that we can understand the inner workings of our RC 
better. For example, the Halvorsen system has only quadratic nonlinearities with no interacting coordinates 
and hence the input matrix only needs the first three blocks (which represent the distinct coordinates). Another 
example to point out is the Rabinovich-Fabrikant system, which has cubic nonlinearities. Here, we see that a 
nonlinearity degree of η≥3 is necessary for a reasonable prediction. The model parameters and the prediction 
measures for the different systems are illustrated in Table 1.

Discussion
In this work, we present a novel RC architecture that outperforms comparable methods in terms of short- 
and long-term predictions while requiring similarly minimal training datasets and computational power. The 
architecture is modified by restructuring the input weights and reservoir such that combinations of input data 
coordinates are fed separately into the reservoir. Therefore, we use a block-diagonal matrix of ones as the reser-
voir, which acts as an averaging operator for the reservoir states at each update step. Similar to average pooling 
layers in other machine learning methods, this can be interpreted as a way to primarily “extract” features that 
are more robust19. It also takes out the randomness of traditional RC. Instead of using a nonlinear activation 
function to create the reservoir states, we capture the nonlinearity of the data in the readout layer by appending 
higher orders of the reservoir states before the Ridge regression. We find that these changes lead to a significant 
improvement in the short- and long-term predictions of chaotic systems in comparison to models such as the 
traditional RC, NG-RC, and SINDy. In order to evaluate the prediction performance, we compute the largest 
Lyapunov exponent, the correlation dimension, and the prediction horizon.

This work can be extended in many directions. For example, the generation of the reservoir states can be 
explored to understand what the RC actually learns. In our modified architecture, the states are constructed 
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Figure 3.   Prediction measures (columns) of different models (rows) for different discretizations and lengths 
of training data of the Lorenz system. We vary the discretization (x-axis) and the length (y-axis) of the training 
data between (0.01, 0.05) and (300, 1000), respectively. For the correlation dimension and the Lyapunov 
exponent we calculate the relative error to the respective test data. Note that the forecast horizon has a 
logarithmic color scale. Each value in the heatmaps is the average over 100 variations of attractor starting points.
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by mixing the average of the past data with the new data with different “proportions”. Therefore, methods for 
constructing the reservoir states, such as the exponentially weighted moving average (EWMA) of the data20, 
should be explored. Related to this, the design of the readout is also an interesting topic to look into. Similarly 
to NG-RC and SINDy, nonlinear functions could be applied and appended to the reservoir states in order to 
capture more complex structures in the data.

Another study can be conducted on how the elimination of randomness from RC-like models affects their 
capabilities, e.g., information processing capacity21 or multifunctionality22.

Furthermore, the applicability to high-dimensional and highly nonlinear data can be analyzed and compared 
with models relying on large feature libraries, such as NG-RC and SINDy. Since the number of variables scales 
less rapidly in our architecture, it would be relevant to see how much computational power can be saved, espe-
cially for hardware RCs.

Moreover, the model can be tested on real-world examples from different disciplines to produce reliable 
short- and long-term predictions, especially in cases where training data is scarce and expensive.

Methods
Reservoir computers.  A reservoir computer (RC)5,23,24 is an artificial recurrent neural network (RNN) that 
relies on a static network called reservoir. The term static means that, unlike other RNN approaches, the reser-
voir remains fixed once the network is constructed. The same is true for the input weights. Therefore, the RC is 
computationally very efficient since the training process only involves optimizing the output layer. As a result, 
fast training and high model dimensionality are computationally feasible, making RC well suited for complex 
real-world applications.

In the following we describe the individual components of the architecture and the modifications that we 
propose. To make the following section more understandable we introduce them in a high-level summary: 

1.	 Input weights: the input weights Win are designed so that each combination of the coordinates of the data is 
fed into the reservoir separately.

2.	 Reservoir: the reservoir A is chosen as a block-diagonal matrix consisting of matrices of ones with size b.
3.	 Reservoir states: we do not use a nonlinear activation function in order to construct the reservoir states r(t) . 

Hence the iterative update equation reduces to: 

 where u(t) denotes the training data at time t.
4.	 Readout: instead of only inserting the squared reservoir states25, our generalized states r̃ contain all orders 

up to a nonlinearity degree η : 

5.	 Training and Prediction: as in traditional RCs, we stack the training data u and the corresponding reservoir 
states r̃ to matrices U and R̃ respectively. We then solve the equation Wout · R̃ = U by using Ridge regression26 
resulting in: 

(1)r(t + 1) = A · r(t)+Win · u(t) ,

(2)r̃ =
{

r, r2, . . . , rη−1, rη
}

.

(3)Wout = U · R̃T
(

R̃ · R̃T + β I
)−1

,

Table 1.   Minimal setup for different chaotic systems. We vary the parameters of the training data and the 
RC architecture to find the minimal setup for different chaotic systems. To do this, we compute the relative 
errors of the Lyapunov exponent and the correlation dimension for 100 different attractor starting points. The 
minimum setup is defined as the setup where the average relative errors of the Lyapunov exponent and the 
correlation dimension are both <10−2 . This ensures that the long-term climate of the chaotic system is reliably 
reproduced. In this table, we denote the parameters of the data setup (columns 1−2 ) and RC architecture 
(columns 3−5 ). The last 3 columns denote the mean and standard deviations of the forecast horizon for the 
different prediction models. The governing equations can be found in the respective references.

Training 
Data

Novel 
Architecture Forecast Horizon τ

System Ttrain dt b ρ∗ η Novel Trad. NG-RC SINDy

Halvorsen 300 0.01 3 0.1 2 498±34 231±47 249±27 335±37

Rabi.-Fabr. 300 0.01 3 0.1 3 261±23 168±36 89±12 107±11

Aizawa (43) 300 0.01 3 0.1 4 193±16 131±27 76±9 65±7

Dadras-Momeni (44) 300 0.01 3 0.1 2 423±25 228±41 259±19 248±21

Rössler (45) 300 0.01 3 0.1 2 781±51 301±72 332±40 401±55

Four wing (46) 300 0.01 3 0.1 2 1497±39 1135±68 659±28 712±31

Chen (47) 300 0.01 3 0.1 2 922±41 880±72 750±36 812±41
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 where β=10−5 is the regularization constant that prevents overfitting and I denotes the identity matrix. 
The prediction procedure of the reservoir states also stays the same (with the adjusted update equation): 

 Note that the reservoir A only acts on the “simple” reservoir state r , while the second summand acting on 
Wout is r̃ containing all the nonlinear powers. The predicted time series y(t) can then be obtained by the 
multiplication: 

Input weights.  In order to feed the input data u(t) into the reservoir, an input weights matrix Win is defined, 
which determines how strongly each coordinate influences every single node of the reservoir network. In a 
traditional RC, the elements of Win are chosen to be uniformly distributed random numbers within the interval 
[−1, 1].

In our novel framework we do not choose the elements randomly, but follow a structured approach. Firstly, 
in order to remove the randomness, for a block-size of b we take b equally spaced values between [1, 0].

To avoid non-invertible matrices for ridge regression, we take the square root values of all weights 
w =

(√
w1, . . . ,

√
wb

)T . Then we specifically structure the input matrix so that the different combinations of 
input data coordinates, also called features, are fed separately into the reservoir. In the case of a 3-dimensional 
system with coordinates u(t) = (x, y, z)T (t) and a nonlinearity order η=2 , the input matrix (multiplication) 
looks like:

where ⊗ denotes the tensor product and hence each block represents one feature f. For n-dimensional data the 
feature space contains nf = 2n−2 elements. Thus, the dimension of the reservoir is d = nf · b.

Reservoir.  The core of an RC, the reservoir A , is usually constructed as a sparse Erdős-Rényi random network27 
with number of nodes d. As for the choice of input weights, we choose the reservoir in such a way that each 
feature remains separate. Therefore, we use a block diagonal matrix J consisting of ones J with block size b. Thus, 
each block Ji can be directly mapped to a particular feature:

Similar to a traditional RC, we scale the spectral radius ρ(J) of the reservoir to a target spectral radius ρ∗ . While 
the computation of the spectral radius is usually a computationally expensive task28 that scales with O(d3) , the 
computation is no longer necessary for block diagonal matrices of ones J . This is because the eigenvalues of the 
matrix are equal to the block size b. Thus, the rescaled reservoir is given by:

Our default target spectral radius is ρ∗=0.1.

Reservoir states.  As in traditional RC, we use a recurrent update equation to capture the dynamics of the system 
in the so-called reservoir states r(t) . This would normally require a bounded nonlinear activation function g(·) 
that captures the nonlinear properties of the data. The activation function (usually the hyperbolic tangent) is 
applied on an element-by-element basis.

However, as mentioned earlier, we shift the nonlinearity entirely to the readout. Therefore, the time evolution 
of the states is iteratively determined via:

Due to our choice of architecture, the reservoir states for each feature can be obtained separately:

(4)r(t + 1) = A · r(t)+Win ·Wout · r̃(t) .

(5)y(t) = Wout · r̃(t) .

(6)w = (w1,w2, . . . ,wb)
T =

(

1,
b− 2

b− 1
, . . . ,

1

b− 1
, 0

)T

(7)Win · u(t) =
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Hence, we can take all reservoir states belonging to one feature rf (t) — we call them feature states — and analyze 
them separately. This helps us to understand that the reservoir acts as an averaging operator on the feature states:

where Ib is a vector of ones of size b. Thus, in each iteration step, the feature states are “normalized” to the aver-
age of the past feature states r̄f (t) and a varying strength (determined by the input weight) is added to the new 
feature data f(t):

where f can be replaced by any other feature without loss of validity. The average, or “memory”, of each feature 
is tracked in the last row of the feature states since wb=0 . Furthermore, this implies that target spectral radius 
ρ∗ determines how strongly the memory of the data is kept in each iteration step.

Readout.  While a quadratic readout, i.e., the squared reservoir states r2 , is often added to a traditional RC to 
break the symmetry of the activation function25, we need the readout to capture the nonlinearity of the data. 
Therefore, we add even higher orders of nonlinearity to the so-called generalized states r̃ . For a given degree of 
nonlinearity η they look like the following:

Hence, for a degree of nonlinearity η and a block-size of b, the number of elements in the readout, which is also 
the number of variables to be optimized, is:

which we rewrite to binomial coefficients for better comparison. For high-dimensional data with high nonlin-
earity, the number of variables to be optimized is much smaller than for comparable predictive models such as 
NG-RC14 or SINDy15. This is because NG-RC and SINDy require combinations with recurrences. Therefore, the 
size of their feature space for a nonlinearity degree is η (at least):

which grows much faster for larger n and η than the expression for nout in Eq. 16.

Prediction performance measures.  When forecasting nonlinear dynamical systems, the goal is not only 
to exactly replicate the short-time trajectory, but also to reproduce the long-term statistical properties, or cli-
mate, of the system.

Correlation dimension.  To assess the structural complexity of an attractor, we calculate its correlation dimen-
sion ν , which measures the fractal dimensionality of the space populated by its trajectory29,30. The correlation 
dimension is implicitly defined by the power-law relationship based on the correlation integral:

where n is the dimension of the data and c(r′) is the standard correlation function. The integral represents the 
mean probability that two states in the phase space are close to each other at different time steps. This is the case 
if the distance between the two states is smaller than the threshold distance r. For self-similar, strange attractors, 
this power-law relationship holds for a certain range of r, which can be calibrated using the Grassberger-Procaccia 
algorithm31. The benefits of this measure are that it is purely data-based, it only needs a small number of data 
points, and it does not require any knowledge of the underlying governing equations of the system.

Lyapunov exponents.  Besides its fractal dimensionality, the statistical climate of an attractor is also character-
ized by its temporal complexity represented by the Lyapunov exponents32. They describe the average rate of 
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divergence of nearby points in the phase space, and thus measure sensitivity with respect to initial conditions33. 
There is one exponent for each dimension in the phase space. If the system has at least one positive Lyapunov 
exponent, it is classified as chaotic. Thus, it is sufficient for the purposes in this work to calculate only the largest 
Lyapunov exponent �max:

where d(t) denotes the distance of two initially nearby states in phase space and the constant C is the normaliza-
tion constant at the initial separation. Thus, instead of determining the full Lyapunov spectrum, we only need to 
find the largest one as it describes the overall system behavior to a large extent. Therefore we use the Rosenstein 
algorithm34.

Forecast horizon.  To quantify the quality and duration of the short-term prediction of the trajectory we use 
the forecast horizon τ12. It tracks the number of time steps for which the absolute error between each coordinate 
of the predicted ypred(t) and test ytest(t) data does not exceed the standard deviation of the test data σ

(

ytest(t)
)

:

We express the forecast horizon in units of the Lyapunov time by multiplying it with the discretization and maxi-
mum Lyapunov exponent of the test data τ · dt · �testmax . This measure is intended to evaluate how long a prediction 
can reproduce the actual trajectory before the chaotic nature of the system leads to an exponential divergence.

Dynamical systems.  We apply our model to a number of synthetic chaotic systems. In our analyses, we 
focus on the following three due to their specific properties in terms of nonlinearity.

Lorenz.  As it is common in RC research35,36 we use the Lorenz system which was initially proposed for mod-
eling atmospheric convection37:

where the standard parametrization for chaotic behavior is σ=10 , ρ=28 , and β=8/3.

Halvorsen.  As in Hertreux and Räth25 we use the Halvorsen system38 for our analyses, which has a cyclic sym-
metry and, unlike to the Lorenz system, only has nonlinearities without interaction of coordinates:

where a=1.3 and b=4 are the standard parameters.

Rabinovich–Fabrikant.  In order to test whether our model works also for systems entailing cubic nonlineari-
ties, we analyze the Rabinovich-Fabrikant system39:

where α=0.14 and γ=0.1 are the standard parameters.

Simulating and splitting data.  Since we compare our model with NG-RC and SINDy, we use the same data 
setup as the original works14,15. Hence, we solve the differential equations of the systems using the Runge-Kutta 
method40 with a discretization of dt=0.025 in order to ensure a sufficient manifestation of the attractor.

We discard the initial transient of Ttransient=50000 , use the next Ttrain=400 steps for training, then skip 
Tskip=10000 steps, and use the remaining Ttest=10000 for testing the prediction. Hence in total we simulate 
T=70400 steps.

(19)d(t) = C · e�max ·t

(20)
∣

∣ypred(t)− ytest(t)
∣

∣ < σ

(

ytest(t)
)

.

(21)

dx

dt
= σ · (y − x)

dy

dt
= x · (ρ − z)− y

dz

dt
= x · y − β · z ,

(22)

dx

dt
= a · x − b · y − b · z − y2

dy

dt
= a · y − b · z − b · x − z2

dz

dt
= a · z − b · x − b · y − x2 ,

(23)

dx

dt
= y · (z − 1+ x2)+ γ · x

dy

dt
= x · (3 · z + 1− x2)+ γ · y

dz

dt
= −2 · z · (α + x · y) ,
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To get robust results, we also vary the starting points on the attractor by using the rounded last point of 
one data sample as the starting point for the next. The initial starting points for the Lorenz, Halvorsen, and 
Rabinovich-Fabrikant systems are (−14,−20, 25) , (−6.4, 0, 0) , and (−0.4, 0.1, 0.7) , respectively.

Comparable prediction models.  We compare our novel RC to other models designed for predicting 
dynamical systems. We briefly describe them in the following.

Traditional reservoir computer.  For the traditional RC architecture we choose an Erdős-Rényi network of 
dimension d=600 with a target spectral radius ρ∗ and a quadratic readout. This equals 1200 variables per coor-
dinate to be optimized. In order to get robust results we repeat the prediction for 1000 realizations and take the 
average of the prediction measures.

Next generation reservoir computer.  The next generation reservoir computer (NG-RC) developed by Gauthier 
et al.14 is a so-called nonlinear vector autoregression (NVAR) machine and thus, does not require a reservoir. It 
solely needs the feature vector, which consists of time-delay observations of the data and nonlinear functions of 
these observations. The resulting output weights can be used to construct the governing equations of the data. 
We use the standard setting with time delays k=2 and skips s=1.

Sparse identification of nonlinear dynamics.  Sparse identification of nonlinear dynamics (SINDy)15 discovers 
the underlying dynamical system of data by learning its governing equations through sparse regression. It is 
similar to NG-RC, but uses an iterative approach to filter only relevant features. We use the standard parametri-
zation and the official Python package PySINDy41,42.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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